Newton's lteration for Combinatorial Systems
and Applications

Bruno Salvy
Bruno.Salvy@inria.fr

Algorithms Project, Inria

Joint work with Carine Pivoteau and Michele Soria
J. Combinatorial Theory Series A. 119 (nov. 2012) 1711-1773.

IMB, Bordeaux, June 24, 2012

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

| Introduction

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Algorithms

Analysis Combinatorics

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Main Tool: Newton lteration

To solve ¢(y) = 0, iterate
ylr = Il I3l g Inly yIn il — gy Iy,

Good case: quadratic convergence if \ "

/ Yor1
@ the initial point is close enough;

@ the root is simple.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Main Tool: Newton lteration

To solve ¢(y) = 0, iterate
ylr = Il I3l g Inly yIn il — gy Iy,

Good case: quadratic convergence if \ "

/ Yor1 .
@ the initial point is close enough; /

@ the root is simple.

Proof: simple root at (

S = (Y — ¢) + O((Oz)} _ = A7)

= 0 [n] _ ~\2
gz5/()/[n]):¢/(<) + O(y[n] —0) ¢’(y[”])+ ((y™=0)9)

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction
Examples of Quadratic Convergence

1 05
oy) =1+ 2y’ —y |

8
n2 n 0-)\
y[n+1]:y[n]+1+y[]/[8]_y[]
1—yn/4 -05
ylol = o. -]

[= 1.00000000000000000000000000
yP = 1.16666666666666666666666666
yBl = 1.17156862745098039215686275
yl¥ = 1.17157287525062017874740884
Bl = 1.17157287525380990239662075

Introduction

Examples of Quadratic Convergence

FIEIE
st 23 ey} =0 yw——,‘*‘“ T O
ceap==y oy | Al Ayalpemgapiobpl

edxy | A o

apary | Aa) ey

——x3 —x3
a3 | a3
2 —tt g =p. 3 —d ity —g g
?b()/) =1l+zy“—y b3t | b —tavg 3
—taxp —} axt —A=axg
gty | are Aegaryg

g%) eix

1+ zy[”]2 — Yn I

Yl

n R T B
=g g3 *
1— 22y[”] e T .
—-324* *4'0;7% * e r ity ar
ety
— a2y
qarg
_.g;xx%
*axs
[0] - —tax - . ‘
yt =0 ¢ e (T i

ylt =1
v =14 2422244234824 +162° + 3225+ 642" + ...
yBl =14 242224523+ 142% + 422° + 1322° + 42827 + ...

[Newton 1671]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Examples of Quadratic Convergence

o) =(E+Z-V)\Y
Y+l — Yl Spo(z - Y. O+ 2.0 Yy . g(pl),

y[o] = @ y[]'] — O

yl2l — 4 +

6 P
Bl — |yl 4 <§ Lot % AR =< Iy
p

[Décoste, Labelle, Leroux 1982]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Motivation: Random Generation / Discrete Simulation

G=8+P,
S =Seq(Z + P, card > 1),
P = Set(Z + S,card > 0).

Definition (Generating function)

Y(z)=yo+yiz+---+yaz"(/n!)+ - (ya: nb objects of size n).

Algorithms for uniform random generation in size N use either
®)o,...,yn (recursive method);
e Y(x) for some x > 0 (Boltzmann sampler).

[Nijenhuis, Wilf 1978; Flajolet, Zimmermann, Van Cutsem 1994; Duchon,
Flajolet, Louchard, Schaeffer 2004; Flajolet, Fusy, Pivoteau 2007]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction
Combinatorial Newton lteration

0.1

Well-Founded Combinatorial Specification m/——’—\
¢

Combinatorial Newton iteration for

¢
Newton iteration for the gf Y(z)
(yo, - ,yN) fast
4

Numerical Newton iteration starting

from O converges to the value of Y(x). ' //

. “
0,25 0,255 0,26 0,265 0,27 0,275 0,28

[Labelle et alii 80-90] combinatorial part, without &, using species theory
[Pivoteau, S., Soria 2008] labelled case, without £
[2012] general case, using species theory.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)
First N coefficients of gfs of constructible species in
© arithmetic complexity:
o O(Nlog N) (both ogf and egf);
@ binary complexity:
o O(N?log® Nloglog N) (ogf);
o O(N?log> Nloglog N) (egf).

Quasi-optimal wrt size of the result.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Results (2/2): Oracle

@ The egfs and the ogfs of constructible species are convergent
in the neighborhood of 0;

@ A numerical iteration converging to Y(«) in the labelled case
(inside the disk);

© A numerical iteration converging to the
sequence Y(a),Y(a?),Y(a3),... for || - |so
in the unlabelled case (inside the disk).

