Algorithmic Tools for the Asymptotics of Linear Recurrences

Bruno Salvy
Inria \& ENS de Lyon

Computer Algebra in Combinatorics, Schrödinger Institute, Vienna, Nov. 2017

Motivation

$$
p_{0}(n) a_{n+k}+\cdots+p_{k}(n) a_{n}=0, \quad 0 \notin p_{0}(\mathbb{N}), \quad p_{i} \in \mathbb{Z}[n]
$$

Aim: given a_{0}, \ldots, a_{k-1}, predict the behaviour of a_{n} as $n \rightarrow \infty$.

Simplified version: "compute", when they exist,

$$
K, \alpha, m, c \neq 0 \quad \text { such that } \quad a_{n} \sim c K^{n} n^{\alpha} \log ^{m} n
$$

Message of this talk:

1. there are tools;
2. c can be the hard part (ie, discarding a very small c);
3. a full asymptotic expansion is not more difficult.

Wimp-Zeilberger Approach

$$
p_{0}(n) a_{n+k}+\cdots+p_{k}(n) a_{n}=0, \quad 0 \notin p_{0}(\mathbb{N}), \quad p_{i} \in \mathbb{Z}[n]
$$

1. Compute a basis of formal asymptotic expansions

$$
\phi_{1}(n), \ldots, \phi_{k}(n) \quad \text { (generally divergent) }
$$

2. Using the initial conditions compute values for large n and deduce approximate c_{1}, \ldots, c_{k} s.t.

$$
a_{n} \approx c_{1} \phi_{1}(n)+\cdots+c_{k} \phi_{k}(n)
$$

3. In the (many) cases when $\phi_{2}(n), \ldots, \phi_{k}(n)$ are $o\left(\phi_{1}(n)\right)$ and c_{1} is numerically nonzero, conclude

$$
a_{n} \sim c_{1} \phi_{1}(n)
$$

Singularity Analysis

counts the number of objects of size n

$$
\left(a_{n}\right) \mapsto A(z):=\sum_{n \geq 0} a_{n} z^{n}
$$

captures some structure

$$
a_{n}=\frac{1}{2 \pi i} \oint \frac{A(z)}{z^{n+1}} d z
$$

1. Locate dominant singularities a. singularities; b. dominant ones
2. Compute local behaviour
3. Translate into asymptotics
$A(z) \underset{z \rightarrow \rho}{\sim} c\left(1-\frac{z}{\rho}\right)^{\alpha} \log ^{m} \frac{1}{1-\frac{z}{\rho}} \quad a_{n} \underset{n \rightarrow \infty}{\sim} c \rho^{-n} \frac{n^{-\alpha-1}}{\Gamma(-\alpha)} \log ^{m} n$
full asymptotic expansion available

P-recursivity \& D-finiteness

$$
\left(a_{n}\right) \mapsto A(z):=\sum_{n \geq 0} a_{n} z^{n}
$$

(a_{n}) P-recursive

A(z) D-finite

$$
p_{0}(n) a_{n+k}+\cdots+p_{k}(n) a_{n}=0 \quad q_{0}(z) A^{(\ell)}(z)+\cdots+q_{\ell}(z) A(z)=0
$$

Classical properties of LDEs:

1. singularities satisfy $q_{0}(\rho)=0$;
2. one can compute a basis of formal solutions at (regular) singular points, of the form

$$
\left(1-\frac{z}{\rho}\right)^{\alpha} \log ^{m}\left(\frac{1}{1-\frac{z}{\rho}}\right)(1+\cdots), \quad \alpha \in \overline{\mathbb{Q}}, m \in \mathbb{N} .
$$

More recently (M. Mezzarobba's talk on Thursday): certified analytic continuation (\rightarrow c numerically).

Ex: Pólya's 3D Random Walk

Start from the origin in \mathbf{Z}^{d}; move one step along one of the axes; repeat. What is the probability p_{d} of returning to 0 ?

