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Asymptotics of Multiple Binomial Sums

Input:

Multiple 

Binomial Sum

Output:

Asymptotic 
behaviour

Sn = ∑
r≥0

∑
s≥0

(−1)n+r+s(n
r) (n

s) (n + s
s ) (n + r

r ) (2n − r − s
n )

  Sn = 16n n−3/2 2
π3 (1 −

9
16n

+ O ( 1
n2 )), n → ∞

Generating function

is a diagonal

S(z) = ∑
n≥0

Snzn = Diag
1

1 + t(1 + u1)(1 + u2)(1 − u1u3)(1 − u2u3)

z2 (4z + 1) (16z − 1) S(3)(z) + ⋯ + 2 (30z + 1) S(z) = 0

easy

Griffiths-Dwork

reduction

analytic combinatorics

analytic 
combinatorics 

in several 
variables

Initial 
motivation: 

compare these 
approaches
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I. Univariate Rational Functions, 
Linear Recurrent Sequences



Linear Recurrent Sequences

V. 6. TRANSFER MATRIX MODELS 361

The pieces are thus of the following types,

m = , h = , v = ,

and here is a particular tiling of a 5× 3 rectangle:

In order to approach this counting problem, one first defines a suitable collection, generi-
cally denoted by C, of combinatorial classes called configurations, in accordance with the strat-
egy summarized in Figure V.20, p. 356. A configuration relative to an n×k rectangle is a partial
tiling, such that all the first n−1 columns are entirely covered by dominoes while between zero
and three unit cells of the last column are covered. Here are for instance, configurations corre-
sponding to the example above.

These diagrams suggest the way configurations can be built by successive addition of
dominoes. Starting with the empty rectangle 0 × 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa 1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be classified
into 8 classes that we may index in binary as C000, . . . , C111. For instance C001 represent
configurations such that the first two cells (from top to bottom, by convention) are free, while
the third one is occupied. Then, a set of rules describes the new type of configuration obtained,
when the sweep line is moved one position to the right and dominoes are added. For instance,
we have

C010 # $⇒ C101.

In this way, one can set up a system of linear equations (resembling a grammar or a de-
terministic finite automaton) that expresses all the possible constructions of longer rectangles
from shorter ones according to the last layer added. The system contains equations like

C000 = ε + mmmC000 + mvC000 + vmC000
+ ·mmC100 + m·mC010 + mm·C001 + v·C001 + ·vC100
+ m··C011 + ·m·C101 + ··mC110 + ···C111 .

Here, a “letter” like mv represent the addition of dominoes, in top to bottom order, of types
m, v , respectively; the letter m·m means adding two m-dominoes on the top and on the bottom,
etc.

un+k = a0un + ⋯ + ak−1un+k−1 with initial conditions u0, …, uk−1

Integers  
divisible by 5

≤ 2n

Tilings of rectangles 
of bounded height 
by dominos and 

monominos

very well understood

(un) is a LRS ⟺ its generating series U(z) :=
∞

∑
n=0

unzn is rational

Ex. Fibonacci: Fn+2 = Fn+1 + Fn, F0 = F1 = 1

F(z) =
z

1 − z − z2
=

(2ϕ − 1)/5
1 − zϕ

−
(2ϕ − 1)/5

1 + z /ϕ
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Fibonacci Numbers

= =

As n increases, the smallest 
singularities dominate.

Fn =
��n�1

1 + 2�
+

�
�n�1

1 + 2�

Fn =
1

2πi ∮
F(z)
zn+1

dz
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F1 = 1 =
1

2πi ∮
1

1 − z − z2

dz
z2



Conway’s sequence

Generating function for lengths: 
               


with deg Q = 72.

remainder exponentially small

1,11,21,1211,111221,…

algebraic

[Conway 1987]

f(z) = P(z)/Q(z)

How many digits do we need?

A 3-Step Method:

1. Locate dominant singularities

2. Compute local behaviour

3. Translate into asymptotics 

(Goes well beyond rational fcns)
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Smallest singularity

ρ ≈ 0.7671198507

ℓn ≃ 2.04216 ρ−n

c = ρ−1 Res( f, z = ρ)



Certified Roots of Polynomials

Def. Separation 

sep(P) := min
P(α) = P(β) = 0,

α ≠ β

|α − β | .
Def. Height

H(
d

∑
i=0

aiXi) := max
i

|ai | .

