Walks in Cones and Tight Enclosures of Laplacian Eigenvalues

Bruno Salvy

Inria, ENS de Lyon

Lattice Paths, Combinatorics and Interactions June 2021

Joint work with Joel Dahne

SIAM J. Sci. Comp. 2020 doi: 10.1137/20M1326520 arXiv: abs/2003.08095

I. Motivation: Walks in Cones

Lattice Walks: a Mine of Linear **Recurrences Waiting for Tools** 20 Walks from 0 to $P \in \mathbb{Z}^d$ staying in $K \subset \mathbb{R}^d$ using *n* steps in $\mathcal{S} \subset \mathbb{Z}^d$ 15 **Ex.:** $d = 2, \ \mathcal{S} = \{\uparrow, \downarrow, \rightarrow, \leftarrow, \diagdown\}, \ K = \mathbb{N}^2$ $u_{i,j,n} = u_{i-1,j,n-1} + u_{i,j-1,n-1} + u_{i+1,j,n-1} + u_{i,j+1,n-1} + u_{i+1,j+1,n-1}$ $u_{i,i,n} = 0$ for $(i,j) \notin K$ Generating functions: excursions total number $U_{K}(x,y;z) := \sum u_{i,j,n} x^{i} y^{j} z^{n}, \quad U_{K}(0,0;z) = \sum e_{n} z^{n}, \quad U_{K}(1,1;z) = \sum u_{n} z^{n}.$ i,j,nApplications: queuing theory, statistical physics, combinatorics,...

Questions: $S, K \rightarrow$ asymptotics? nature of these series?

Non-D-Finite Generating Functions of Walks in Nd

$$\mathcal{S} = \{\uparrow, \downarrow, \rightarrow, \leftarrow, \searrow\}$$

Idea: Normalize so that the asymptotic behaviour is a Brownian motion

a. fix probabilities for each step that remove drift

b. linear transform to remove correlation ℕ^d becomes a cone *K*

Probabilistic ingredient:

$$e_n \sim C\rho^n n^{-p/2}$$
 with $p = \sqrt{\lambda_1 + (d/2 - 1)^2 - (d/2 - 1)} > 0$,

 λ_1 fundamental eigenvalue of $\Delta_{\mathbb{S}^{d-1}}$ on $\Omega := K \cap \mathbb{S}_{d-1}$.

Arithmetic ingredient:

U(z) D-finite, convergent, with integer coefficients $\Rightarrow p \in \mathbb{Q}$.

[DenisovWachtel15;Chudnovsky85;André89;Katz70]

Def next page

Fundamental Eigenvalue of the Laplace-Beltrami Operator on the Unit Sphere

Laplace operator in spherical coordinates in \mathbb{R}^d

$$\Delta f = r^{1-d} \frac{\partial}{\partial r} \left(r^{d-1} \frac{\partial f}{\partial r} \right) + r^{-2} \Delta_{\mathbb{S}^{d-1}} f$$
Laplace-Beltramion the sphere spherical triangle
Eigenvalue problem for $\Omega \subset \mathbb{S}^{d-1}$:
$$\Delta_{\mathbb{S}^{d-1}} f + \lambda f = 0 \text{ in } \Omega, \quad f|_{\partial\Omega} = 0.$$
Dirichlet condition
Classical fact: $0 < \lambda_1 < \lambda_2 \leq \cdots, \quad \lambda_n \to \infty$

a

Goal: $(\alpha, \beta, \gamma) \mapsto \lambda_1$ with high precision (dimension d=3)

Planar Case

Example: Kreweras 3D

The group of the walk is finite

Excursions: $e_n \sim C 4^n n^{-\alpha_{\kappa}}$

Previous estimates lead to:

 $\begin{array}{ll} \alpha_{\kappa} \in [3.323, 3.326] & (Costabel, 2008) \\ \alpha_{\kappa} \simeq 3.32572 & (Ratzkin, Treibergs, 2009) \\ \alpha_{\kappa} \simeq 3.3261 & (Balakrishna, 2013) \\ \alpha_{\kappa} \simeq 3.325757004174456 & (Guttmann, 2015) \\ \alpha_{\kappa} \simeq 3.3257569 & (Bacher et al., 2016) \\ \alpha_{\kappa} \simeq 3.325757004175 & (Bogosel et al., 2020) \end{array}$

New: $\alpha_{\kappa} \simeq 3.32575700417445625097... \pm 10^{-101}$ If $\alpha_{\kappa} = p/q \in \mathbb{Q}$, then $q > 10^{51}$.

D-finiteness more and more doubtful

II. 3D Walks: Laplacian on Spherical Triangles

Spherical Triangles

Eigenvalues known when $(\alpha, \beta, \gamma) = \left(\frac{\pi}{p}, \frac{\pi}{q}, \frac{\pi}{r}\right)$ Only possible (p, q, r) that give triangles:

$$\begin{array}{l} .\ (2,3,3) \longrightarrow \lambda = k(k+1), \ k \in 6+3\mathbb{N}+4\mathbb{N} \\ .\ (2,3,4) \longrightarrow \lambda = k(k+1), \ k \in 9+6\mathbb{N} \\ .\ (2,3,5) \longrightarrow \lambda = k(k+1), \ k \in 15+6\mathbb{N}+10\mathbb{N} \\ .\ (2,2,r) \longrightarrow \lambda = k(k+1), \ k \in r+1+2\mathbb{N}+r\mathbb{N} \\ -\frac{p}{2} := \sqrt{\lambda_1 + (d/2-1)^2} + 1 \in \mathbb{Q} \end{array}$$