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Examples (I): Polynomial Systems

Random generation following given XML grammars

Grammar nb max npb or%:;ls Fgli

eqs deg sols (
rss 10 5 2 0.02 0.03
PNML 22 4 4 0.05 0.1
xslt 40 3 10 04 1.5
relaxng 34 4 32 04 3.3
xhtml-basic 53 3 13 1.2 18
mathm|2 182 2 18 3.7 882
xhtml 93 6 56 34 1124
xhtml-strict 80 6 32 3.0 1590

xmlschema 59 10 24 0.5 6592

SVG 117 10 58 >1.5Go
docbook 407 11 67.7 >1.5Go
OpenDoc 500 3.9

[Darrasse 2008]
Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Introduction

Example (11): A Non-Polynomial “System”
Unlabelled rooted trees:

f(x) = xexp(f(x) + %f(xz) + %f(x3) +--0)

09+
08+
074

0.6

T T 1
0 01 02 03 04

A Newton iteration driven by combinatorics.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series

Il Newton lteration for Power Series

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
ylrttl =yl ot g Ioly ot il — gy Iy

Quadratic convergence \ "

11 / oer

Divide-and-Conquer

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
YAy RV) R L R VL D 7 Lt IRV LD

Quadratic convergence \

¥n
II / i1

Divide-and-Conquer
© Solve at precision N/2; Cost(y[”]) = constant x Cost(last step).
@ Compute ¢ and ¢ there;

@ Solve for ul"+1l.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate

= bl gyl (),

Quadratic convergence \ ’

ﬁ / Oy

Divide-and-Conquer

y[n+1]

To solve at precision N
O Solve at precision N/2; Cost(y[”]) = constant x Cost(last step).
@ Compute ¢ and ¢ there;
@ Solve for yln*11.
Useful in conjunction with fast multiplication (quasi-linear):
@ power series at order N: O(N log) ops on the coefficients;
o N-bit integers: O(N log N loglog N) bit ops.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Newton Iteration for Inverses

oy)=a—1/y = 1/¢/(y) = y* = |yl =yl — ylrl(aylnl 1),

Cost: a small number of multiplications
Works for:

@ Numerical inversion;
@ Reciprocal of power series;

@ Inversion of matrices.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Newton Iteration for Inverses

Yl = Il ol g 0 — 7).

dy)=a—-1/y=1/¢(y)=y*=
Cost: a small number of multiplications

Works for:
@ Numerical inversion;
@ Reciprocal of power series;
© Inversion of matrices.
O(Y 4+ U)=o(Y)+ YUyt +0(U?),
Do|, U
Do, U=d(Y)=U=Y(A-Y Y.

[Schulz 1933; Cook 1966; Sieveking 1972; Kung 1974]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Inverses for Series-Parallel Graphs

G =5+P, oH 0 1 1
S =(1-z-P), =10 0 (1—z—P)2
0 exp(

oY
P =exp(z+S5)—1 z+5) 0

Newton iteration solving Y = H(z,Y):
OH -
[n+1] — yln]l _ [n] [n]
Y Y (aY(z Y)) -H(z,Y!"™).

ylr+11 - — ylnl 4 ylnl . (%(Y["l) ull £ 1d —U[”]) mod 22",
vl =yl gl (YD) — YT) mod 227,

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Inverses for Series-Parallel Graphs

G =S+P, 9H 0 1 1

S =(1-z-pP)Y ——=10 0 (1-z—-P)2
oY

P =exp(z+S)-—1. 0 exp(z+9) 0

Newton iteration solving Y = H(z,Y):
oH -
[n+1] _ ylnl _ [n] . [n]
Y Y <8Y (z,Y)) H(z, Y!'™).

yln+1l = ylnl 4 ylal . (%(Y[nl) Ul £ 1d —U[”]) mod 72",
vyl — oyl o yln+1] . (H(Y[”]) — Y[”]) mod 22",

= Wanted: efficient exp.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
From the Inverse to the Exponential

@ Logarithm of power series: log f = [(f'/f);
@ exponential of power series: ¢(y) =a—logy.

a— log el
1/eln]

— el 1 lnl <a — /e[”]//e[”]> mod 22",

eln 1l — elnl mod 22",

And 1/el" is computed by Newton iteration too!

