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Introduction

Main Tool: Newton lteration

To solve ¢(y) = 0, iterate
ylr = Il I3l g Inly yIn il — gy Iy,

Good case: quadratic convergence if \ "

/ Yor1
@ the initial point is close enough;

@ the root is simple.
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Introduction

Main Tool: Newton lteration

To solve ¢(y) = 0, iterate
ylr = Il I3l g Inly yIn il — gy Iy,

Good case: quadratic convergence if \ "

/ Yor1 .
@ the initial point is close enough; /

@ the root is simple.

Proof: simple root at (

S = (Y — ¢) + O(( Oz)} _ = A7)

= 0 [n] _ ~\2
gz5/()/[n]):¢/(<) + O(y[n] —0) ¢’(y[”])+ ((y™=0)9)
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Introduction
Examples of Quadratic Convergence
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1—yn/4 -05
ylol = o. -]

[ = 1.00000000000000000000000000
yP = 1.16666666666666666666666666
yBl = 1.17156862745098039215686275
yl¥ = 1.17157287525062017874740884
Bl = 1.17157287525380990239662075



Introduction

Examples of Quadratic Convergence
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[Newton 1671]
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Introduction

Examples of Quadratic Convergence

o) =(E+Z-V)\Y
Y+l — Yl Spo(z - Y. O+ 2.0 Yy . g(pl),

y[o] = @ y[]'] — O

yl2l — 4 +

6 P
Bl — |yl 4 <§ Lot % AR =< Iy
p

[Décoste, Labelle, Leroux 1982]
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Introduction

Motivation: Random Generation / Discrete Simulation

G=8+P,
S =Seq(Z + P, card > 1),
P = Set(Z + S,card > 0).

Definition (Generating function)

Y(z)=yo+yiz+---+yaz"(/n!)+ - (ya: nb objects of size n).

Algorithms for uniform random generation in size N use either
® )o,...,yn (recursive method);
e Y(x) for some x > 0 (Boltzmann sampler).

[Nijenhuis, Wilf 1978; Flajolet, Zimmermann, Van Cutsem 1994; Duchon,
Flajolet, Louchard, Schaeffer 2004; Flajolet, Fusy, Pivoteau 2007]
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Introduction
Combinatorial Newton lteration

0.1

Well-Founded Combinatorial Specification m/——’—\
¢

Combinatorial Newton iteration for

¢
Newton iteration for the gf Y(z)
(yo, - ,yN) fast
4

Numerical Newton iteration starting

from O converges to the value of Y(x). ' //

. “
0,25 0,255 0,26 0,265 0,27 0,275 0,28

[Labelle et alii 80-90] combinatorial part, without &, using species theory
[Pivoteau, S., Soria 2008] labelled case, without £
[ 2012] general case, using species theory.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications



Introduction

Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)
First N coefficients of gfs of constructible species in
© arithmetic complexity:
o O(Nlog N) (both ogf and egf);
@ binary complexity:
o O(N?log® Nloglog N) (ogf);
o O(N?log> Nloglog N) (egf).

Quasi-optimal wrt size of the result.
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Introduction

Results (2/2): Oracle

@ The egfs and the ogfs of constructible species are convergent
in the neighborhood of 0;

@ A numerical iteration converging to Y(«) in the labelled case
(inside the disk);

© A numerical iteration converging to the
sequence Y(a),Y(a?),Y(a3),... for || - |so
in the unlabelled case (inside the disk).
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Introduction

Examples (I): Polynomial Systems

Random generation following given XML grammars

Grammar nb max npb or%:;ls Fgli

eqs deg sols (
rss 10 5 2 0.02 0.03
PNML 22 4 4  0.05 0.1
xslt 40 3 10 04 1.5
relaxng 34 4 32 04 3.3
xhtml-basic 53 3 13 1.2 18
mathm|2 182 2 18 3.7 882
xhtml 93 6 56 34 1124
xhtml-strict 80 6 32 3.0 1590

xmlschema 59 10 24 0.5 6592

SVG 117 10 58 >1.5Go
docbook 407 11 67.7 >1.5Go
OpenDoc 500 3.9

[Darrasse 2008]
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Introduction

Example (11): A Non-Polynomial “System”
Unlabelled rooted trees:

f(x) = xexp(f(x) + %f(xz) + %f(x3) +--0)

