Walks in Cones and Tight Enclosures of Laplacian Eigenvalues

Bruno Salvy

AriC, Inria, ENS de Lyon

Joint work with Joel Dahne

0 1 2 3 4 5 6 7 8

SIAM J. Sci. Comp. 2020

doi: 10.1137/20M1326520

arXiv: abs/2003.08095

I. Long Introduction: Walks in Cones

Lattice Walks: a Mine of Linear **Recurrences Waiting for Tools**

Walks from 0 to $P \in \mathbb{Z}^d$ staying in $K \subset \mathbb{R}^d$ using *n* steps in $\mathcal{S} \subset \mathbb{Z}^d$

Ex.:
$$d = 2$$
, $\mathcal{S} = \{\uparrow, \downarrow, \to, \leftarrow, \searrow\}$, $K = \mathbb{N}^2$

$$u_{i,j,n} = u_{i-1,j,n-1} + u_{i,j-1,n-1} + u_{i+1,j,n-1} + u_{i,j+1,n-1} + u_{i+1,j+1,n-1}$$

$$u_{i,j,n} = 0 \quad \text{for} \quad (i,j) \notin K$$

Generating functions:

 $U_K(x,y;z) := \sum u_{i,j,n} x^i y^j z^n, \quad U_K(0,0;z) = \sum e_n z^n, \quad U_K(1,1;z) = \sum u_n z^n.$

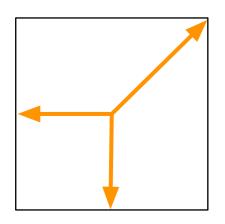
excursions-

Applications: queuing theory, statistical physics, combinatorics,...

Questions: $S, K \rightarrow$ asymptotics? nature of these series?

total number

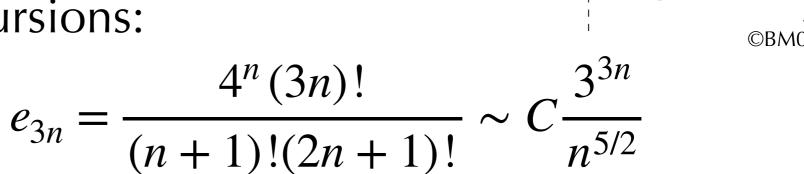
Example: Kreweras Walks



$$\mathcal{S} := \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

$$K = \mathbb{N}^2$$

Excursions:



Total number:
$$u_n \sim C' \frac{3^n}{n^{3/2}}$$

 $U_{\mathbb{N}^2}(x,y;z)$ is algebraic

Main Character: Generating Polynomial

$$\chi_{\mathcal{S}}(x_1, \dots, x_d) := \sum_{s \in \mathcal{S}} x_1^{s_1} \cdots x_d^{s_d}$$

$$\chi_{\mathcal{S}}(x_1,\ldots,x_d):=\sum_{s\in\mathcal{S}}x_1^{s_1}\cdots x_d^{s_d}$$
 Ex. Kreweras:
$$\chi:=\frac{1}{x}+\frac{1}{y}+xy$$
 For $k\in\mathbb{N},\ \chi_{\mathcal{S}}^k=\sum_{m\in\mathbb{Z}^d}c_{k,m}x_1^{m_1}\cdots x_d^{m_d}$ num. walks from 0

Ex. Kreweras:

$$\chi := \frac{1}{x} + \frac{1}{y} + xy$$

num. walks from 0 to m in \mathbb{Z}^d in k steps

Summing over
$$k$$
, $\frac{1}{1-z\chi_{\mathcal{S}}} = \sum_{k,m} c_{k,m} x^m z^k = U_{\mathbb{Z}^d}(x;z)$

For an arbitrary cone K,

 $(1 - z\chi_S)U_K(x; z) = 1 + \text{correcting terms encoding } \partial K$

A Mysterious Secondary Character: Group of the Walk

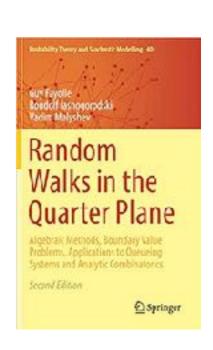
For *small-step* walks $(\max_{i} |s_{i}| = 1, \text{ for all } s \in \mathcal{S})$

For all
$$i \in \{1, ..., d\}$$
, $\chi_{\mathcal{S}} = A_i^- x_i^{-1} + A_i^0 + A_i^+ x_i$,