[Brent 1975]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:

FI H S,' i
rri\\//((F)) = —ZSH—lt' < rev(F) = exp <—Z I_t) .
i>0

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
rev(F) ; Si
———E Sipit' < F)= —E —t').
rev(F) o~ an rev(F) = exp < i

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
rev(F) ; Si
———E Sipit' < F)= —E —t').
rev(F) o~ an rev(F) = exp < i

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
Easy in Newton representation: _ a° Y ° = (af)® and

ST e (D) (S5)

[Schonhage 1982; Bostan, Flajolet, Salvy, Schost 2006]

Power Series

Timings

Applications (crypto): over finite fields, degree > 200000 expected.

12000 T T T T 60 T T
Bivariate resultant computation Our algorithm
10000 - 50 B
8000 [— 40 A
6000 — 30 A
4000 — 20 A
2000 [B 10 A
0 | I I I 0 I I I I
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

Timings in seconds vs. output degree N, over [F,, 26 bits prime p

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series

Exponential for Series-Parallel Graphs

G=S+P, S=SEQ(Z+P), P =SET>0(Z+S)

compiles into the Newton iteration:

jln+1] — Il _ ,'[n](e[n],'[n] -1),
elnt+1] — olnl _ gln] (1+ %S[n] _ f(%e[n]),'[n]) 7
vl =yl — ylnl((1 — z — plrhyylnl — 1),
0 1 1
yltll — gyl oyl [[o o JIntu2 | . ylol 4 g —ylnl
0 el 0
Gln+1] Glnl sl o plnl _ glnl
Sl | = | sl | 4yl [ylnt2] gl | mod 22"
pl+1] plr] eln+1] _ pln]

Computation reduced to products and linear ops.

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
ar(t)y((t) + -+ + ao(t)y(t) =0,

compute the first N terms of a basis of power series solutions.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
a,(t)y(t) + -+ ao(t)y(t) = O,

compute the first N terms of a basis of power series solutions.

Algorithm

@ Convert into a system @ : Y — Y' — A(t)Y (Do = o),
Q@ D[, (U) =d(Y) rewrites U' — AU = Y’ — AY;;

© Variation of constants: U =Y [Y7}(Y' — AY);

Q@ Y ! by Newton iteration too.

Special case: recover good exponential.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]

Power Series

Timings

"MatMul.dat" —— "Newton.dat" —

time (in seconds) time (in seconds)

OCRNWAND~N®

Polynomial matrix multiplication vs. solving Y/ = AY'.

Bruno Salvy Newt Iteration for Combinatorial Systems and Applications

Power Series
Non-Linear Differential Equations

Example from cryptography:

¢y (X3 +Ax+B)y? - (y* + Ay + B).

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Power Series
Non-Linear Differential Equations

Example from cryptography:
¢y (X +Ax+B)y? — (v’ + Ay + B).

Differential:

D¢, : uws 2(x3 4+ Ax + B)y'u' — (3y? + A)u.

Solve the linear differential equation

Do|, u= ¢(y)
at each iteration.

Again, quasi-linear complexity.

[Bostan, Morain, Salvy, Schost 2008]
Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

1l Combinatorics

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Generating Series: a Simple Dictionary

Il
. It S N
ogf.—Zz , egf.—zml.

teT teT

Language and Gen. Fcns (labelled)

AUB A(z) + B(2)
AxB A(z) x B(z)
SEQ(C) 1—é(z)
A’ A(z2)
Cyc(C) log 17é(z)
SET(C) exp(C(2))

Consequences:

© EGFs by Newton iteration; also for solutions of Y = H(z,Y);
also numerically;

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Generating Series: a Simple Dictionary

Il
. It S N
ogf.—Zz , egf.—zml.

teT teT

Language and Gen. Fcns (labelled) (11 labelled)
AUB A(z) + B(z) A(z) + B(z)
Ax B Alz) x B(z) A(z) x B(z2)
SEQ(C) l—é(z) l—é(z)
A’ A(z) —

Cyc(C) log %c(z) > k1 @ log ;—Cl(zk)
SET(C) exp(C(z)) exp(>- C(2')/1)

Consequences:

@ EGFs by Newton iteration; also for solutions of Y = H(z,Y);
also numerically;

@ Pdlya operators for ogfs, more difficulties.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
001, Z
F @ SET;
e SEQ, Cyc.

[Joyal 1981, Bergeron-Labelle-Leroux 1998]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
001, Z
F @ SET;
e SEQ, Cyc.