09+
08+
074

0.6

T T 1
0 01 02 03 04

A Newton iteration driven by combinatorics.
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Power Series

Il Newton lteration for Power Series
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Power Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
ylrttl =yl ot g Ioly ot il — gy Iy

Quadratic convergence \ "

11 / oer

Divide-and-Conquer
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Power Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
YAy RV ) R L R VL D 7 Lt IRV LD

Quadratic convergence \

¥n
II / i1

Divide-and-Conquer
© Solve at precision N/2; Cost(y[”]) = constant x Cost(last step).
@ Compute ¢ and ¢ there;

@ Solve for ul"+1l.
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Power Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate

= bl gyl (),

Quadratic convergence \ ’

ﬁ / Oy

Divide-and-Conquer

y[n+1]

To solve at precision N
O Solve at precision N/2; Cost(y[”]) = constant x Cost(last step).
@ Compute ¢ and ¢ there;
@ Solve for yln*11.
Useful in conjunction with fast multiplication (quasi-linear):
@ power series at order N: O(N log ) ops on the coefficients;
o N-bit integers: O(N log N loglog N) bit ops.
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Power Series
Newton Iteration for Inverses

oy)=a—1/y = 1/¢/(y) = y* = |yl =yl — ylrl(aylnl 1),

Cost: a small number of multiplications
Works for:

@ Numerical inversion;
@ Reciprocal of power series;

@ Inversion of matrices.
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Power Series
Newton Iteration for Inverses

Yl = Il ol g 0 — 7).

dy)=a—-1/y=1/¢(y)=y*=
Cost: a small number of multiplications

Works for:
@ Numerical inversion;
@ Reciprocal of power series;
© Inversion of matrices.
O(Y 4+ U)=o(Y)+ YUyt +0(U?),
Do|, U
Do, U=d(Y)=U=Y(A-Y Y.

[Schulz 1933; Cook 1966; Sieveking 1972; Kung 1974]
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Power Series
Inverses for Series-Parallel Graphs

G =5+P, oH 0 1 1
S =(1-z-P), =10 0 (1—z—P)2
0 exp(

oY
P =exp(z+S5)—1 z+5) 0

Newton iteration solving Y = H(z,Y):
OH -
[n+1] — yln]l _ [n] [n]
Y Y (aY(z Y )) -H(z,Y!"™).

ylr+11 - — ylnl 4 ylnl . (%(Y["l) ull £ 1d —U[”]) mod 22",
vl =yl gl (YD) — YT ) mod 227,
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Power Series
Inverses for Series-Parallel Graphs

G =S+P, 9H 0 1 1

S =(1-z-pP)Y ——=10 0 (1-z—-P)2
oY

P =exp(z+S)-—1. 0 exp(z+9) 0

Newton iteration solving Y = H(z,Y):
oH -
[n+1] _ ylnl _ [n] . [n]
Y Y <8Y (z,Y )) H(z, Y!'™).

yln+1l = ylnl 4 ylal . (%(Y[nl) Ul £ 1d —U[”]) mod 72",
vyl — oyl o yln+1] . (H(Y[”]) — Y[”]) mod 22",

= Wanted: efficient exp.
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Power Series
From the Inverse to the Exponential

@ Logarithm of power series: log f = [(f'/f);
@ exponential of power series: ¢(y) =a—logy.

a— log el
1/eln]

— el 1 lnl <a — /e[”]//e[”]> mod 22",

eln 1l — elnl mod 22",

And 1/el" is computed by Newton iteration too!

[Brent 1975]
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Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0
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Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:

FI H S,' i
rri\\//((F)) = —ZSH—lt' < rev(F) = exp <—Z I_t) .
i>0
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Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
rev(F) ; Si
———E Sipit' < F)= —E —t').
rev(F) o~ an rev(F) = exp < i

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
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Power Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
rev(F) ; Si
———E Sipit' < F)= —E —t').
rev(F) o~ an rev(F) = exp < i

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
Easy in Newton representation: _ a° Y ° = (af)® and

ST e (D) (S5 )

[Schonhage 1982; Bostan, Flajolet, Salvy, Schost 2006]




Power Series

Timings

Applications (crypto): over finite fields, degree > 200000 expected.