Numerical approximation by analytic continuation:

1. $u_{n}:=\mathbf{P}(3 \mathrm{D}$-walk returns to 0 in 2 n steps) satisfies
$(2 n+3)(2 n+1)(n+1) u_{n}-2(2 n+3)\left(10 n^{2}+30 n+23\right) u_{n+1}+36(n+2)^{3} u_{n+2}=0$
2. $a_{n}:=\sum_{k=0}^{n} u_{k} \rightarrow c:=\frac{1}{1-p_{3}}$ converges slowly (1 is a singularity)
3. Given a_{0}, a_{1}, a_{2}, NumGfun produces 100 digits of c, c_{2}, c_{3} s.t.

$$
\begin{aligned}
& A(z) \approx c\left(\frac{1}{1-z}+\cdots\right)+c_{2}\left(\frac{1}{\sqrt{1-z}}+\cdots\right)+c_{3}(1+\cdots) \text { in } 3 \text { sec. } \\
& \quad c=\frac{\sqrt{6}}{32 \pi^{3}} \Gamma\left(\frac{1}{24}\right) \Gamma\left(\frac{5}{24}\right) \Gamma\left(\frac{7}{24}\right) \Gamma\left(\frac{11}{24}\right) \begin{array}{l}
\text { not accessible to the } \\
\text { algorithms presented here. }
\end{array} \\
& \text { chan et alii } 13,16 ; \text { Glasser-Zucker77] }
\end{aligned}
$$

Asymptotics of D-Finite Combinatorial Sequences

Thm. [Katz70,Chudnovsky85,André00] $a_{0}+a_{1} z+\ldots$ D-finite, a_{i} integers, radius in ($0, \infty$), then its singular points are regular with rational exponents

$$
a_{n} \sim \sum_{(\lambda, \alpha, k) \in \text { finite set }} \lambda^{-n} n^{@} \log ^{k}(n) f_{\lambda, \alpha, k}\left(\frac{1}{n}\right) .
$$

$$
\text { in } \overline{\mathbb{Q}} \bullet \mathbb{Q} \mathbb{N}
$$

Ex. The number a_{n} of walks from the origin taking n steps ${ }^{20}$ $\{N, S, E, W, N W\}$ and staying in the first quadrant behaves like $C \lambda^{-n} n^{\alpha}$ with $\alpha \notin \mathbb{Q} \rightarrow$ not D-finite.

$$
\alpha=-1+\frac{\pi}{\arccos (u)}, \quad 8 u^{3}-8 u^{2}+6 u-1=0, \quad u>0 .
$$

Univariate Generating Functions

D-FINITE

DIAGONAL
Aim: asymptotics of the coefficients, automatically.

ALGEBRAIC

RATIONAL

More structure
\rightarrow
more complete algorithm
Def diagonal: R. Pemantle's talk yesterday.
Christol's conjecture: All differentially finite power series with integer coefficients and radius of convergence in $(0, \infty)$ are diagonals. ${ }_{7 / 23}$

I. Rational Generating Functions (Linear Recurrences with Constant Coefficients)

Conway's sequence

$1,11,21,1211,111221, \ldots$

Generating function for lengths:

$$
\mathrm{f}(\mathrm{z})=\mathrm{P}(\mathrm{z}) / \mathrm{Q}(\mathrm{z})
$$ with $\operatorname{deg} \mathrm{Q}=72$.

Smallest singularity:
$\rho \approx 0.7671198507$

$$
\begin{aligned}
& \ell_{n}=2.04216 \rho^{-n} \\
& c=\rho^{-1} \operatorname{Res}(f, \rho) \\
& \text { algebraic }
\end{aligned}
$$

Singularity Analysis for Rational Functions

> A 3-Step Method:

1. Locate dominant singularities
a. singularities; b. dominant ones
2. Compute local behaviour
3. Translate into asymptotics

4. Numerical resolution with sufficient precision

+ algebraic manipulations

2. Local expansion (easy).
3. Easy.

Useful property [Pringsheim Borel]
$a_{n} \geq 0$ for all $n \Longrightarrow$ real positive dominant singularity.

II. Algebraic Generating Functions

$$
P(z, F(z))=0
$$

with $P(z, y) \in \mathbb{Z}[z, y] \backslash\{0\}$

Algebraic Generating Functions

$$
P(z, y(z))=0
$$

1a. Location of possible singularities Implicit Function Theorem:

$$
P(z, y(z))=\frac{\partial P}{\partial y}(z, y(z))=0 \quad \text { (discriminant) }
$$

Numerical resolution with sufficient precision

+ algebraic manipulations

1b. Analytic continuation
finds the dominant ones
2. Local behaviour (Puiseux): $(1-z / \rho)^{\alpha}$, 3. Translation: easy:

$$
a_{n} \underset{n \rightarrow \infty}{\sim} c \rho^{-n} \frac{n^{-\alpha-1}}{\Gamma(-\alpha)}
$$

with c, ρ algebraic, α rational.

