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I. Motivation: Walks in Cones



Lattice Walks: a Mine of Linear 
Recurrences Waiting for Tools

Applications: queuing theory, statistical physics, combinatorics,…

ui,j,n = ui−1,j,n−1 + ui,j−1,n−1 + ui+1,j,n−1 + ui,j+1,n−1 + ui+1,j+1,n−1

Ex.: d = 2, 𝒮 = {↑ ,↓ ,→ ,← ,↖}, K = ℕ2

UK(x, y; z) := ∑
i,j,n

ui,j,nxiyjzn, UK(0,0; z) = ∑
n≥0

enzn, UK(1,1; z) = ∑
n≥0

unzn .

 Questions: 𝒮, K → asymptotics? nature of these series?
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Walks from 0 to  staying in 

using  steps in 

P ∈ ℤd K ⊂ ℝd

n 𝒮 ⊂ ℤd

ui,j,n = 0 for (i, j) ∉ K

Generating functions: excursions total number



Non-D-Finite Generating Functions of Walks in ℕd

𝒮 = {↑ ,↓ ,→ ,← ,↘}

Idea: Normalize so that

the asymptotic behaviour


is a Brownian motion
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Fig. 2. Five hundred steps with S = {(−1,0), (1,0), (0,−1), (0,1), (1,−1)}. Random walk X with steps drawn uniformly from
S (left); random walk Y with steps drawn from S with probabilities xi

0 y j
0/χ(x0, y0) (middle); random walk Z obtained by

decorrelating Y , with the cone M(N2) (right).

given probability xi
0 y j

0/χ(x0, y0). Finally, x0 and y0 are fixed by the condition E[(Y1(k), Y2(k))] =
(0,0). (This is a special case of the Cramér transform, see [3].) By differentiation with respect to x
(resp. y), the expectations are obtained as

E
[
Y1(k)

]
= x0

χ(x0, y0)

∂χ

∂x
(x0, y0), E

[
Y2(k)

]
= y0

χ(x0, y0)

∂χ

∂ y
(x0, y0).

A correct choice of (x0, y0) is therefore given by a positive solution to Eq. (2).
Since the step set of the walk is not confined to the right half-plane, the limit of χ(x, y) as x → 0+

is infinite, similarly for y → 0+ and for x or y tending to +∞. This proves the existence of a solution.
Its uniqueness comes from the convexity of χ , a Laurent polynomial with positive coefficients.

This new random walk Y is related to the original one: by induction on the number of steps,

P
[

n∑

k=1

(
Y1(k), Y2(k)

)
= (i, j), τ > n

]

= xi
0 y j

0
|S|n

χ(x0, y0)n P
[

n∑

k=1

(
X1(k), X2(k)

)
= (i, j), τ > n

]

,

where we use the same letter τ to denote the exit times of X and Y from N2. In view of Eq. (1), the
number of walks can be read off the new walk as

fS(i, j,n) = ρ(x0, y0)
n

xi
0 y j

0

P
[

n∑

k=1

(
Y1(k), Y2(k)

)
= (i, j), τ > n

]

.

Covariance and scaling. The second step is to reduce to the case of a random walk Z with no drift
and no correlation, i.e., whose covariance matrix Cov(Z) = (E[Zi Z j])i, j is the identity matrix.

The covariance matrix can be obtained from the characteristic polynomial again. Simple computa-
tions lead to

Cov(Y ) = 1
χ(x0, y0)

(
x2

0
∂2χ
∂x2 (x0, y0) x0 y0

∂2χ
∂x∂ y (x0, y0)

x0 y0
∂2χ
∂x∂ y (x0, y0) y2

0
∂2χ
∂ y2 (x0, y0)

)

.

One way to compute the appropriate scaling is in two steps. First, define a new walk obtained

from Y by (W1, W2) = (Y1/
√

E[Y 2
1 ], Y2/

√
E[Y 2

2 ]). By a direct computation, the walk W has no drift
and satisfies
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tions lead to

Cov(Y ) = 1
χ(x0, y0)

(
x2

0
∂2χ
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x0 y0
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∂x∂ y (x0, y0) y2
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∂2χ
∂ y2 (x0, y0)
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One way to compute the appropriate scaling is in two steps. First, define a new walk obtained

from Y by (W1, W2) = (Y1/
√

E[Y 2
1 ], Y2/

√
E[Y 2

2 ]). By a direct computation, the walk W has no drift
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a. fix probabilities 
for each step that 
remove drift

b. linear transform to

remove correlation
ℕd becomes a cone K

[DenisovWachtel15;Chudnovsky85;André89;Katz70]

Arithmetic ingredient:
U(z) D-finite, convergent, with integer coefficients ⇒ p ∈ ℚ .