Mahler’s thm. If P ∈ ℤ[X] has degree d,

sep(P) > κ(d) H(P)−d+1 .

explicit 
function


of d

[Mahler 64; BugeaudDujella 14; Mehlhorn Sagraloff 15-16]

not known to be tight

(except for )d = 3

worst known family gives
−(2d − 1)/3.

Isolating disks of radius  for all roots can be 
computed in time 

ε
Õ(d3 + d2 log H(P) − d log ε) .
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II. Absolute Separation



 would be nicee(d) ≪ d3

Absolute Separation

α

β

Def. 

abssep(P) := min
P(α) = P(β) = 0,

|α | ≠ |β |

|α | − |β | .

(d ≥ 6) .e(d) ≤ (d − 1)(d − 2)(d − 3)/2 = d3/2 − 3d2 + ⋯

Thm: abssep(P) > κ(d) H(P)−e(d)

not the same as before
P = 10X3 − 3X2 − 2X + 3

|β | − |α | ≃ 5 ⋅ 10−4

[Gourdon-S. 96; Dubicka-Sha 15; Sha 19; Bugeaud-Dujella-Fang-Pejkovic-S. 19]

No good lower 
bound knownSufficient to separate roots by absolute 

value in polynomial complexity
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Auxiliary Polynomials

From P(X) =
d

∑
i=0

aiXi = ad

d

∏
i=1

(X − αi) ∈ ℤ[X] of height H(P)
construct

M(X) = a2(d−1)
d ∏

i<j

(X − (αi − αj)2) ∈ ℤ[X]
and lower bound 
its nonzero roots.

with  degXi
G ≤ k for all i

of total degree  ≤ k .

Prop. 1 [Cauchy]

P(α) = 0 ⇒ |α | ≥
1

1 + H(P)
.

If α ≠ 0,
Prop. 2 [Symmetric fcns]
G ∈ ℤ[X1, …, Xd] symmetric 

⇒ ak
dG(α1, …, αd) ∈ ℤ[a0, …, ad]

Application to M → |αi − αj |
2 > κH−2(d−1) .

Recovers

Mahler’s

exponent
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α

βA Bigger Polynomial

a(d−1)(d−2)(d−3)
d ∏

i < j,
k < ℓ,

{i, j} ∩ {k, ℓ} = ∅

(X1/2 − (αiαj − αkαℓ))

gives exponent (d − 1)(d − 2)(d − 3)/2 for the general case

⇒ ( |α |2 − |β |2 )2 ≫ H−(d−1)(d−2)(d−3)
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Other Useful Polynomials

a2(d−1)
d ∏

i<j

(X − (αi + αj)2)
αj, αk real ⇒ |αj | − |αk | > κH−(d−1)

a2(d−1)(d−2)
d ∏

i<j,k∉{i,j}
(X − (α2

k − αiαj))

αk real ⇒ |αj | − |αk | > κH−2(d−1)(d−2)

optimal

4 is optimal 
when d = 3

[Bugeaud-Dujella-Pejkovic-S. 17;Bugeaud-Dujella-Fang-Pejkovic-S. 19]

Used in the 
combinatorial case later

Application: if  are the real 
positive roots of , all roots of modulus exactly the 

 can be computed in time 

0 < r1 ≤ ⋯ ≤ rk
P

ri Õ(d3 log H(P)) .
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III. Multiple Binomial Sums, 
Diagonals and Multiple Integrals

rat.
alg.

diag.
D-finite



Diagonals

If  is a multivariate rational function with Taylor expansionF(z) =
G(z)
H(z)

its diagonal is Diag F = ∑
k≥0

ck,…,kzk .