This solves 7 of the 17 spherical triangles with finite groups

No other value known —> turn to numerical computation

[Berard1983,BogoselPerrollazRaschelTrotignon20]

Bounds from an Approximate Eigenvalue

Eigenvalue problem for
$$\Omega$$
:
 $\Delta f + \lambda f = 0$ in Ω , $f|_{\partial\Omega} = 0$.
replace by f smallThm. If $\Delta f^* + \lambda^* f^* = 0$ in Ω , then there exists λ s.t.
 $\frac{|\lambda - \lambda^*|}{\lambda} \leq \frac{\sup_{x \in \partial\Omega} |f^*(x)|}{||f^*||_2}$.Method:1. Find a good approximate pair (f^*, λ^*) Only 1. & 2. in this talk
(most of the time in the
computation)Method:1. Eind a good approximate pair (f^*, λ^*) 2. Upper bound $\sup_{x \in \partial\Omega} |f^*|$ in a certified way
 $\sum_{x \in \partial\Omega}$ 3. Lower bound $\||f^*||_2$ in a certified way
 $\sum_{x \in \partial\Omega}$ 4. Certify the index

[FoxHenriciMoler67,MolerPayne68]

Step 1. Find a good approximate pair (f^*, λ^*)

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \leq \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}$$

High precision needed, and no guarantee

Method of Particular Solutions

1. Fix λ 2. Find a set $(u_{\lambda}^{(k)})_{k=1}^{N}$ of solutions of $\Delta f + \lambda f = 0$ in Ω 3. Find a linear combination $\sum_{k=1}^{N} c_k u_{\lambda}^{(k)}$ that is k=1. small on $\partial \Omega$. not too small on Ω 4. Repeat to minimize sup over λ $x \in \partial \Omega$

Separation of variables gives

$$u_{\lambda}^{(k)}(\theta,\phi) = \sin(\mu_{k}\phi) P_{\nu}(\cos\theta)$$

With $\lambda = \nu(\nu+1), \qquad \mu_{k} := -\frac{k\pi}{\phi_{\max}}, \ k \in \mathbb{N}$
 $u_{\lambda}^{(k)}(\theta,0) = u_{\lambda}^{(k)}(\theta,\phi_{\max}) = 0.$
One edge of the triangle left
9/1

5

3. Last Part of the Boundary

4. Optimize over λ

Ex. Regular Triangle: $(2\pi/3, \pi/3, \pi/2)$

 Find a good approximate pair (f*, λ*)
 Upper bound sup |f*| in a certified way x∈∂Ω
 Lower bound ||f*||₂ in a certified way
 Certify the index

Step 2. Upper Bounds

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \leq \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}.$$

Basic Tool: Interval Arithmetic

Replace all floating-point operations by set operations

[1.2, 1.3] + [2.0, 2.1] = [3.2, 3.4] $[1.2, 1.3] \times [2.0, 2.1] = [2.40, 2.73]$

provides certified enclosures

Implementation requires care with rounding modes

We use <u>https://arblib.org/</u>

Weakness: wrapping effect

 $f := e^{-t} - (1 - t + t^2/2! + \dots - t^9/9!)$

f([1.0,1.1]) = [-0.161,0.161] while $f: [1.0,1.1] \mapsto [2.5 \ 10^{-7}, 6.5 \ 10^{-7}]$

Situation very similar to our $f^{\star} = \sum c_k u_{\lambda}^{(k)}$ on $\partial \Omega$

The expensive part of the certification

[MakinoBerz03]

Results

Angles	BPRT	new	bound denom
$(3\pi/4,\pi/3,\pi/2)$	12.400051	$12.400051652843377905 \pm 10^{-47}$	10 ²³
$(2\pi/3,\pi/3,\pi/2)$	13.744355	$13.744355213213231835 \pm 10^{-84}$	10 ⁴⁰
$(2\pi/3,\pi/4,\pi/2)$	20.571973	$20.571973537984730557 \pm 10^{-30}$	10 ¹⁴
$(2\pi/3,\pi/3,\pi/3)$	21.309407	$21.309407630190445260 \pm 10^{-206}$	10 ¹⁰³
$(3\pi/4,\pi/4,\pi/3)$	24.456913	$24.456913796299111694 \pm 10^{-73}$	10 ³⁷
$(2\pi/3,\pi/4,\pi/4)$	49.109945	$49.109945263284609920 \pm 10^{-153}$	10 ⁷⁶
$(2\pi/3, 3\pi/4, 3\pi/4)$	4.261734	$4.2617347552939870857 \pm 10^{-22}$	10 ¹⁰
$(2\pi/3, 2\pi/3, 2\pi/3)$	5.159145	$5.1591456424665417112 \pm 10^{-104}$	10 ⁵¹
$(\pi/2, 2\pi/3, 3\pi/4)$	6.241748	$6.2417483307263342368 \pm 10^{-20}$	109
$(\pi/2, 2\pi/3, 2\pi/3)$	6.777108	$6.7771080545983009573 \pm 10^{-35}$	10 ¹⁷
finite elements &			

more work

for this one

convergence acceleration

[BogoselPerrollazRaschelTrotignon20,DahneSalvy20]

Summary & Conclusion

Numerical computation can yield rigorous results, useful in experimental mathematics.

See the article for more on:

lower bounding the norm; certifying the index; singular vs regular triangles.

Thank you.