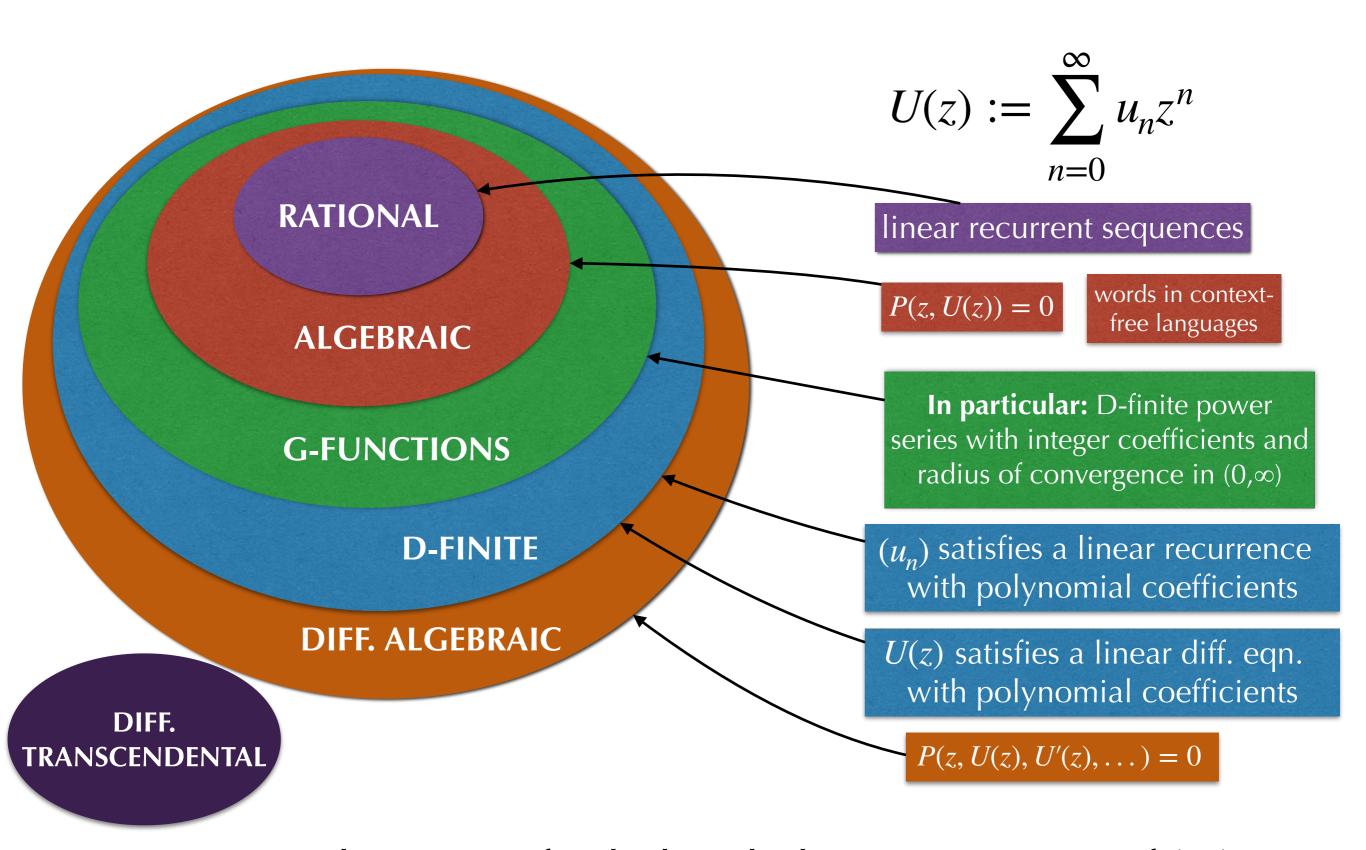
$$A_i^-, A_i^0, A_i^+ \in \mathbb{Z}[x_1^{\pm 1}, ..., x_{i-1}^{\pm 1}, x_{i+1}^{\pm 1}, ..., x_d^{\pm 1}]$$

$$\psi_i: \left(x_j \mapsto x_j \text{ for } j \neq i, x_i \mapsto \frac{A_i^-}{A_i^+} \frac{1}{x_i}\right) \text{ fixes } \chi_{\mathcal{S}}$$

Group: $\mathscr{G}_{\mathcal{S}} := \langle \psi_1, ..., \psi_d \rangle$ generated by the ψ_i .



Classes of Univariate Power Series



Knowing where U(z) fits helps deduce properties of (u_n) . $_{5/32}$

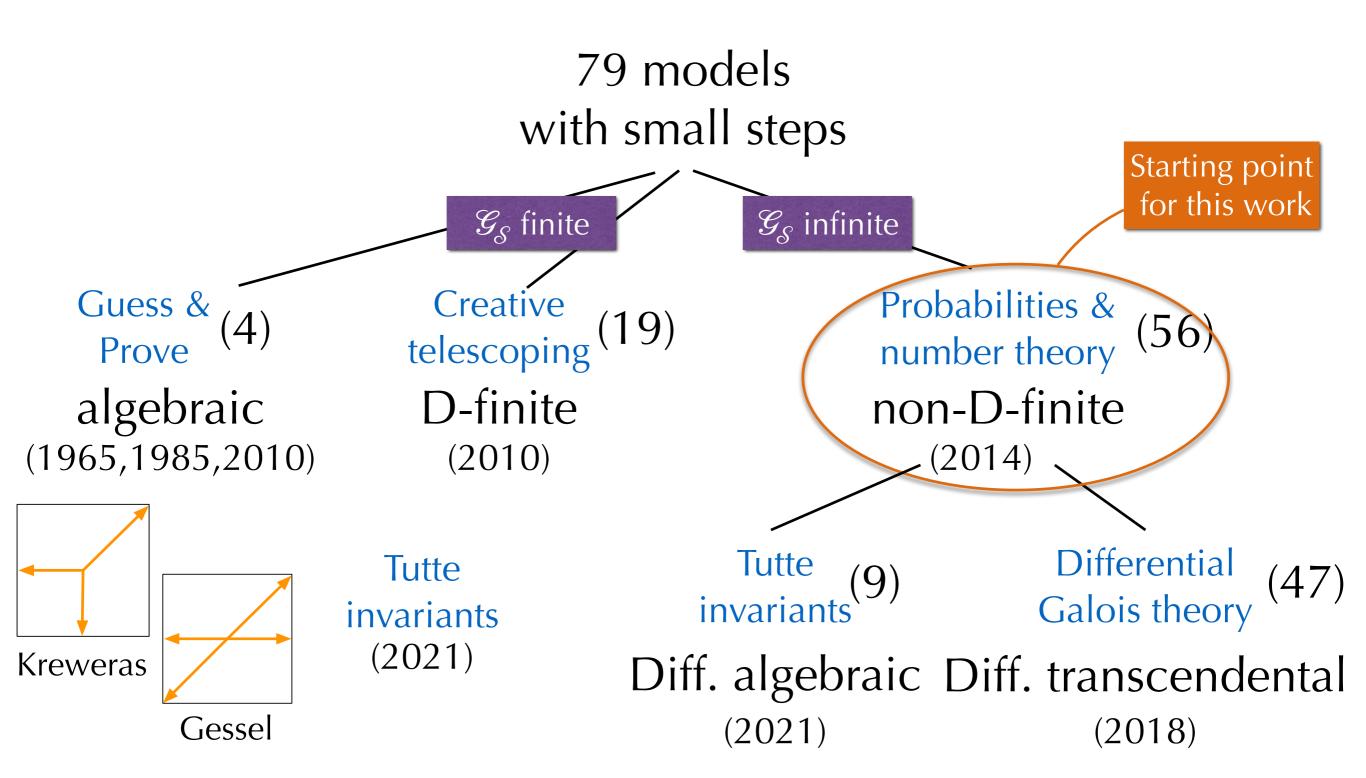
Generating Functions and Asymptotics

For
$$U(z):=\sum_{n=0}^{\infty}u_nz^n\in\mathbb{Q}[[z]]$$
 if $u_n\sim C\rho^nn^{\alpha},\quad n\to\infty$

$$\begin{array}{c} U \text{ rational} & \Longrightarrow & \rho \text{ algebraic, } \alpha \in \mathbb{N}, & \text{Fibonacci} \\ U \text{ algebraic} \\ U \text{ G-function} \end{array} \\ & \Longrightarrow & \rho \text{ algebraic, } \alpha \in \mathbb{Q}, & \text{Catalan} \\ U \text{ D-finite} & \Longrightarrow & \rho \text{ algebraic, } \alpha \in \overline{\mathbb{Q}}. \end{array}$$

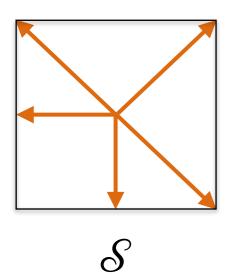
Conversely, asymptotics help classify.