3-regular 2-connected Planar Graphs

$$
U=2 G_{3}+T+2 U^{2}=\frac{T}{(1-U)^{3}}, T=z(1+B)^{3}, B=\frac{G_{3}+B^{2}}{1+B}+z\left(B+\frac{1}{2} B^{2}\right)
$$ define power series $U(z), G_{3}(z), T(z), B(z)$.

 The aim is to compute the asymptotic behaviour of $\left[z^{n}\right] B(z)$. 1. Eliminating $\mathrm{U}, \mathrm{T}, \mathrm{G}_{3}$ gives $P=16 B^{6} z^{2}+\cdots+z^{2}\left(z^{2}+11 z-1\right)$. 2. The discriminant has degree 20, but only one root in (0,1]:

$$
\rho \approx .102 \text { root of } 54 z^{3}+324 z^{2}-4265 z+432 .
$$

3. At $z=\rho, P$ has only 1 (double) real positive root: $B(\rho)$
4. Computing more terms gives

$$
B(z)=B(\rho)+c_{1}\left(1-\frac{z}{\rho}\right) \pm c\left(1-\frac{z}{\rho}\right)^{3 / 2}+\cdots \text { with an explicit } C
$$

5. Conclusion:

$$
\left[z^{n}\right] B(z) \sim \frac{3 c}{4 \sqrt{\pi}} n^{-5 / 2} \rho^{-n} .
$$

Singularity Analysis of Algebraic Series

Prop. [Abel1827;Cockle1861;Harley1862;Tannery1875] Algebraic series are D-finite.

Exact analytic continuation for singularity analysis via LDE:

A. Compute a LDE starting from P;
B. For all roots of $\operatorname{disc}(\mathrm{P})$, sorted by increasing modulus,

1. compute exactly the local branches;
2. match with numerical continuation (MM's code);
3. if a singular behaviour is encountered, return it.

II. Diagonals

Main Properties

> Prop. Algebraic series are the diagonals of bivariate rational functions.
> Diagonals are D-finite; they are closed under sum, product, Hadamard product; their coefficients are multiple binomial sums (and conversely). Christol's conjecture: All D- finite power series with integer coefficients and radius of convergence in $(0, \infty)$ are diagonals.

All these properties are effective, with good bounds and complexity.
\rightarrow asymptotics from the LDE
[Pólya21,Furstenberg67,Christol84,BostanLairezS.13,Lairez16,BostanDumontS.17]

LDE for Integrals: Griffiths-Dwork Method

Basic idea:

$$
I(t)=\oint \frac{P(t, \underline{x})}{Q^{m}(t, \underline{x})} d \underline{x}
$$

Q square-free
Int. over a cycle where $\mathrm{Q} \neq 0$.

1. While $\mathrm{m}>1$, reduce modulo $\mathrm{J}:=\left\langle\partial_{1} \mathrm{Q}, \ldots, \partial_{\mathrm{n}} \mathrm{Q}\right\rangle$ and integrate by parts

$$
\frac{P}{Q^{m}}=\frac{r+v_{1} \partial_{1} Q+\cdots+v_{n} \partial_{n} Q}{Q^{m}}=\frac{r}{Q^{m}}+\frac{\tilde{P}}{Q^{m-1}}+\text { derivatives }
$$

2. Apply to $I, I^{\prime}, I^{\prime \prime}, \ldots$ until a linear dependency is found.

Thm. If P / Q has degree d in n variables, $\mathrm{I}(\mathrm{t})$ satisfies a LDE with order $\approx d^{n}$, coeffs of degree $d^{O(n)}$.
$\tilde{O}\left(d^{8 n}\right)$
Diagonals: $F(\underline{z})=\frac{G(\underline{z})}{H(\underline{z})} \Rightarrow \Delta F=\left(\frac{1}{2 \pi i}\right)^{n-1} \oint F\left(z_{1}, \ldots, z_{n-1}, \frac{t}{z_{1} \cdots z_{n-1}}\right) \frac{d z_{1} \cdots d z_{n-1}}{z_{1} \cdots z_{n-1}}$. J becomes $\left\langle z_{1} \partial_{1} H-z_{n} \partial_{n} H, \ldots, z_{n-1} \partial_{n-1} H-z_{n} \partial_{n} H\right\rangle$.