✓
2k

k

◆
:

1

1� x� y
= 1 + x+ y + 2xy + x2 + y2 + · · ·+ 6x2y2 + · · ·

1

k + 1

✓
2k

k

◆
:

1� 2x

(1� x� y)(1� x)
= 1+y+1xy�x2+y2+· · ·+2x2y2+· · ·

Apéry’s  :ak
1

1� t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
= 1 + · · ·+ 5xyzt+ · · ·

in this talk

F(z) = ∑
i∈ℕn

ci zi,

10/28
=

n

∑
k=0

(n
k)

2

(n + k
k )

2



Multiple Binomial Sums
over a field 𝕂

Sequences constructed from

using algebra operations and

the binomial sequence ;


geometric sequences 


Kronecker’s 

(n, k) ↦ (n
k)

n ↦ Cn, C ∈ 𝕂;

δ : n ↦ δn

affine changes of indices 


indefinite summation 

(un) ↦ (uλ(n));

(un,k) ↦ (
m

∑
k=0

un,k) .
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Diagonals & Multiple Binomial Sums

[Bostan-Lairez-S.17]

> BinomSums[sumtores](S,u): (…)

Thm. Diagonals ≡ binomial sums with 1 free index.

has for diagonal the generating function of  Sn

1
1 + t(1 + u1)(1 + u2)(1 − u1u3)(1 − u2u3)

Sn = ∑
r≥0

∑
s≥0

(−1)n+r+s(n
r) (n

s) (n + s
s ) (n + r

r ) (2n − r − s
n )
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From Sum to Residue to Diagonal

un =
n

∑
k=0

(n
k)

2

( = (2n
n ))

(n
k) := [xk](1 + x)n =

1
2πi ∮ (1 + x)n dx

xk+1

(n
k)

2

=
1

(2πi)2 ∮ (1 + x1)n(1 + x2)n dx1dx2

xk+1
1 xk+1

2
n

∑
k=0

(n
k)

2

=
1

(2πi)2 ∮ (1 + x1)n(1 + x2)n 1 − 1/(x1x2)n+1

x1x2 − 1
dx1dx2

∑
n≥0

n

∑
k=0

(n
k)

2

zn =
1

(2πi)2 ∮ ( 1
x1x2 − z(1 + x1)(1 + x2)

+
1

1 − z(1 + x1)(1 + x2) ) dx1dx2

1 − x1x2

Geometric 
sums

= Diag (( 1
1 − z(1 + x1)(1 + x2)

+
1

1 − zx1x2(1 + x1)(1 + x2) ) 1
1 − x1x2 ) and
× x1x2

z ↦ zx1x2

Can be turned into a general algorithm
13/28



IV. Analytic Combinatorics in 
several variables

Sn = ∑
r≥0

∑
s≥0

(−1)n+r+s(n
r) (n

s) (n + s
s ) (n + r

r ) (2n − r − s
n )

  Sn = 16n n−3/2 2
π3 (1 −

9
16n

+ O ( 1
n2 )), n → ∞

S(z) = ∑
n≥0

Snzn = Diag
1

1 + t (1 + u1)(1 + u2)(1 − u1u3)(1 − u2u3)

z2 (4z + 1) (16z − 1) S(3)(z) + ⋯ + 2 (30z + 1) S(z) = 0

2013

2020



Coefficients of Diagonals

A 3-step method

1a. locate the critical points (algebraic condition); 

1b. find the minimal ones (semi-algebraic condition);

2.   translate (easy in simple cases).

F (z) =
G(z)

H(z)
ck,...,k =

✓
1

2⇡i

◆n Z

T

G(z)

H(z)

dz1 · · · dzn
(z1 · · · zn)k+1

Critical points: extrema of on |z1⋯zn | 𝒱:= {z ∣ H(z) = 0} .

Minimal ones: on the boundary of the domain of convergence.

z1
@H

@z1
= · · · = zn

@H

@zn
i.e.rank

 
@H

@z1
. . . @H

@zn
@(z1···zn)

@z1
. . . @(z1···zn)

@zn

!
 1

Ideal also in 
the Griffiths-

Dwork 
method
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246 S. Melczer, B. Salvy / Journal of Symbolic Computation 103 (2021) 234–279

Fig. 2. Example 15 in three steps: critical points where the level curve of |xy| is tangent to the singular variety (left); contour 
of integration in the y-plane (middle); modulus of the integrand 1/(x(1 − x)) with a saddle point at x = 1/2 (right).

2.4. Asymptotic analysis

We first illustrate the main steps of the derivation on a simple example.

Example 15. The power series F = 1/(1 − x − y) has for diagonal

!

(
1

1 − x − y

)
=

∑

k≥0

(
2k
k

)
tk = 1√

1 − 4t
.