12000 T T T T 60 T T
Bivariate resultant computation Our algorithm
10000 - 50 B
8000 [ — 40 A
6000 — 30 A
4000 — 20 A
2000 [ B 10 A
0 | I I I 0 I I I I
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

Timings in seconds vs. output degree N, over [F,, 26 bits prime p
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Power Series

Exponential for Series-Parallel Graphs

G=S+P, S=SEQ(Z+P), P =SET>0(Z+S)

compiles into the Newton iteration:

jln+1] — Il _ ,'[n](e[n],'[n] -1),
elnt+1] — olnl _ gln] (1+ %S[n] _ f(%e[n]),'[n]) 7
vl =yl — ylnl((1 — z — plrhyylnl — 1),
0 1 1
yltll — gyl oyl [ [ o o JIntu2 | . ylol 4 g —ylnl
0 el 0
Gln+1] Glnl sl o plnl _ glnl
Sl | = | sl | 4yl [ ylnt2] gl | mod 22"
pl+1] plr] eln+1] _ pln]

Computation reduced to products and linear ops.



Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
ar(t)y((t) + -+ + ao(t)y(t) =0,

compute the first N terms of a basis of power series solutions.
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Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
a,(t)y(t) + -+ ao(t)y(t) = O,

compute the first N terms of a basis of power series solutions.

Algorithm

@ Convert into a system @ : Y — Y' — A(t)Y (Do = o),
Q@ D[, (U) =d(Y) rewrites U' — AU = Y’ — AY;;

© Variation of constants: U =Y [ Y7}(Y' — AY);

Q@ Y ! by Newton iteration too.

Special case: recover good exponential.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]



Power Series

Timings

"MatMul.dat" —— "Newton.dat" —

time (in seconds) time (in seconds)

OCRNWAND~N®

Polynomial matrix multiplication vs. solving Y/ = AY'.
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Power Series
Non-Linear Differential Equations

Example from cryptography:

¢y (X3 +Ax+B)y? - (y* + Ay + B).
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Power Series
Non-Linear Differential Equations

Example from cryptography:
¢y (X +Ax+B)y? — (v’ + Ay + B).

Differential:

D¢, : uws 2(x3 4+ Ax + B)y'u' — (3y? + A)u.

Solve the linear differential equation

Do|, u= ¢(y)
at each iteration.

Again, quasi-linear complexity.

[Bostan, Morain, Salvy, Schost 2008]
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1l Combinatorics
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Combinatorics
Generating Series: a Simple Dictionary

Il
. It S N
ogf.—Zz , egf.—zml.

teT teT

Language and Gen. Fcns (labelled)

AUB  A(z) + B(2)
AxB  A(z) x B(z)
SEQ(C) 1—é(z)
A’ A(z2)
Cyc(C) log 17é(z)
SET(C)  exp(C(2))

Consequences:

© EGFs by Newton iteration; also for solutions of Y = H(z,Y);
also numerically;
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Combinatorics
Generating Series: a Simple Dictionary

Il
. It S N
ogf.—Zz , egf.—zml.

teT teT

Language and Gen. Fcns (labelled) (11 labelled)
AUB  A(z) + B(z) A(z) + B(z)
Ax B Alz) x B(z) A(z) x B(z2)
SEQ(C) l—é(z) l—é(z)
A’ A(z) —

Cyc(C) log %c(z) > k1 @ log ;—Cl(zk)
SET(C)  exp(C(z)) exp(>- C(2')/1)

Consequences:

@ EGFs by Newton iteration; also for solutions of Y = H(z,Y);
also numerically;

@ Pdlya operators for ogfs, more difficulties.

Bruno Salvy Newton's Iteration for Combinatorial Systems and Applications



Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
001, Z
F @ SET;
e SEQ, Cyc.

[Joyal 1981, Bergeron-Labelle-Leroux 1998]
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Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
001, Z
F @ SET;
e SEQ, Cyc.

@ Composition F o G:

5. il
#oG x x .
= g =
g
g g
g

[Joyal 1981, Bergeron-Labelle-Leroux 1998]
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Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
001, Z
F @ SET;
e SEQ, Cyc.
@ Composition F o G: o V= H(Z,Y)

G
s .
o F
#oG :r . . p
g
9 g
g

[Joyal 1981, Bergeron-Labelle-Leroux 1998]
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Combinatorics

Derivative
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Combinatorics

Derivative
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Combinatorics
Derivative

species derivative
A+B A+ B

A-B A -B+A-B
SEQ(B) SEQ(B)- B’ - SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B
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Combinatorics
Derivative

species derivative

A+ B A +B

A-B A -B+A-B
SEQ(B) SEQ(B)-B'-SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B

Example:

H(G,S,P) = (S+P,Seq(Z + P),Set(Z + S)).

oA 0] 1 1
v = |2 %) Seq(Z+P)-1-Seq(Z +P)
Y g Set(Z2+S)-1 %)
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Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/0Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

Yol — o, yirtll — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If Yrtil =, Ylrl then Ylrtetl] = YIr+el (p = dimension).