III. Analytic Combinatorics in Several Variables, with Computer Algebra

Wanted: complete algorithms, good complexity, more cases with `explicit' c.

Solution:

1. restrict to simplest class;
2. avoid amoebas and
deal only with polynomial systems;
3. control all degrees \& sizes.

Coefficients of Diagonals

$$
F(\underline{z})=\frac{G(\underline{z})}{H(\underline{z})} \quad c_{k, \ldots, k}=\left(\frac{1}{2 \pi i}\right)^{n} \int_{T} \frac{G(\underline{z})}{H(\underline{z})} \frac{d z_{1} \cdots d z_{n}}{\left(z_{1} \cdots z_{n}\right)^{k+1}}
$$

Critical points: minimize $z_{1} \cdots z_{n}$ on $\mathcal{V}=\{\underline{z} \mid H(\underline{z})=0\}$ $\operatorname{rank}\left(\begin{array}{ccc}\frac{\partial H}{\partial z_{1}} & \ldots & \frac{\partial H}{\partial z_{n}} \\ \frac{\partial\left(z_{1} \ldots z_{n}\right)}{\partial z_{1}} & \ldots & \frac{\partial\left(z_{1} \cdots z_{n}\right)}{\partial z_{n}}\end{array}\right) \leq 1 \quad$ i.e. $\quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$

J from G-D

Minimal ones: on the boundary of the domain of convergence.

A 3-step method

1a. locate the critical points (algebraic condition); 1b. find the minimal ones (semi-algebraic condition);
2. translate (easy in simple cases).

Def. $\mathrm{F}\left(\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{n}\right)$ is combinatorial if every coefficient is ≥ 0.
Prop. [PemantleWilson] In the combinatorial case, one of the minimal critical points has positive real coordinates.

Ex.: Central Binomial Coefficients

$\binom{2 k}{k}: \quad \frac{1}{1-x-y}=(1)+x+y+\left(2 r y+x^{2}+y^{2}+\cdots+\left(6 x^{2} y^{2}+\cdots\right.\right.$
(1). Critical points: $1-x-y=0, x=y \Longrightarrow x=y=1 / 2$.
(2). Minimal ones. Easy. In general, this is the difficult step.
(3). Analysis close to the minimal critical point:

$$
\begin{aligned}
a_{k} & =\frac{1}{(2 \pi i)^{2}} \iint \frac{1}{1-x-y} \frac{d x d y}{(x y)^{k+1}} \approx \frac{1}{2 \pi i} \int \frac{d x}{(x(1-x))^{k+1}} \\
& \approx \frac{4^{k+1}}{2 \pi i} \int \exp \left(4(k+1)(x-1 / 2)^{2}\right) d x \approx \frac{4^{k}}{\sqrt{k \pi}} . \\
& \xrightarrow{\text { saddle-point approx }}
\end{aligned}
$$

Kronecker Representation for the Critical Points

Algebraic part: "compute" the solutions of the system

$$
H(\underline{z})=0 \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}
$$

If $\quad \operatorname{deg}(H)=d, \quad \max \operatorname{coeff}(H) \leq 2^{h} \quad D:=d^{n}$
Under genericity assumptions, a probabilistic algorithm running in $\tilde{O}\left(h D^{3}\right)$ bit ops finds:

History and Background: see Castro, Pardo, Hägele, and Morais (2001)

$$
\left.\begin{array}{rl}
P(u) & =0 \\
P^{\prime}(u) z_{1}-Q_{1}(u) & =0 \\
& \vdots \\
P^{\prime}(u) z_{n}-Q_{n}(u) & =0
\end{array}\right\} \begin{aligned}
\\
\text { Degree } \leq D \\
\text { Height } \leq \tilde{O}(h D)
\end{aligned}
$$

System reduced to a univariate polynomial.