λ1 fundamental eigenvalue of Δ𝕊d−1 on Ω := K ∩ 𝕊d−1 .

en ∼ Cρnn−p/2 with p = λ1 + (d /2 − 1)2 − (d /2 − 1) > 0,

Probabilistic ingredient:

2/15

Def next page



Fundamental Eigenvalue of the

Laplace-Beltrami Operator on the Unit Sphere

Laplace operator in spherical coordinates in ℝd
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Introduction

Goal:
Understand the asymptotic

behavior of random walks in the
positive octant.

Compute eigenvalues of the
Laplacian on spherical triangles.

Compute rigorous enclosures of
eigenvalues of the Laplacian on

spherical triangles.

Joel Dahne Enclosing Eigenvalues

Goal: (α, β, γ) ↦ λ1 with high precision

  Ω

spherical 
triangle

Δf = r1−d ∂
∂r (rd−1 ∂f

∂r ) + r−2Δ𝕊d−1 f
Laplace-Beltrami 

on the sphere

(dimension d=3)

Eigenvalue problem for Ω ⊂ 𝕊d−1 :
Δ𝕊d−1 f + λf = 0 in Ω, f |∂Ω = 0. Dirichlet 

condition

3/15

0 < λ1 < λ2 ≤ ⋯, λn → ∞Classical fact:

dominant eigenvalue



Proof: 





divisible by a cyclotomic pol

Contradiction.

p ∈ ℚ
⇒ numer μu( z + 1/z

2 )

Planar Case

Δf(r, θ) =
1
r

∂
∂r (r

∂f
∂r ) +

1
r2

∂2f
∂θ2

θ = 0 → c = 0

θ = ϕ → λ = λk := ( kπ
ϕ )

2

, k ∈ ℕ⋆ .
Boundary:

r
θ

Polar

coordinates

ϕ
  Ω

∂ΩLaplace-Beltrami

Eigenfunctions: sin( λθ + c)

Ex.

exponent  −
p
2

= 1 +
π

arccos(u)
∉ ℚ ⇒ U not D-finite.

[BostanRaschelSalvy14]

𝒮 = {↑ ,↓ ,→ ,← ,↘}, ϕ = arccos(u), μu(u) = 0, μu = 8t3 − 8t2 + 6t − 1

Automatic proof of 51 of the 56 non-Dfinite small-step cases u

z

4/15



Example: Kreweras 3D

𝒮 = (
−1
0
0 ), (

0
−1
0 ), (

0
0

−1), (
1
1
1)

Excursions: en ∼ C 4nn−ακ

The group of the walk is finite

Previous estimates lead to:













ακ ∈ [3.323,3.326]
ακ ≃ 3.32572
ακ ≃ 3.3261
ακ ≃ 3.325757004174456
ακ ≃ 3.3257569
ακ ≃ 3.325757004175

(Costabel, 2008)

(Ratzkin, Treibergs, 2009)


(Balakrishna, 2013)

(Guttmann, 2015)


(Bacher et al., 2016)

(Bogosel et al., 2020)

New: 

If , then 

ακ ≃ 3.32575700417445625097… ± 10−101

ακ = p/q ∈ ℚ q > 1051 .
D-finiteness 

more and more 
doubtful

5/15
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Fig. 6. Left: tiling of the sphere by equilateral triangles with right angles, corresponding to the simple walk. 
Right: the tetraedral partition of the sphere, corresponding to Kreweras 3D model. See Fig. 9 for further 
examples of tilings.

see Fig. 4 (leftmost). Its triangle has three right angles, namely α = β = γ = π
2 in Figs. 5

and 6. A second example is 3D Kreweras model, with step set

S = {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)},

see Fig. 4 (left). The associated triangle is also equilateral, with angles 2π
3 , this corre-

sponds to the tetrahedral tiling of the sphere. See Fig. 6.
We exhibit some exceptional models, which do not have the Hadamard property but 

for which, remarkably, one can compute an explicit form for the eigenvalue; this typically 
leads to non-D-finiteness results.