Walks in \mathbb{N}^2 : Recent Progress



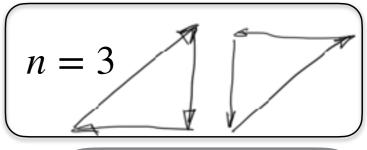
[Bernardi, Bostan, Bousquet-Mélou, Gessel, Gouyou-Beauchamps, Hardouin, Kauers, Kreweras, Melczer, Mishna, Raschel, Rechnitzer, Roques, Salvy, Singer]

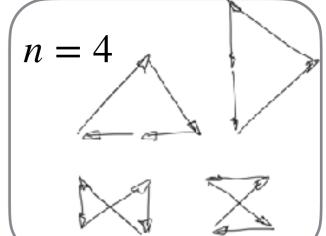
Example in \mathbb{N}^2



Excursions:

$$(e_n) = 1,0,0,2,4,8,28,108,...$$



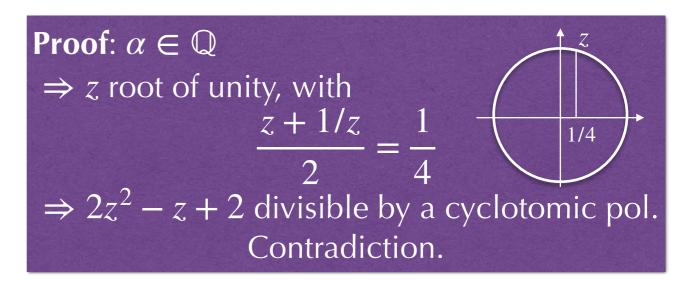


Asymptotics: $e_n \sim C \, 5^n n^{\alpha}$ with $\alpha = -1 - \frac{\pi}{\arccos(1/4)}$

Next 2 slides

$$\alpha \notin \mathbb{Q}$$

 $\Rightarrow U(0,0,z) \text{ not D-finite}$
 $\Rightarrow U(x,y,z) \text{ not D-finite}$



Asymptotics from Probabilities (1/2)

Нур.

$$\mathcal{S} := \{s_1, ..., s_N\} \subset \mathbb{Z}^d$$

K a cone with apex at 0

No drift: $\sum s_i = 0$

Normalized:
$$\left(\sum_{k=1}^{d} s_i^{(k)} s_j^{(k)}\right)_{i,i} = \mathbf{Id}$$

+ non-degeneracy conditions

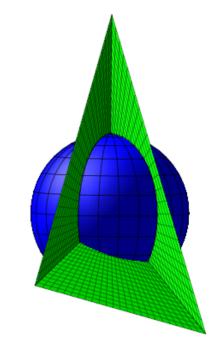
+ regularity conditions on ∂K

Conclusion

#excursions $\sim C |\mathcal{S}|^n n^{-\alpha_{\mathcal{S}}}$,

$$\alpha_{\mathcal{S}} := \sqrt{\lambda_1 + (d/2 - 1)^2} + 1,$$

 λ_1 : fundamental eigenvalue of $\Delta_{\mathbb{S}^{d-1}}$ on $\mathbb{S}^{d-1} \cap K$.

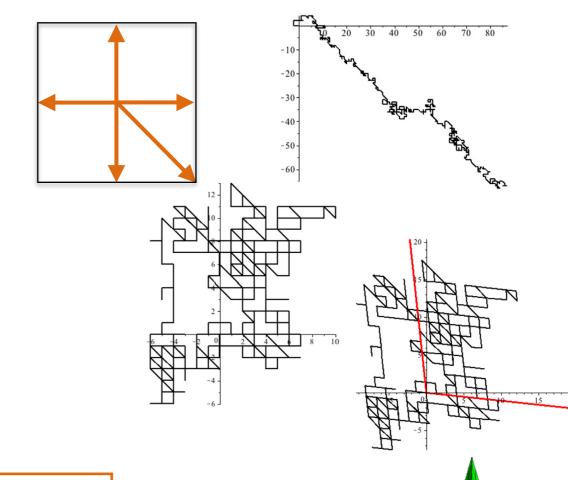


Principle: reduce to Brownian motion in *K*

Asymptotics from Probabilities (2/2)

Reduce cases with drifts and covariance by

- 1. Adding weights $1/w_i$, w_i to the steps in direction i, for i = 1, ..., d
- 2. A linear change *M* of coordinates



Conclusion

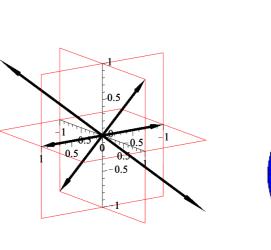
Partial combinatorial explanation for ho

#excursions
$$\sim C \rho^n n^{-\alpha_s}$$
,

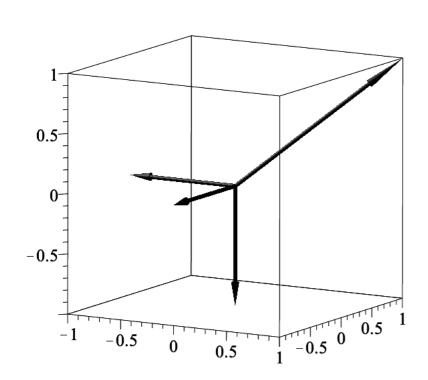
$$\rho := |\mathcal{S}| \min_{(x_1, \dots, x_d) \in \mathbb{R}^d_+} \chi(x_1, \dots, x_d)$$

$$\alpha := \sqrt{\lambda_1 + (d/2 - 1)^2} + 1,$$

 λ_1 : fundamental eigenvalue of $\Delta_{\mathbb{S}^{d-1}}$ on $\mathbb{S}^{d-1} \cap MK$.