The asymptotic behavior of the diagonal coefficients is easily seen to be 4k/
√

kπ , e.g., by Stirling’s 
formula. The derivation of this result by ACSV starts with the integral representation

ak = 1
2π i

∫

|x|=r




1

2π i

∫

|y|=r

1
1 − x − y

dy

(xy)k+1



dx

for any 0 < r < 1/2. For a fixed x on the circle |x| = r, the integrand admits a unique pole, at y = 1 −x, 
outside of the initial circle of integration. Deforming the contour as indicated in Fig. 2 (middle) shows 
that the integral with respect to y is the sum of an integral over a contour |y| = 1/(3r) > 1/2, and 
the opposite of the residue at y = 1 − x, namely 1/(x(1 − x))k+1. As k increases, the factor (xy)−k−1

in the integral over the large circle makes it grow exponentially like (|xy|)−k = 3k . The coefficient ak
thus behaves asymptotically like

ak = 1
2π i

∮

|x|=r

dx

(x(1 − x))k+1
+ O (ck), c < 4.

This last integrand has a saddle point in the complex plane at x = 1/2 (Fig. 2, right), where the 
integral concentrates asymptotically. The classical saddle-point method (see Olver, 1974) then consists 
in: deforming the contour so that it passes through the saddle point in the direction of the imaginary 
axis; changing the variable into x = 1/2 + it and observing that the integrand behaves locally as

(x(1 − x))−k−1 = 4k+1e−4(k+1)t2
(1 + O (t3)), t → 0;

reducing the asymptotic behavior to that of a Gaussian integral, thus recovering the expected
4k/

√
kπ .

The saddle-point integral in Example 15 arose because of a minimal critical point at (1/2, 1/2). 
One aspect of the computation that is missing from this simple example is the selection of those 

Ex.: Central Binomial Coefficients
✓
2k

k

◆
:

1

1� x� y
= 1 + x+ y + 2xy + x2 + y2 + · · ·+ 6x2y2 + · · ·

(1). Critical points: 1� x� y = 0, x = y =) x = y = 1/2.

(2). Minimal ones. Easy.

⇡ 4k+1

2⇡i

Z
exp(4(k + 1)(x� 1/2)2) dx ⇡ 4kp

k⇡
.

saddle-point approx

(3). Analysis close to the minimal critical point:

ak =
1

(2⇡i)2

ZZ
1

1� x� y

dx dy

(xy)k+1
⇡ 1

2⇡i

Z
dx

(x(1� x))k+1

residue

15/28

In general, this is 
the difficult step.



More Generally, Smooth Minimal Critical Point
 smooth: ζ

∇H(ζ) ≠ 0Wlog ∂H/∂zn(ζ) ≠ 0

 s.t. g H( ̂z, g( ̂z)) = 0, ̂z = (z1, …, zn−1)
Implicit function 

theorem

Step 1. Residue ck = ( 1
2πi )

n−1

∮
G( ̂z, g( ̂z))

∂nH( ̂z, g( ̂z))

̂∂ ̂z
ψ( ̂z)k+1

, ψ( ̂z) := z1…zn−1g( ̂z)

ψ( ̂z) = ζ1⋯ζn + 0 ⋅ ( ̂z − ̂ζ) +
1
2

( ̂z − ̂ζ)Tℋ(ζ)( ̂z − ̂ζ) + O( | ̂z − ̂ζ |3 )
Step 2. Saddle-point analysis Hessian matrix criticalζ

Thm. Under mild conditions,


ck = ζ−kk
1 − n

2 ( (2π)(1−n)/2

(ζ3−n/ζ2
n) |ℋ(ζ) |

⋅
−G(ζ)

ζn∂H/∂zn(ζ)
+ O(k−1))

[PemantleWilson13;GaoRichmond92]
Aim: automate this

16/28

Satisfied generically



Algebraic part: ``compute’’ the solutions of the system

Locating the Critical Points

z1
@H

@z1
= · · · = zn

@H

@zn
H(z) = 0

[Giusti-Lecerf-S.01;Schost02;SafeySchost16]

History and Background: 
see Castro, Pardo, Hägele, 

and Morais (2001)

, deg H = d max |coeff(H) | ≤ 2h, D := dn,

Prop. Under genericity assumptions, a probabilistic algorithm finds 

P(u) = 0
P′￼(u)z1 − Q1(u) = 0

⋮
P′￼(u)zn − Qn(u) = 0

in  bit ops.Õ(D3(d + h))

deg ≤ nD,

height = Õ(D(d + h))