Although we won’t consider these issues here, let us mention that we can also see the 
dimensionality on the triangle. In the case of 2D models, the triangles degenerate into a 
spherical digon, see Section 7.5 (in particular Fig. 16).

Section 6: Our last result is about generic infinite group models. Even if no closed-
form formula exists for λ1, we may consider λ1 as a special function of the triangle T
(or equivalently of its angles α, β, γ, as in spherical geometry a triangle is completely 
determined by its angles), and with numerical analysis methods, obtain approximations 
of this function when evaluated at particular values. The techniques developed in Sec-
tion 6 are completely different from the rest of the paper. Notice that for some cases, 
approximate values of the critical exponents have been found by Bostan and Kauers [13], 
Bacher, Kauers and Yatchak [2], Bogosel [11], Guttmann [42], Dahne and Salvy [24]. See 
Section 6.1 for more details.

Section 7 proposes various extensions and remarks. Finally, the brief Appendix A
gathers some elementary facts on spherical geometry.

Brownian motion in orthants To conclude this introduction, let us emphasize that all 
results that we obtain for discrete random walks admit continuous analogues and can 

©BPRT20

(2π/3,2π/3,2π/3)



II. 3D Walks: Laplacian on 
Spherical Triangles
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Introduction

Goal:
Understand the asymptotic

behavior of random walks in the
positive octant.

Compute eigenvalues of the
Laplacian on spherical triangles.

Compute rigorous enclosures of
eigenvalues of the Laplacian on

spherical triangles.

Joel Dahne Enclosing Eigenvalues

Spherical Triangles

Eigenvalues known when  (α, β, γ) = ( π
p

,
π
q

,
π
r )

Only possible  that give triangles:(p, q, r)
. (2,3,3) ⟶ λ = k(k + 1), k ∈ 6 + 3ℕ + 4ℕ
. (2,3,4) ⟶ λ = k(k + 1), k ∈ 9 + 6ℕ
. (2,3,5) ⟶ λ = k(k + 1), k ∈ 15 + 6ℕ + 10ℕ
. (2,2,r) ⟶ λ = k(k + 1), k ∈ r + 1 + 2ℕ + rℕ

No other value known —> turn to numerical computation

[Berard1983,BogoselPerrollazRaschelTrotignon20]

This solves 7 of 
the 17 spherical 
triangles with 
finite groups

−
p
2

:= λ1 + (d/2 − 1)2 + 1 ∈ ℚ

6/15



Bounds from an Approximate Eigenvalue

Eigenvalue problem for Ω :
Δf + λf = 0 in Ω, f |∂Ω = 0.

[FoxHenriciMoler67,MolerPayne68]

replace by  smallf

|λ − λ⋆ |
λ

≤
supx∈∂Ω | f ⋆(x) |

∥f⋆∥2
.

Thm. If  in , then there exists  s.t.Δf ⋆ + λ⋆f ⋆ = 0 Ω λ

1. Find a good approximate pair 

2. Upper bound  in a certified way


3. Lower bound  in a certified way

4. Certify the index

( f ⋆, λ⋆)
sup
x∈∂Ω

| f ⋆ |

∥f ⋆∥2
Method: Only 1. & 2. in this talk 

(most of the time in the 
computation)

7/15



Step 1. Find a good approximate 
pair  ( f ⋆, λ⋆)

High precision needed, 
and no guarantee

|λ − λ⋆ |
λ

≤
supx∈∂Ω | f ⋆(x) |

∥f⋆∥2
.



Method of Particular Solutions

1. Fix 

2. Find a set  of solutions of  in 


3. Find a linear combination  that is

λ
(u(k)

λ )N
k=1 Δf + λf = 0 Ω

N

∑
k=1

cku(k)
λ

. small on 


. not too small on 
∂Ω

Ω
4. Repeat to minimize  over sup

x∈∂Ω
λ

[Bergman47,Vekua48,FoxHenriciMoler67,BetckeTrefethen05,Betcke08] 8/15



Separation of variables gives

with λ = ν(ν + 1),

Ferrers function of 
the 1st kind (D-finite; 

generalize the 
Legendre functions)