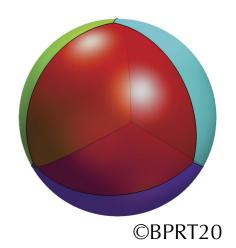


Example: Kreweras 3D



$$\mathcal{S} = \left\{ \begin{pmatrix} -1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

Excursions: $e_n \sim C 4^n n^{-\alpha_{\kappa}}$



Previous estimates lead to:

$$\alpha_{\kappa} \in [3.323, 3.326]$$

$$\alpha_{\kappa} \simeq 3.32572$$
 (Ratzkin, Treibergs, 2009)

$$\alpha_{\kappa} \simeq 3.3261$$
 (Balakrishna, 2013)

$$\alpha_{\kappa} \simeq 3.325757004174456$$
 (Guttmann, 2015)

$$\alpha_{\kappa} \simeq 3.3257569$$
 (Bacher et al., 2016)

$$\alpha_{\kappa} \simeq 3.325757004175$$
 (Bogosel et al., 2020)

Initial goal of this work

New: If $\alpha_{\kappa} = p/q \in \mathbb{Q}$, then $q > 10^{51}$.

D-finiteness more and more doubtful

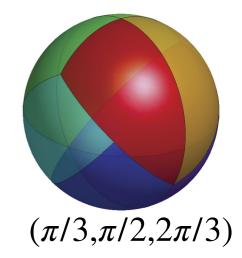
(Costabel, 2008)

Walk-mining in \mathbb{N}^3

(Bogosel, Perrollaz, Raschel, Trotignon 2020)

17 spherical triangles associated to finite groups

+ computation of the corresponding angles (all in $\{\pi/4,\pi/3,\pi/2,2\pi/3,3\pi/4\}$)



+ exact or estimated value of the exponent

They all correspond to tilings of the sphere

Results

Angles	BPRT	new
$(3\pi/4,\pi/3,\pi/2)$	12.400051	$12.400051652843377905 \pm 10^{-47}$
$(2\pi/3,\pi/3,\pi/2)$	13.744355	$13.744355213213231835 \pm 10^{-84}$
$(2\pi/3,\pi/4,\pi/2)$	20.571973	$20.571973537984730557 \pm 10^{-30}$
$(2\pi/3,\pi/3,\pi/3)$	21.309407	$21.309407630190445260 \pm 10^{-206}$
$(3\pi/4,\pi/4,\pi/3)$	24.456913	$24.456913796299111694 \pm 10^{-73}$
$(2\pi/3,\pi/4,\pi/4)$	49.109945	$49.109945263284609920 \pm 10^{-153}$
$(2\pi/3, 3\pi/4, 3\pi/4)$	4.261734	$4.2617347552939870857 \pm 10^{-22}$
$(2\pi/3, 2\pi/3, 2\pi/3)$	5.159145	$5.1591456424665417112 \pm 10^{-104}$
$(\pi/2, 2\pi/3, 3\pi/4)$	6.241748	$6.2417483307263342368 \pm 10^{-20}$
$(\pi/2, 2\pi/3, 2\pi/3)$	6.777108	$6.7771080545983009573 \pm 10^{-35}$

finite elements & convergence acceleration

Next: How do we do it? and why are the precisions so different? 13/32

[BogoselPerrollazRaschelTrotignon20]

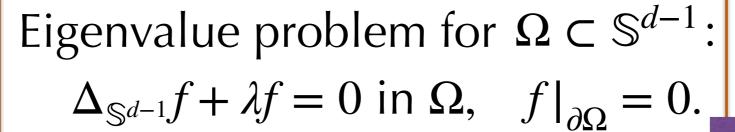
II. Laplacian on Spherical Triangles

Fundamental Eigenvalue of the Laplace-Beltrami Operator on the Unit Sphere

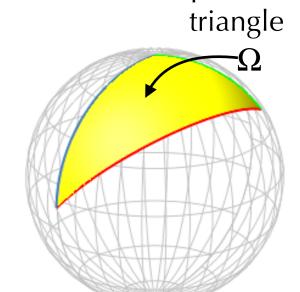
Laplace operator in spherical coordinates in \mathbb{R}^d

$$\Delta f = r^{1-d} \frac{\partial}{\partial r} \left(r^{d-1} \frac{\partial f}{\partial r} \right) + r^{-2} \Delta_{\mathbb{S}^{d-1}} f$$

Laplace-Beltrami on the sphere

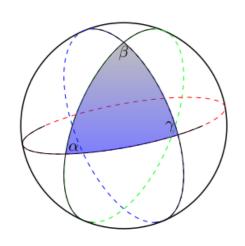


$$\Delta_{\mathbb{S}^{d-1}}f + \lambda f = 0 \text{ in } \Omega, \quad f|_{\partial\Omega} = 0.$$



spherical

Dirichlet condition



Goal: $(\alpha, \beta, \gamma) \mapsto \lambda_1$ with high precision (dimension d=3)

Basic Properties of the Laplacian over a Bounded Domain $\Omega \subset \mathbb{R}^d$

Hold also for $\Delta_{\mathbb{S}^{d-1}}$

$$(u,v) := \frac{1}{\operatorname{Vol}\Omega} \int_{\Omega} uv \, d\sigma$$

- . self-adjoint: $(\Delta u, v) = (u, \Delta v)$ on $\{f \in C^2(\Omega), f|_{\partial\Omega} = 0\}$
- . discrete spectrum with no accumulation point

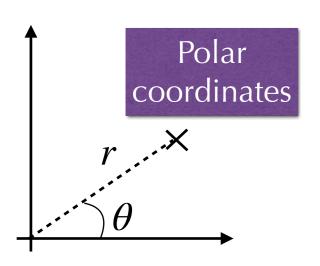
fundamental eigenvalue

$$0 < \lambda_1 < \lambda_2 \le \cdots, \quad \lambda_n \to \infty$$

- . corresponding eigenfunctions (u_n) Hilbert basis of $L_2(\Omega)$
- . maximum principle: $\Delta u \ge 0$ in $\Omega \Rightarrow \sup_{x \in \Omega} u(x) \le \sup_{x \in \partial \Omega} u(x)$
- . monotonicity: $\Omega \subset \Omega' \Rightarrow \lambda_i(\Omega) \geq \lambda_i(\Omega')$, for all i
- . Faber-Krahn inequality: $\lambda_1(\Omega) \geq \lambda_1(\Omega^*)$, $\Omega^* = \begin{cases} \text{ball with the same volume for } \Delta, \\ \text{spherical cap with the same area for } \Delta_{\mathbb{S}^{d-1}}. \end{cases}$