System reduced to  
a univariate polynomial

17/28

Kronecker

representation



Example (Lattice Path Model)
The number of walks from the origin taking steps  

 {NW,NE,SE,SW} and staying in the first quadrant is

Kronecker 
representation 
of the critical 
points:

ie, they are given by:

P (u) = 4u4 + 52u3 � 4339u2 + 9338u+ 403920

Qx(u) = 336u2 + 344u� 105898

Qy(u) = �160u2 + 2824u� 48982

Qt(u) = 4u3 + 39u2 � 4339u/2 + 4669/2

P (u) = 0, x =
Qx(u)

P 0(u)
, y =

Qy(u)

P 0(u)
, t =

Qt(u)

P 0(u)

Next: which one(s) of these 4 is minimal?

Diag
(1 + x)(1 + y)

1 − t(1 + x2 + y2 + x2 + y2)

18/28



V. Certified Solutions of 
Polynomial Systems



Numerical Kronecker Representation
P(u) = 0

P′￼(u)z1 − Q1(u) = 0
⋮

P′￼(u)zn − Qn(u) = 0

isolating intervals/disks 
for the real/complex 

roots of P
+

degree , height 𝒟 ℋ Õ(𝒟2(𝒟 + ℋ))
all  at precision zi 2−κ Õ(𝒟3 + n(𝒟2ℋ + 𝒟κ))

(Technical) bounds on the complexity to  
- decide whether a polynomial  
    . vanishes at some of the solutions,  
    . is >0 or <1 at some of the real solutions;

- group solutions that have the same 

Q(z)

|zi | , i = 1,…, n .
Also in a multi-degree and/or a straight-line program setting.

[Melczer-S.21] 19/28

Complexity uses 
bounds on the 

absolute separation



VI. Minimal Critical Points in the 
Combinatorial Case

Semi-Algebraic Problem



Combinatorial Generating Functions

Def.  is combinatorial if every coefficient is ≥ 0.F(z1, …, zn)

Prop. [PemantleWilson] In the combinatorial case, one of the 
minimal critical points has positive real coordinates.

20/28

1. Use this criterion to find minimal critical points

2. Find all minimal critical points with the same 

3. Add asymptotic contributions from each of them

|z1 | , …, |zn |



Testing Minimality

F =
1

H
=

1

(1� x� y)(20� x� 40y)� 1

Critical point equation

x(2x+ 41y � 21) = y(41x+ 80y � 60)

→ 4 critical points, 2 of which are real:

x@H

@x
= y @H

@y
:

Add  and compute a Kronecker representation:H(tx, ty) = 0

P (u) = 0, x = Qx(u)
P 0(u) , y = Qy(u)

P 0(u) , t = Qt(u)
P 0(u)

Solve numerically and keep the real positive sols:

(x2, y2) is.(x1, y1) is not minimal,

(x1, y1) = (9.9971,0.2528), (x2, y2) = (0.54823,0.30998)

(0.55,0.31,0.99), (0.55,0.31,1.71), (9.99,0.25,0.09), (9.99,0.25,0.99)
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Algorithm and Complexity

Thm. If  is combinatorial, then under regularity conditions, the 
points contributing to dominant diagonal asymptotics can be 
determined in  bit operations. Each contribution has 
the form 


  can be found to precision  in  bit ops.                           

F(z)

Õ(D4(d + h))

T, C 2−κ Õ(D3d3h3 + Dκ)

This result covers the easiest cases. 
All conditions hold generically and can be checked 
within the same complexity, except combinatoriality.

