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Examples of Binomial Sums
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Result

An efficient algorithm computing  
a linear recurrence for binomial sums.
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Example: Apéry’s sequence
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Why is this a solution?

• find hypergeometric closed-forms (Petkovšek’s algo.); 

• compute efficiently the first n terms, the nth term; 

• (less easy) study the asymptotic behavior; 

• build other sequences by closure properties; 

• prove identities.

With a linear recurrence, it is easy to:

This is what summing means in symbolic computation
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I. Creative Telescoping



Creative telescoping is:

• Differentiation under the integral sign plus integration 
by parts, made algorithmic; 

• and the analogue for sums; 

• and for multiple sums and multiple integrals.
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Example: Apéry’s sequence

1. Find a telescoping relation 

 

2. Sum over k and telescope (with care)
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An identity of Andrews & Paule
(difficult for creative telescoping)

Needed: 
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. Andrews & Paule (93): two proofs with human insight; 

. Wegschaider (97): via a generalization of Sister Celine’s 
technique; 
. Koutschan’s code (2010): 
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An identity of Andrews & Paule
(with the new algorithm)
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Telescoping Ideal

Approximated by:

1. Reducing the search space

2. Proceeding by increasing slices (and indeterminate coeffs)
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Examples of applications
• Hypergeometric: binomial sums, hypergeometric series;  

• Higher dimension: classical orthogonal polynomials, 
special functions like Bessel, Airy, Struve, Weber, Anger, 
hypergeometric and generalized hypergeometric,…  

• Infinite dimension: Bernoulli, Stirling or Eulerian numbers, 
incomplete Gamma function,…
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II. Faster Creative  
Telescoping



Certificates are too big
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Algorithm: R0:=[P/Qm] 
   for i=1,2,… do Ri:=[∂tRi-1] 
   when there is a relation c0(t)R0+…+ci(t)Ri=0 
         return c0+…+ci∂t

i

Bivariate integrals by Hermite reduction
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If m=1, Euclidean division: P=aQ+r, degx r<degx Q

If m>1, Bézout identity and integration by parts
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More variables: Griffiths-Dwork reduction
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1. Control degrees by homogenizing (x1,…,xn)↦(x0,…,xn) 
2. If m=1, [P/Q]:=P/Q 
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Size and complexity

Non-regular case by deformation, better way in Pierre Lairez’s poster.
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Thm. [Bostan-Lairez-S. 2013] A linear differential equation 
for I(t) can be computed in O(e3nN8ndt) operations in ℚ.   
It has order ≤Nn and degree O(enN3ndt).

Note: generically, the certificate has at least        monomials.Nn2/2
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III. Multiple Binomial 
Sums



Definition
Multiple binomial sums are obtained from

by

indicators                   𝟙n  
geometric sequences  
binomial coefficients 

+, ×, multiplication by scalars,  
indefinite summation, 
affine transformations of the indices.
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defined as the 
coeff of xk 
in (1+x)n.
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Examples
• All the sums in this talk; 

• the Catalan numbers: 
• more generally: coefficients of algebraic series 

(P(x,y)=0); 
• more generally: coefficients of  

diagonals of rational series.
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Christol’s conjecture: if f∈𝕫[t] is convergent and solution  
of a LDE, then it is the diagonal of a rational series. 20/24



Generating Function Dictionary
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Multiple binomial sums reduce to multiple integrals of rational functions
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Example: Dixon’s identity
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Demo?
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Summary 

Symbolic summation and integration deserve more 
attention in terms of complexity; 

We propose algorithms that are much faster than 
usual creative telescoping, in particular by 
avoiding certificates; 

Restricted to basic (but common!) classes, for now.
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THE END