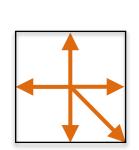
Matlab logo

Planar Case



$$\Delta f(r,\theta) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

Eigenfunctions: $\sin(\sqrt{\lambda}\theta + c)$



Boundary:
$$\begin{cases} \theta = 0 \to c = 0 \\ \theta = \phi \to \lambda = \lambda_k := \left(\frac{k\pi}{\phi}\right)^2, \ k \in \mathbb{N}^*. \end{cases}$$

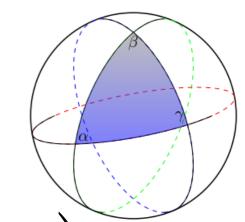
Ex.
$$\mathcal{S} = \{\uparrow, \downarrow, \to, \leftarrow, \searrow\}, \ \phi = \arccos(u), \ \mu_u(u) = 0, \ \mu_u = 8t^3 - 8t^2 + 6t - 1$$

exponent
$$\alpha = 1 + \frac{\pi}{\arccos(u)} \notin \mathbb{Q} \Rightarrow U$$
 not D-finite.

Automatic proof of 51 of the 56 non-Dfinite cases

Proof: $\alpha \in \mathbb{Q}$ \Rightarrow numer $\mu_u \left(\frac{z + 1/z}{2} \right)$ divisible by a cyclotomic polymer Contradiction.

Spherical Triangles



Eigenvalues known when
$$(\alpha, \beta, \gamma) = \left(\frac{\pi}{p}, \frac{\pi}{q}, \frac{\pi}{r}\right)$$

Only possible (p, q, r) that give triangles:

$$(2,3,3) \longrightarrow \lambda = k(k+1), k \in 6 + 3\mathbb{N} + 4\mathbb{N}$$

$$(2,3,4) \longrightarrow \lambda = k(k+1), k \in 9 + 6\mathbb{N}$$

$$(2,3,5) \longrightarrow \lambda = k(k+1), k \in 15 + 6\mathbb{N} + 10\mathbb{N}$$

$$(2,2,r) \longrightarrow \lambda = k(k+1), k \in r+1+2\mathbb{N}+r\mathbb{N}$$

This solves 7 of the 17 triangles with finite groups for 3D walks

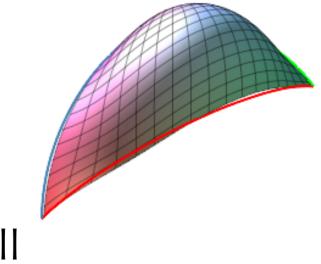
$$\alpha := \sqrt{\lambda_1 + (d/2 - 1)^2} + 1 \in \mathbb{Q}$$

No other value known —> turn to numerical computation

Bounds from an Approximate Eigenvalue

Eigenvalue problem for
$$\Omega$$
:
$$\Delta f + \lambda f = 0 \text{ in } \Omega, \quad f|_{\partial\Omega} = 0.$$

-replace by f small



Thm. If $\Delta f^* + \lambda^* f^* = 0$ in Ω , then there exists λ s.t.

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \leq \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}.$$

Method:

- 1. Find a good approximate pair (f^*, λ^*)
- 2. Compute the bound in a certified way
- 3. Certify the index

Cost of certification: not large

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \le \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}.$$

Proof

Use

 (u_n) orthonormal basis, with $\Delta u_n = \lambda_n u_n$, $u_n|_{\partial_{\Omega}}$

$$w$$
 solution of $\Delta w = 0$, $w|_{\partial\Omega} = f^*|_{\partial\Omega}$

If small,

Coefficients of *w*: $(w, u_n) = (w - f^*, u_n) + (f^*, u_n) = \frac{1}{\lambda}(w - f^*, \Delta u_n) + (f^*, u_n),$

 Δ self-adjoint

$$= \frac{1}{\lambda_n} (\Delta w - \Delta f^*, u_n) + (f^*, u_n) = \left(1 - \frac{\lambda^*}{\lambda_n}\right) (f^*, u_n).$$

Take λ where min is reached

$$|(w, u_n)| \ge \left|1 - \frac{\lambda^*}{\lambda}\right| |(f^*, u_n)|,$$

discrete spectrum with no accumulation point

Square and sum
$$\left(\sup_{x \in \partial \Omega} f^* \right)^2 \ge ||w||^2 \ge \left| 1 - \frac{\lambda^*}{\lambda} \right|^2 ||f^*||^2.$$

Orthonormality and completeness

- 1. Find a good approximate pair (f^*, λ^*)
- 2. Compute the bound in a certified way
- 3. Certify the index

Step 1. Find a good approximate pair (f^*, λ^*)

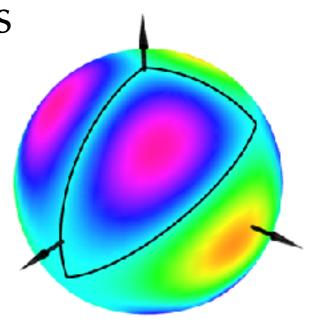
$$\frac{|\lambda - \lambda^*|}{\lambda} \le \frac{\sup_{x \in \partial\Omega} |f^*(x)|}{||f^*||_2}.$$

High precision needed, and no guarantee

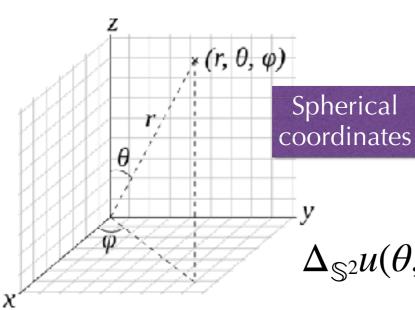
Method of Particular Solutions

Target:
$$\Delta f^* + \lambda^* f^* = 0$$
 in Ω , $\sup_{x \in \partial \Omega} |f^*|$ small.