Ak =
⇣
T

�k
k
(1�n)/2(2⇡)(1�n)/2

⌘
(C +O(1/k))

[Melczer-S. 21]

explicit 
algebraic 
numbers

half-integer
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Example: Apéry's sequence
1

1� t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
= 1 + · · ·+ 5xyzt+ · · ·

Kronecker representation of the critical points:

 There are two real critical points, and one is positive. After 

 testing minimality, one has proved asymptotics

P (u) = u2 � 366u� 17711

x =
2u� 1006

P 0(u)
, y = z = � 320

P 0(u)
, t = �164u+ 7108

P 0(u)

23/28



Example: Restricted Words in Factors

= #words over {0,1} with  0 and  1 and without 10101101 or 1110101i j

24/28

[xiyj]
1 − x3y6 + x3y4 + x2y4 + x2y3

1 − x − y + x2y3 − x3y3 − x4y4 − x3y6 + x4y6



VII. Minimal Critical Points 
General Case


Semi-Algebraic Problem



Minimal Critical Points

Consequence: With  the domain of convergence of ,𝒟 F
u ∉ 𝒟 ⇒ ∃t ∈ (0,1), z ∈ ∂𝒟 s.t.  |zj | = t |uj | , j = 1,…, n .

—> Criterion in the non-combinatorial case

(0, 0) (1, 0)

(0, 1)

•

•

•

Figure 3.1: The amoeba (left) and Newton polygon (right) of 1� x� y.

Some computational questions related to amoebas, including drawing them in two dimensions
and determining their boundary, are addressed by Theobald [236] and de Wolff [243].

Diagonals of Laurent Expansions

Given a formal Laurent series
F (z) =

X
fiz

i 2 R((z))

or convergent Laurent series
F (z) =

X
fiz

i 2 CD{z}

in some domain D, the diagonal of F is simply the univariate series

(�F )(z) =
X

k>0

fk,...,kz
k.

Given a function f(z) over the complex numbers one can compute the diagonal of f for any of
its convergent Laurent series. Thus, one must specify a domain of convergence in order to define
the diagonal �f , which by Proposition 26 can be done by specifying any point in the domain.
Unless explicitly noted, when given a function which is analytic at the origin we always consider
the diagonal of the power series expansion of the function.

Most of the results discussed above for diagonals of rational functions with power series ex-
pansions hold for all convergent Laurent series expansions of rational functions. In particular, the
diagonal of a convergent Laurent expansion is still D-finite. In fact, there is a differential operator
which annihilates all convergent Laurent expansions of a rational function, and this operator can
be found using the creative telescoping algorithm of Lairez [162]. Thus, the diagonal of any con-
vergent Laurent expansion of a rational function is still a G-function and we obtain the following
analogue of Corollary 19.

45

amoeba of 
1 − x − y

amoeba(H) := {(log |z1 | , …, log |zn | ) ∣ z ∈ ℂ*n, H(z) = 0}

The connected components of the 
complement of amoebas are convex
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Split into Real & Imaginary Parts

  splits into  f(z) ∈ ℂ[z] f(x + iy) = f (R)(x, y) + i f (I)(x, y)

f (R), f (I) in ℝ[x, y]

—>  critical point equations in  real unknowns2n + 2 2n + 2

H(R)(a, b) = H(I)(a, b) = 0

aj (∂H(R)/∂xj)(a, b) + bj (∂H(R)/∂yj)(a, b) − λR = 0, j = 1,…, n

aj (∂H(I)/∂xj)(a, b) + bj (∂H(I)/∂yj)(a, b) − λI = 0, j = 1,…, n

Cauchy-Riemann
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Minimal Critical Points

,
H(R)(tx, ty) = H(I)(tx, ty) = 0
x2

j + y2
j = t(a2

j + b2
j ), j = 1,…, n

 eqns in 
 unknowns

n + 2
2n + 1

Needed: no real zero of  with H(x + iy)
|xj + iyj | = t |aj + ibj | , j = 1,…, n

with 0 < t < 1.

And setup a (structured) system for the critical points of

πt : (a, b, x, y, λR, λI, t) ↦ t .  eqns in 
 unknowns

4n + 4
4n + 4

Bit complexity for min crit pt selection: Õ(23nD9d5h) . Rest as 
before

Add new 
equations:
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Conclusion



Comparison of Approaches

Multiple binomial sum

  Sn = ρn nαC (1 +
d1

n
+ ⋯), n → ∞

Diagonal/Integral representation

Linear differential 
equation

easy

Griffiths-Dwork

reduction

analytic combinatorics

analytic 
combinatorics 

in several 
variables


(smooth case)

Same ideal

arith. size 
Õ(d5n)

Kronecker 
repr. of 

arith. size 
Õ(dn)

 arbitrary algebraic num.

 only numerically


full asymptotic expansion

α
C

 half-integer

 explicit


leading term

α
C

The End