4. me 1

: o Yoo ¥ rm e

Em "ﬂ Em " [m 4PJ yfml : g [m w]
------------------ 0

[m ?) yo [m y
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Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/0Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

Yol — o, yirtll — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If Yrtil =, Ylrl then Ylrtetl] = YIr+el (p = dimension).

4. me 1

: o Yoo ¥ rm e

Em "ﬂ Em " [m 4PJ yfml : g [m w]
------------------ 0

[m ?) yo [m y
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Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A+ AT = At
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Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A
A

A+ AT = At

A
A

Generation by increasing Strahler numbers.
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Combinatorics

Unlabelled Rooted Trees: Y = Z - SET(Y) =: H(Z,))

© Combinatorial Newton iteration: S f,(
VI = Yl SeQ(H(VIM)) - () \ YI7) G
Nl
%('r )
oy
I\ (e

T

- '}'

¥
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Combinatorics

Unlabelled Rooted Trees: Y = Z - SET(Y) =: H(Z,))

@ Combinatorial Newton iteration: S é(
Yirtl = Yl seq((V) - () \ Y1) i
@ OGF equation: f/(z) = H(z, \N/(Z)) .s"",
~ ~ 1. 5 1o 5 }& AN
Y(z) = zexp(Y(z) + 5Y(z )+ 5Y(z )+ --) n e
0
5
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Combinatorics

Unlabelled Rooted Trees: Y = Z - SET(Y) =: H(Z,))

@ Combinatorial Newton iteration:

Y= YT Sa(H(IM) - (H(V) \ Y1) i
i
@ OGF equation: Y(z) = H(z, \;/(z)) 1 Q{/
Y(z) = zexp(Y(z) + 5 Y(z?) + 3 Y(3)+--) &\? 5 &
o
. . 1] [r] W
@ Newton for OGF: Y[+l — ylil H(z, Y™) — ¥ Al
1— H(z, YIn) e
\"’

0,
z+22+z3+z4+---,
24+ 224223 +42* 4925 +202% + ...
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Combinatorics

Unlabelled Rooted Trees: ) = Z - SET()) =

Y(z)=zexp(Y(2)+ - V(2 )+%5~/(z3)—|—---) J ey

H(z, Yy — 7,
1— H(z, Yln) }\,,, §
- Ny

@ OGF equation: Y(z) = H(z, Y(2)) /X ‘,(
1 ;
T2

@ Newton for OGF: Yt — ylnl |

@ Numerical iteration: . g
n YIN(0.3) y17(0.3%) yIn(0.33) LG
0 0 0 0 Y
1 43021322639 0.99370806338e-1 0.27759817516e-1 s
2 54875612912 0.99887132154e-1 0.27770629187e-1
3 55709557053 0.99887147197e-1 0.27770629189%e-1
4 55713907945 0.99887147198e-1 0.27770629189e-1
5 55713908064 0.99887147198e-1 0.27770629189%e-1
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IV Conclusion

Bruno Salvy ation for Combinatorial Systems Applications



Conclusion

Conclusion

@ Summary:
o Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
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Conclusion
Conclusion

@ Summary:
o Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
@ Read the paper for:
e Polynomial species and systems with 1;
e Majorant species;
o Combinatorial differential systems and linear species
Y=H(Z.Y)+ [G(Z,)
(Leroux-Viennot, Labelle; combinatorial lifting of Bostan et alii);
o PowerSet (it is not a species).
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Conclusion
Conclusion

e Summary:
o Newton iteration has good complexity;
o Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.

@ Read the paper for:

e Polynomial species and systems with 1;
o Majorant species;
e Combinatorial differential systems and linear species
Y=H(Z,Y)+ [G(2,Y)
(Leroux-Viennot, Labelle; combinatorial lifting of Bostan et alii);
o PowerSet (it is not a species).

THE END
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