- 1. Fix λ
- 2. Find a set $(u_{\lambda}^{(k)})_{k=1}^{N}$ of solutions of $\Delta f + \lambda f = 0$ in Ω
- 3. Find a linear combination $\sum_{k=1}^{\infty} c_k u_{\lambda}^{(k)}$ that is
 - . small on $\partial\Omega$
 - . not too small on Ω
- 4. Repeat to minimize $\sup_{x \in \partial \Omega}$ over λ



2. Set of Eigenfunctions



$$\Delta_{\mathbb{S}^2} u(\theta, \phi) = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2}$$

Separation of variables: $u = f(\phi)g(\theta)$ gives

$$\frac{g''(\phi)}{g(\phi)} + \sin^2 \theta \frac{f''(\theta)}{f(\theta)} + \sin \theta \cos \theta \frac{f'(\theta)}{f(\theta)} + \lambda \sin^2 \theta = 0$$

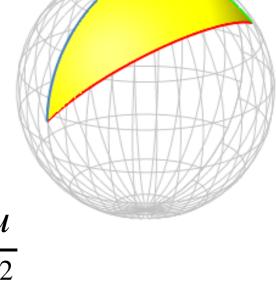
$$g(\phi) = \sin(\mu\phi + c), \quad f(\theta) = \mathsf{P}^{\mu}_{\nu}(\cos\theta) \quad (\mu \le 0)$$

$$(\mu \le 0)$$

with
$$\lambda = \nu(\nu + 1)$$
.

First 2 boundaries:
$$\begin{cases} \phi = 0 & \rightarrow c = 0 \\ \phi = \phi_{\text{max}} & \rightarrow \mu = \mu_k := -\frac{k\pi}{\phi_{\text{max}}}, \ k \in \mathbb{N} \,. \end{cases}$$

$$u_{\lambda}^{(k)}(\theta,\phi) = \sin(\mu_k \phi) P_{\nu}^{\mu_k}(\cos\theta)$$



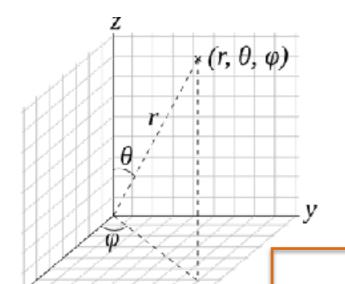
Ferrers function of

the 1st kind (D-finite;

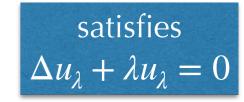
generalize the

Legendre functions)

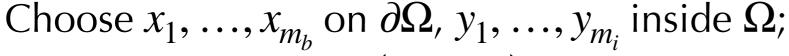
3. Small on $\partial\Omega$, Not too Small on Ω



$$u_{\lambda}(\phi) := \sum_{k=1}^{N} c_k \sin(\mu_k \phi) \mathsf{P}_{\nu}^{\mu_k} (\cos \theta(\phi))$$
 with $\lambda = \nu(\nu + 1)$

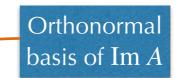


WANTED: c_k s.t. $u_{\lambda}|_{[0,\phi_{\max}]} \approx 0$, $||u_{\lambda}||_{\Omega} \approx 1$.



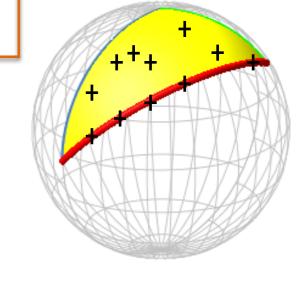
Form a matrix
$$A:=\begin{pmatrix} u_{\lambda}^{(k)}(x_i) \\ u_{\lambda}^{(k)}(y_i) \end{pmatrix}$$
 Orthonormal basis of Im A

Compute its QR factorization $A=\begin{pmatrix} Q_{\partial\Omega} \\ Q_{\Omega} \end{pmatrix} R$



Compute its QR factorization
$$A = \begin{pmatrix} \mathcal{Q}_{\partial\Omega} \\ Q_{\Omega} \end{pmatrix} R$$

$$\sigma := \min_{\|v\|=1} \|Q_{\partial\Omega}v\|$$
 found together with v by SVD (least squares)