2. Set of Eigenfunctions

Spherical 
coordinates 

Δ𝕊2u(θ, ϕ) =
1

sin θ
∂
∂θ (sin θ

∂u
∂θ ) +

1
sin2 θ

∂2u
∂ϕ2

u(k)
λ (θ, ϕ) = sin(μkϕ)𝖯μk

ν (cos θ)

9/15

μk := −
kπ

ϕmax
, k ∈ ℕ

u(k)
λ (θ,0) = u(k)

λ (θ, ϕmax) = 0.
One edge of the 

triangle left



3. Last Part of the Boundary

uλ(ϕ) :=
N

∑
k=1

cksin(μkϕ)𝖯μk
ν (cos θ(ϕ))

ck s.t. uλ |[0,ϕmax]
≈ 0, ∥uλ∥Ω ≈ 1.Wanted:

with λ = ν(ν + 1)
satisfies 

Δuλ + λuλ = 0

Choose  on ,  inside ;x1, …, xmb
∂Ω y1, …, ymi

Ω

Form a matrix A := (
u(k)

λ (xi)

u(k)
λ (yi))

[BetckeTrefethen05]

Compute its QR factorization A = (Q∂Ω
QΩ ) R

Orthonormal 
basis of Im A

 found together with  by SVD (least squares)σ := min
∥v∥=1

∥Q∂Ωv∥ v

Recover  by solving c Rc = v .

Then 
 

not too small
∥QΩv∥2 = 1 − σ2

10/15



4. Optimize over λ
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(a) The function �(�). (b) Convergence to the eigenvalue corre-

sponding to the first minimum of �(�).

Fig. 6. Results for the triangle T2 from Table 1.

Table 2
Correctly rounded eigenvalues for the triangles from Tables 1 and 3.

Eigenvalue
T1 12.40005165284337790528605341289663672073595731895
T2 13.744355213213231835401121592138020782806650259631874894136332068957983025438

961921160
T3 20.571973537984730556625842153297
T4 21.309407630190445258953481441230517778336842577146716613113142418206238547040

233941912302059567611577883829836706377598939726916941225413300936673580274916
78658694284070553504990811731549297257589768013675637

T5 24.4569137962991116944804381447726828996079591315663692293441391578879515149
T6 49.109945263284609919670343151508268353698425615333956068479546500637275248339

988486176558994445206617439284515387218370698834970763269465605779603204345057
T7 4.2617347552939870857522
T8 5.1591456424665417112216748625993501893151700566462081663085803108692241336574

2186774243415327168103656498
T9 6.24174833072633423680
T10 6.77710805459830095738567415001383748

With the vertex with angle 2⇡/3 placed at the north pole we get the zeros ⇣1,2 2
[3.6550969± 4.82 10�8] and ⇣2,1 2 [3.4315893± 5.43, 10�8] for the enclosing spherical
cap sector. Since � < ⇣1,2(⇣1,2+1) and � < ⇣2,1(⇣2,1+1) it is smaller than the second
eigenvalue of the enclosing spherical cap sector and must therefore correspond to the
fundamental eigenvalue of the triangle.

For the other triangles in Table 1, the method is the same except for the trian-
gles T4 and T6. For these triangles the two nonsingular angles are the same. This
symmetry in the domain implies a corresponding symmetry for the eigenfunction.
The approximate solution can be forced to have the same symmetry by using only
every second term from the sum in (3.2), which improves the convergence rate. Fig-
ure 7 shows the convergence for the radius of the enclosures. The rate of convergence
varies between the triangles, the best convergence being obtained for the triangles
T4 and T6 where the mentioned symmetry was used. Even though they converge
at di↵erent rates they all show linear convergence. As in the case of the L-shaped
domain the condition number of R(�) is huge for all of them, T6 has the highest
value at 10300. As in the previous cases the solution is, however, still small on the
boundary.
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Ex. Regular Triangle: (2π/3,π/3,π/2)
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time
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log scale

approx

certif

Figure 6: The convergence of the width of the enclosure. The number corresponds to the
numbering in table 1. For some of them the enclosure for very low N are infinite and
therefore not shown in the plot. All of them show what seems to be linear convergence, but
at di↵erent rates. Notice that the two with the best convergence correspond to the triangles
4 and 6 where we are using symmetries.

better bound.
Similar to Figure 4 we plot �(⌫) computed using N = 8, see Figure 7. While we can

locate some minimums of � it is less regular than the one in Figure 4. The first eigenvalue
can at least be located and zooming on it we find that the minimum is at ⌫ = 2.047390892
corresponding to the eigenvalue ⌫(⌫+1) = 6.2392004. Here only the first two digits coincide
with the known ones.