@ Composition F o G:

5. il
#oG x x .
= g =
g
g g
g

[Joyal 1981, Bergeron-Labelle-Leroux 1998]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
001, Z
F @ SET;
e SEQ, Cyc.
@ Composition F o G: o V= H(Z,Y)

G
s .
o F
#oG :r . . p
g
9 g
g

[Joyal 1981, Bergeron-Labelle-Leroux 1998]

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Derivative

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Derivative

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Derivative

species derivative
A+B A+ B

A-B A -B+A-B
SEQ(B) SEQ(B)- B’ - SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Derivative

species derivative

A+ B A +B

A-B A -B+A-B
SEQ(B) SEQ(B)-B'-SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B

Example:

H(G,S,P) = (S+P,Seq(Z + P),Set(Z + S)).

oA 0] 1 1
v = |2 %) Seq(Z+P)-1-Seq(Z +P)
Y g Set(Z2+S)-1 %)

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/0Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

Yol — o, yirtll — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If Yrtil =, Ylrl then Ylrtetl] = YIr+el (p = dimension).

4. me 1

: o Yoo ¥ rm e

Em "ﬂ Em " [m 4PJ yfml : g [m w]
------------------ 0

[m ?) yo [m y

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/0Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

Yol — o, yirtll — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If Yrtil =, Ylrl then Ylrtetl] = YIr+el (p = dimension).

4. me 1

: o Yoo ¥ rm e

Em "ﬂ Em " [m 4PJ yfml : g [m w]
------------------ 0

[m ?) yo [m y

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A+ AT = At

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A
A

A+ AT = At

A
A

Generation by increasing Strahler numbers.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Unlabelled Rooted Trees: Y = Z - SET(Y) =: H(Z,))

© Combinatorial Newton iteration: S f,(
VI = Yl SeQ(H(VIM)) - () \ YI7) G
Nl
%('r)
oy
I\ (e

T

- '}'

¥

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Unlabelled Rooted Trees: Y = Z - SET(Y) =: H(Z,))

@ Combinatorial Newton iteration: S é(
Yirtl = Yl seq((V) - () \ Y1) i
@ OGF equation: f/(z) = H(z, \N/(Z)) .s"",
~ ~ 1. 5 1o 5 }& AN
Y(z) = zexp(Y(z) + 5Y(z)+ 5Y(z)+ --) n e
0
5

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Unlabelled Rooted Trees: Y = Z - SET(Y) =: H(Z,))

@ Combinatorial Newton iteration:

Y= YT Sa(H(IM) - (H(V) \ Y1) i
i
@ OGF equation: Y(z) = H(z, \;/(z)) 1 Q{/
Y(z) = zexp(Y(z) + 5 Y(z?) + 3 Y(3)+--) &\? 5 &
o
. . 1] [r] W
@ Newton for OGF: Y[+l — ylil H(z, Y™) — ¥ Al
1— H(z, YIn) e
\"’

0,
z+22+z3+z4+---,
24+ 224223 +42* 4925 +202% + ...

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Combinatorics

Unlabelled Rooted Trees:) = Z - SET()) =

Y(z)=zexp(Y(2)+ - V(2)+%5~/(z3)—|—---) J ey

H(z, Yy — 7,
1— H(z, Yln) }\,,, §
- Ny

@ OGF equation: Y(z) = H(z, Y(2)) /X ‘,(
1 ;
T2

@ Newton for OGF: Yt — ylnl |

@ Numerical iteration: . g
n YIN(0.3) y17(0.3%) yIn(0.33) LG
0 0 0 0 Y
1 43021322639 0.99370806338e-1 0.27759817516e-1 s
2 54875612912 0.99887132154e-1 0.27770629187e-1
3 55709557053 0.99887147197e-1 0.27770629189%e-1
4 55713907945 0.99887147198e-1 0.27770629189e-1
5 55713908064 0.99887147198e-1 0.27770629189%e-1

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Conclusion

IV Conclusion

Bruno Salvy ation for Combinatorial Systems Applications

Conclusion

Conclusion

@ Summary:
o Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Conclusion
Conclusion

@ Summary:
o Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
@ Read the paper for:
e Polynomial species and systems with 1;
e Majorant species;
o Combinatorial differential systems and linear species
Y=H(Z.Y)+ [G(Z,)
(Leroux-Viennot, Labelle; combinatorial lifting of Bostan et alii);
o PowerSet (it is not a species).

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

Conclusion
Conclusion

e Summary:
o Newton iteration has good complexity;
o Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.

@ Read the paper for:

e Polynomial species and systems with 1;
o Majorant species;
e Combinatorial differential systems and linear species
Y=H(Z,Y)+ [G(2,Y)
(Leroux-Viennot, Labelle; combinatorial lifting of Bostan et alii);
o PowerSet (it is not a species).

THE END

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications

	Introduction
	Newton Iteration for Power Series
	Combinatorics
	Conclusion