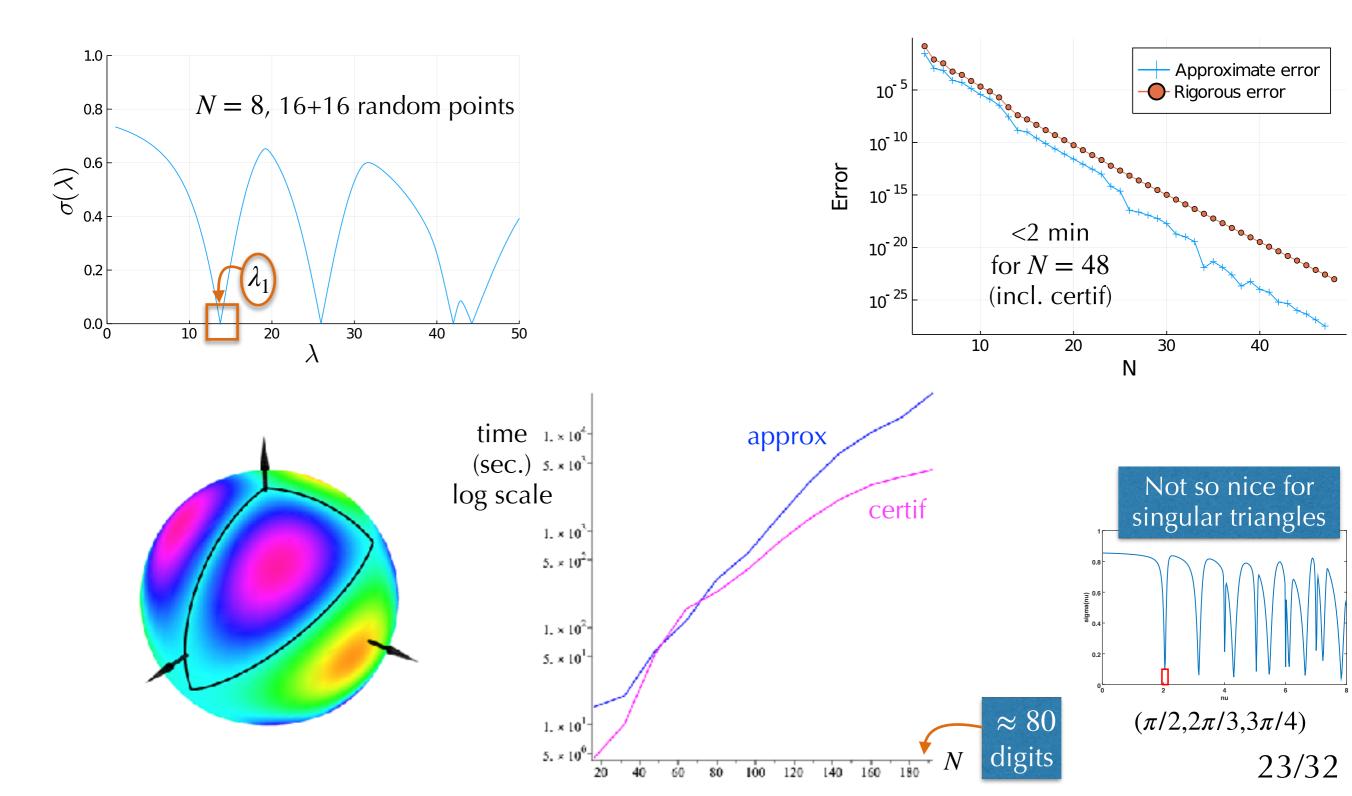


Then $||Q_{\Omega}v||^2 = 1 - \sigma^2$

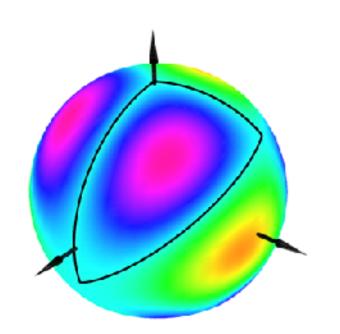
Recover c by solving Rc = v.

4. Optimize over λ

Ex. Regular Triangle: $(2\pi/3,\pi/3,\pi/2)$



Regular vs Singular Triangles



Def. a corner is regular if its angle is π/k , $k \in \mathbb{N}^*$, singular otherwise.

At a regular corner, eigenfunctions can be continued analytically (by reflection).

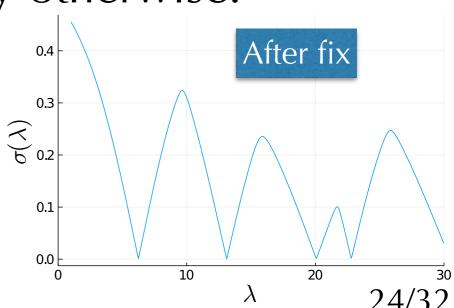
Def. Regular triangle: ≤1 singular corners.

3d-Kreweras is singular

Expansions from a (singular) corner converge well when the other corners are regular, poorly otherwise.

Fix: use a sum of 4 expansions

$$f^*(\theta, \phi) = u_1(\theta_1, \phi_1) + u_2(\theta_2, \phi_2) + u_3(\theta_3, \phi_3) + u_{int}(\theta_{int}, \phi_{int})$$



One from each corner, one from an interior point

- 1. Find a good approximate pair (f^*, λ^*)
- 2. Compute the bound in a certified way
- 3. Certify the index

Step 2. Rigorous Bounds

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \leq \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{||f^{\star}||_2}.$$

Basic Tool: Interval Arithmetic

Replace all floating-point operations by set operations

$$[1.2,1.3] + [2.0,2.1] = [3.2,3.4]$$

$$[1.2,1.3] \times [2.0,2.1] = [2.40,2.73]$$

provides certified enclosures



We use https://arblib.org/

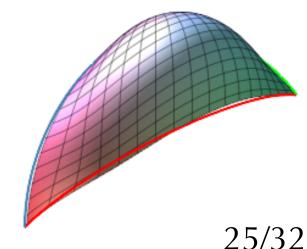
Weakness: wrapping effect

$$f := e^{-t} - (1 - t + t^2/2! + \dots - t^9/9!)$$

$$f([1.0,1.1]) = [-0.161,0.161]$$
 while $f:[1.0,1.1] \mapsto [2.5 \ 10^{-7},6.5 \ 10^{-7}]$

Situation very similar to our

$$f^{\star} = \sum c_k u_{\lambda}^{(k)} \text{ on } \partial \Omega$$



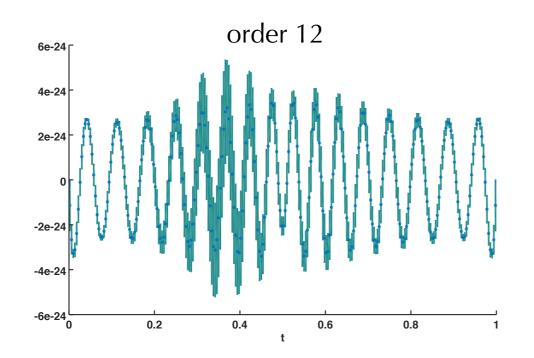
Upper Bound on the Boundary

Taylor model:

$$\max_{t \in I} f^{\star}(\gamma(t)) \le \max_{t \in I} P_{\ell-1}(t) + \underbrace{\frac{(|I|/2)^{\ell}}{\ell!}}_{\text{tot}} \max_{t \in I} \left| \frac{d^{\ell}}{dt^{\ell}} f^{\star}(\gamma(t)) \right|$$

small

Taylor expansion at the midpoint Coefficients via linear rec.



A lower bound on $\min f^*$ also follows

 $\frac{|\lambda - \lambda^{\star}|}{\lambda} \le \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}$

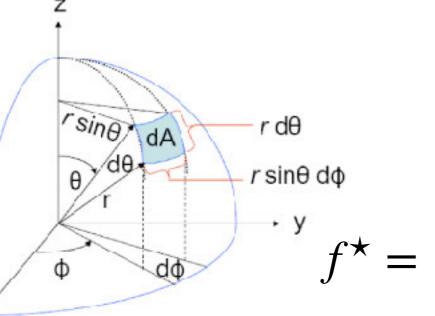
interval evaluation

Interval-evaluate at enclosures of roots of the derivative

The expensive part of the certification

[MakinoBerz03]