Example (Lattice Path Model)

The number of walks from the origin taking steps $\{N W, N E, S E, S W\}$ and staying in the first quadrant is
$\Delta F, \quad F(x, y, t)=\frac{(1+x)(1+y)}{1-t\left(1+x^{2}+y^{2}+x^{2} y^{2}\right)}$

$$
P(u)=4 u^{4}+52 u^{3}-4339 u^{2}+9338 u+40^{2} 3920
$$

Kronecker

$$
\begin{aligned}
Q_{x}(u) & =336 u^{2}+344 u-105898 \\
Q_{y}(u) & =-160 u^{2}+2824 u-48982 \\
Q_{t}(u) & =4 u^{3}+39 u^{2}-4339 u / 2+4669 / 2
\end{aligned}
$$

ie, they are given by:

$$
P(u)=0, \quad x=\frac{Q_{x}(u)}{P^{\prime}(u)}, \quad y=\frac{Q_{y}(u)}{P^{\prime}(u)}, \quad t=\frac{Q_{t}(u)}{P^{\prime}(u)}
$$

Testing Minimality

$$
F=\frac{1}{H}=\frac{1}{(1-x-y)(20-x-40 y)-1}
$$

Critical point equation $x \frac{\partial H}{\partial x}=y \frac{\partial H}{\partial y}$:

$$
x(2 x+41 y-21)=y(41 x+80 y-60)
$$

$\rightarrow 4$ critical points, 2 of which are real:

$$
\left(x_{1}, y_{1}\right)=(0.2528,9.9971), \quad\left(x_{2}, y_{2}\right)=(0.30998,0.54823)
$$

Add $H(t x, t y)=0$ and compute a Kronecker representation:

$$
P(u)=0, \quad x=\frac{Q_{x}(u)}{P^{\prime}(u)}, \quad y=\frac{Q_{y}(u)}{P^{\prime}(u)}, \quad t=\frac{Q_{t}(u)}{P^{\prime}(u)}
$$

Solve numerically and keep the real positive sols:
$(0.31,0.55,0.99),(0.31,0.55,1.71),(0.25,9.99,0.09)(0.25,0.99,0.99)$
$\left(x_{1}, y_{1}\right)$ is not minimal, $\left(x_{2}, y_{2}\right)$ is.

Algorithm and Complexity

Thm. If $F(\underline{z})$ is combinatorial, then under regularity conditions, the points contributing to dominant diagonal asymptotics can be determined in $\tilde{O}\left(h d^{5} D^{4}\right)$ bit operations. Each contribution has the form

$$
A_{k}=\left(T^{-k} k \frac{(1-n) / 2}{\not}(2 \pi)^{(1-n) / 2}\right)(C+O(1 / k))
$$

T, C can be found to $2^{-\kappa}$ precision in $\tilde{O}\left(h(d D)^{3}+D \kappa\right)$ bit ops.

half-integer

This result covers the easiest cases. All conditions hold generically and can be checked within the same complexity, except combinatoriality.

Example: Apéry's sequence

Kronecker representation of the critical points:

$$
\begin{aligned}
P(u) & =u^{2}-366 u-17711 \\
x=\frac{2 u-1006}{P^{\prime}(u)}, \quad y & =z=-\frac{320}{P^{\prime}(u)}, \quad t=-\frac{164 u+7108}{P^{\prime}(u)}
\end{aligned}
$$

There are two real critical points, and one is positive. After testing minimality, one has proved asymptotics
> A, U := DiagonalAsymptotics(numer(F), denom(F),[t,x,y,z],u,k):
> evala(allvalues(subs (u=U[1],A)));

$$
\frac{(17+12 \sqrt{2})^{k} \sqrt{2} \sqrt{24+17 \sqrt{2}}}{8 k^{3 / 2} \pi^{3 / 2}}
$$

Example: Restricted Words in Factors

$$
F(x, y)=\frac{1-x^{3} y^{6}+x^{3} y^{4}+x^{2} y^{4}+x^{2} y^{3}}{1-x-y+x^{2} y^{3}-x^{3} y^{3}-x^{4} y^{4}-x^{3} y^{6}+x^{4} y^{6}}
$$

words over $\{0,1\}$ without 10101101 or 1110101

|> A,U:=DiagonalAsymptotics (numer (F), denom(F), indets (F), u, k,true, u-T, T) =

$[>A$

>0
 $\left.\left.+16 _Z-4,0.25574184\right)\right]$
$>$ evalf(subs $(u=u[1], A))$;

Summary \& Conclusion

- In many cases, LDE + certified analytic continuation works.
- Don't miss Marc's talk (and bring your computer).
- Diagonals are a nice and important class of generating functions for which we now have many good algorithms.
- ACSV can be made effective (at least in simple cases) and recovers explicit constants.
- Complexity issues become clearer.

Work in progress: extend beyond some of the assumptions (see Melczer's talk \& thesis).
The End

