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From large integers to precise numerical values
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Inverses, square-roots,... : same cost.






Binary Splitting for linear
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recurrences (/0’s and 80’)

* n! by divide-and-conquer:

nli=n>x..- X Ln/2jj><ﬂn/2j+1)><---><1/

size O(nlogn) size O(nlogn)

Cost: O(n log’n loglog n) using FFT
 linear recurrences of order | reduce to

p!(n) := (p(n) x --- < p([n/2])) x (p([n/2] +1) x--- x p(1))

- arbitrary order: same idea, same cost (matrix factorial):

n
1 : .
ex: e,:= Z o satisfies a 2nd order rec, computed via
k=0

(r) =2 (30 ) () = a0 (5)

\ .

~"

A(n)



Code available: [Mezzarobba 2010}



Numerical evaluation of solutions of LDESs

N 00
Principle: ~ f(x)= ) anx" + » anX

n=0 n=N+1

N N——

fast evaluation  good bounds

f solution of a LDE with coeffs in Q(x) (our data-structure!)

Code available: [Mezzarobba 2010}
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Numerical evaluation of solutions of LDESs

N 00
Principle:  f(x) = > anxx" 4+ »  apx"
=0

n— n=N-+1
N—— N——
fast evaluation  good bounds

f solution of a LDE with coeffs in Q(x) (our data-structure!)

1. linear recurrence Iin N for the first sum (easy),
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

The technigue used for fast evaluation of constants like

; C3/2 Z 3n 'n'3C3” B=545140134,
C=640320.

Code available: [Mezzarobba 2010}






Analytic continuation

Compute f(x), f'(x), ..., 97V (x) as new initial
conditions and handle error propagation: ..

arctan(1+i)




Analytic continuation

Compute f(x), f'(x), ..., 97V (x) as new initial
conditions and handle error propagation: ..

arctan(1+i)

Ex erf(!) with 15 digits:
om 3.14167 3.1415028 3.141592653589

_200 terms 18 terms terms

Again: computation on integers. No roundoff errors.



ll. Continued Fractions

‘ X
arctall X =
1.2
1 - 3
4 2
1. 15X
| ixz
14 35
,- 1+ .. |
. \ 10
| Tavlor Continued
Y fraction




A guess & prove approach

(Maulat, S. 2015)

1. Differential equation produces first terms (easy):

. X
alrCtall X —
I
14 :
4 2
o 5%
! 2X2
14 _35
1+ --.
n2
2. Guess a formula (easy): an = 21 1

3. Prove that the CF with these an satisfies the
differential equation.

No human intervention needed.



Proof technique L:

> series(sin(x)”"2+cos(x)"2-1,%x,4)

O(x%)
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Cauchy’s theorem concludes.

RN

Proofs of non-linear identities by linear algebra!
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Automatic Proof of the guessed CF

? X
arctan x =
: RHS satisfies (x*+1)y’-1=0; L n® 2
. Convergents P,/Q,where P, and Q, satisfy a LRE 1 4 4n°—1
(and Qu(0)#0); L+

- Define Hn:=(Qn)2((x*+ 1) (P-/Qn)’-1);

* Hh is a polynomial in P,,Qn and their derivatives;

- therefore, it satisfies a LRE that can be computed;

+ from it, H,=O(x") visible, ie lim P,/Qx soln;
P./Qn! arctan (check initial cond.). g

Continued
Fractions
. . for Special
More generally: this guess-and-proof approach applies  Functions
to CF for solutions of (g-)Ricatti equations e

— all explicit C-fractions in Cuyt et alii.

10



I1l. Ore polynomials and
Chebyshev expansions



Chebyshev expansions

|
0.
0.6
041
Chebyshev
T 05 A 0s |
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0.2 00104
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From equations to operators

D < d/dx S < (Nn~n+1)
X< mult by x n < mult by n
product <> composition product <> composition

Dx=xD+1 Sn=(n+1)S
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From equations to operators

D < d/dx S < (Nn~n+1)
X< mult by x n < mult by n
product <> composition product <> composition
Dx=xD+1 Sn=(n+1)S

Taylor morphism: D = (n+1)S; X = St
produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative
polynomials.

Main property : deg AB=deg A+deg B.

Conseguencel: (hon-commutative)

Conseguence2: (hon-commutative)

Conseguence3: (hnon-commutative) .
1



Application: Chebyshev expansions
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Application: Chebyshev expansions

Extend Taylor morphism to Chebyshev expansions

Taylor
XMHl=x . x" & x » X:=S1
(X")’=nx"! < d/dx » D:=(n+1)S

+ _1
erf: D?+ 2xD— (2(S™1 — 9 1n)? + > 3 2(S -9 n

= pol(n,S) " *(2(n 4+ 1)(n + 4)S* — 4(n +2)3S? + 2n(n + 3))

See Benolit-Mezzarobba-Joldes for certified numerical
approximations on this basis.
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Conclusion



summary

Linear differential equations and recurrences are a
great data-structure;

Numerous algorithms have been developed iIn
computer algebra;

Efficient code Is available;

More Is true (creative telescoping, diagonals,...);
More to come in DDMF, including formal proofs.
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