Lower Bound on the Norm



Regular Triangles

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \le \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}$$

$$f^{\star} = \sum c_k u_k^{(\lambda)}$$

$$f^{\star} = \sum c_k u_k^{(\lambda)} \qquad u_{\lambda}^{(k)}(\theta, \phi) = \sin(\mu_k \phi) P_{\nu}^{\mu_k}(\cos \theta)$$

$$\int_{0}^{\phi_{\text{max}}} \int_{0}^{\theta(\phi)} f^{\star}(\theta, \phi)^{2} \sin \theta \, d\theta \, d\phi \ge \int_{0}^{\phi_{\text{max}}} \int_{0}^{\theta_{\text{min}}} f^{\star}(\theta, \phi)^{2} \sin \theta \, d\theta \, d\phi$$

Orthogonality of $\sin(\mu_k \phi)$

$$\geq \frac{\phi_{\text{max}}}{2} \sum c_k^2 \int_0^{\theta_{\text{min}}} (\mathsf{P}_{\nu}^{\mu_k}(\cos\theta))^2 \sin\theta \, d\theta$$

Rigorous interval evaluation (Arb)

Lower Bound on the Norm

Singular Triangles

$$\frac{|\lambda - \lambda^{\star}|}{\lambda} \le \frac{\sup_{x \in \partial \Omega} |f^{\star}(x)|}{\|f^{\star}\|_{2}}$$

1. When $f^* \ge 0$ on $\Omega' \subset \Omega$, $\min_{\Omega'} f^* \ge \min_{\partial \Omega'} f^*$

Maximum principle

 $2.f^{\star}|_{\partial\Omega'} > 0$ and Ω' sufficiently small $\Rightarrow f^{\star} > 0$ on Ω'

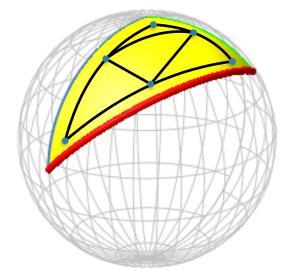
Consequence of Faber-Krahn

$$\Delta f^{\star}|_{\partial\Omega''} = 0 \text{ for } \Omega'' \subset \Omega' \Rightarrow \text{Vol } \Omega'' \geq \text{Vol } \Omega^{\star}$$

can be computed from zeros of Legendre functions

 $\Omega_{\lambda^{\star}}^{\star}$: spherical cap with fundamental eigenvalue λ^{\star}

Conclusion: subdivide and minimize with Taylor models



4 triangles sufficient in our computations

Results

Angles	eigenvalue
$(3\pi/4,\pi/3,\pi/2)$	$12.400051652843377905 \pm 10^{-47}$
$(2\pi/3,\pi/3,\pi/2)$	$13.744355213213231835 \pm 10^{-84}$
$(2\pi/3,\pi/4,\pi/2)$	$20.571973537984730557 \pm 10^{-30}$
$(2\pi/3,\pi/3,\pi/3)$	$21.309407630190445260 \pm 10^{-206}$
$(3\pi/4, \pi/4, \pi/3)$	$24.456913796299111694 \pm 10^{-73}$
$(2\pi/3,\pi/4,\pi/4)$	$49.109945263284609920 \pm 10^{-153}$
$(2\pi/3, 3\pi/4, 3\pi/4)$	$4.2617347552939870857 \pm 10^{-22}$
$(2\pi/3, 2\pi/3, 2\pi/3)$	$5.1591456424665417112 \pm 10^{-104}$
$(\pi/2, 2\pi/3, 3\pi/4)$	$6.2417483307263342368 \pm 10^{-20}$
$(\pi/2, 2\pi/3, 2\pi/3)$	$6.7771080545983009573 \pm 10^{-35}$

regular triangles

more work for this one

singular triangles

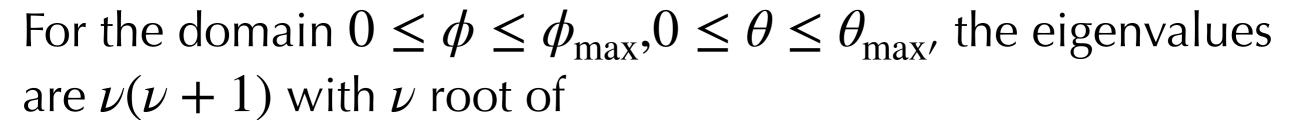
- 1. Find a good approximate pair (f^*, λ^*)
- 2. Compute the bound in a certified way
- 3. Certify the index

Step 3. Certify the index

Certification of the index

monotonicity

$$\lambda < \lambda_2(\Omega') \le \lambda_2(\Omega)$$
 with $\Omega' \supset \Omega \Rightarrow \lambda = \lambda_1(\Omega)$



$$P^{\mu}_{\nu} \text{ satisfies}$$

$$((1 - x^2)w')' + q_{\mu,\nu}(x)w = 0,$$

$$q_{\mu,\nu}(x) = \nu(\nu + 1) - \frac{\mu^2}{1 - x^2}$$

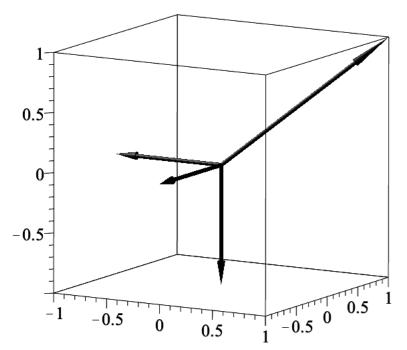
$$\mathsf{P}^{\mu_k}_{\nu}(\cos\theta_{\mathrm{max}})=0$$

For each $k \in \mathbb{N}^*$, an infinity of roots $\nu_{k,j}, j \in \mathbb{N}^*$

It is sufficient to check λ against $u_{1,2}$ and $u_{2,1}$

Proof via Sturm's comparison theorem

Bound on Denominator



#excursions $\sim C 4^n n^{-\alpha_{\kappa}}$

$$\lambda = 5.159145642466541... \pm 10^{-104}$$

certified enclosure

$$\alpha_{\kappa} = 1 + \sqrt{\lambda + 1/4} = 3.32575700417... \pm 10^{-104}$$

Continued fraction: $\alpha_{\kappa} = 3 + \cdots$

Interval arithmetic

Stop when a partial quotient cannot be certified

Last convergent: P/Q with $Q = 95716...26933 > 10^{51}$

If
$$\alpha_{\kappa} = p/q \in \mathbb{Q}$$
, then $q > 10^{51}$.

Summary & Conclusion

Linear recurrences with constant coefficients remain mysterious;

lattice walks provide a simple source of examples; more and more tools are available;

numerical computation can yield rigorous results, useful in experimental mathematics.

Thank you.