In Figure 8 we see an estimate of the convergence for ⌫. It was computed in the same
way as that in Figure 5 with the di↵erence that we used the seven digit eigenvalue from [9]
for the “exact” value.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

nu

si
gm

a(
nu
)

Figure 7: The function �(⌫) for the triangle with angles
⇥
⇡
2 ,

2⇡
3 ,

3⇡
4

⇤
(N = 8). The red box

to the left indicates the area seen to the right. The minimum is located at ⌫ = 2.047390892.

14

Not so nice for 
singular triangles

(π /2,2π /3,3π /4) 
digits
≈ 80

11/15



Step 2. Upper Bounds 

|λ − λ⋆ |
λ

≤
supx∈∂Ω | f ⋆(x) |

∥f⋆∥2
.

1. Find a good approximate pair 

2. Upper bound  in a certified way


3. Lower bound  in a certified way

4. Certify the index

( f ⋆, λ⋆)
sup
x∈∂Ω

| f ⋆ |

∥f ⋆∥2



Basic Tool: Interval Arithmetic

Replace all floating-point operations by set operations
[1.2,1.3] + [2.0,2.1] = [3.2,3.4]
[1.2,1.3] × [2.0,2.1] = [2.40,2.73]

Implementation 
requires care with 
rounding modes

We use

 https://arblib.org/

Weakness: wrapping effect

 


  while  

f := e−t − (1 − t + t2/2! + ⋯ − t9/9!)
f([1.0,1.1]) = [−0.161,0.161] f : [1.0,1.1] ↦ [2.5 10−7,6.5 10−7]

provides certified enclosures

Situation very similar to our 
 on f ⋆ = ∑ cku(k)

λ ∂Ω

12/15
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Upper Bound on the Boundary

Taylor model:

Taylor expansion at the midpoint

Coefficients via linear rec.

interval evaluation

|λ − λ⋆ |
λ

≤
supx∈∂Ω | f ⋆(x) |

∥f ⋆∥2
.

[MakinoBerz03]

max
t∈I

f ⋆(γ(t)) ≤ max
t∈I

Pℓ−1(t) +
( | I | /2)ℓ

ℓ!
max

t∈I

dℓ

dtℓ
f ⋆(γ(t))

11 / 21

Taylor approximation

0 0.2 0.4 0.6 0.8 1
-6e-24

-4e-24

-2e-24

0

2e-24

4e-24

6e-24

t

u

Plot with Taylor expansion with 12 terms

Joel Dahne Enclosing Eigenvalues

order 12

small

Interval-evaluate

at enclosures of roots of the 

derivative

The expensive part of the certification

A lower bound on 
 also followsmin f ⋆

13/15



Results

[BogoselPerrollazRaschelTrotignon20,DahneSalvy20]

Angles BPRT new bound denom
12.400051

13.744355

20.571973

21.309407

24.456913

49.109945

4.261734

5.159145

6.241748

6.777108

(3π/4,π/3,π/2)

(2π/3,π/3,π/2)

(2π/3,π/4,π/2)

(2π/3,π/3,π/3)

(3π/4,π/4,π/3)

(2π/3,π/4,π/4)

(2π/3,3π/4,3π/4)

(2π/3,2π/3,2π/3)

(π/2,2π/3,3π/4)

12.400051652843377905… ± 10−47

13.744355213213231835… ± 10−84

20.571973537984730557… ± 10−30

21.309407630190445260… ± 10−206

24.456913796299111694… ± 10−73

49.109945263284609920… ± 10−153

4.2617347552939870857… ± 10−22

5.1591456424665417112… ± 10−104

6.2417483307263342368… ± 10−20

finite elements & 
convergence acceleration

(π/2,2π/3,2π/3) 6.7771080545983009573… ± 10−35

14/15

more work 
for this one

1023

1040

1014

10103

1037

1076

1010

1051

109

1017



Summary & Conclusion

Thank you.

Numerical computation can yield rigorous results, 
useful in experimental mathematics.
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See the article for more on:

lower bounding the norm;

certifying the index;

singular vs regular triangles.


