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Computer Algebra

Effective mathematics (what can we compute?);

their complexity (how fast?).

Thesis in this talk: linear differential equations are a good data-structure.
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Menu dégustation

Dynamic Dictionary of Mathematical Functions

Fast numerical evaluation

Algebraic series and matters of size

Combinatorial walks

Automatic proofs of identities
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I Dynamic Dictionary of Mathematical

Functions
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Dynamic Dictionary of Mathematical Functions

1 In the beginning, there were handbooks of identities.

Among the most cited documents in the scientific literature.

Thousands of useful mathematical formulas,
computed, compiled and edited by hand.

2 Then, came computer algebra.

3 Last, came the Web.
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Dynamic Dictionary of Mathematical Functions

1 In the beginning, there were handbooks of identities.

2 Then, came computer algebra. Computation with exact
mathematical objects.
Several million users.
30 years of algorithmic progress in effective mathematics.

3 Last, came the Web.
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Dynamic Dictionary of Mathematical Functions

1 In the beginning, there were handbooks of identities.

2 Then, came computer algebra.

3 Last, came the Web. New kinds of interaction with
documents.
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Dynamic Dictionary of Mathematical Functions

1 In the beginning, there were handbooks of identities.
2 Then, came computer algebra.
3 Last, came the Web.

Aim of the project

DDMF = Mathematical Handbooks + Computer Algebra + Web

1 Develop and use computer algebra algorithms
to generate the formulas;

2 Provide web-like interaction with
the document and the computation.

http://ddmf.msr-inria.inria.fr/
Bruno Salvy Computational Variations on Linear Differential Equations
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Dynamic Dictionary of Mathematical Functions

1 In the beginning, there were handbooks of identities.
2 Then, came computer algebra.
3 Last, came the Web.

Aim of the project

DDMF = Mathematical Handbooks + Computer Algebra + Web

1 Develop and use computer algebra algorithms
to generate the formulas;

2 Provide web-like interaction with
the document and the computation.

Heavy work
by F. Chyzak

http://ddmf.msr-inria.inria.fr/
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II Fast Numerical Evaluation
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Fast Arithmetic

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen)

Two integers of n digits can be multiplied with O(n log n log log n)
bit operations.

Applications (in the 70’s & 80’s) (Brent, Schroeppel, Chudnovsky2):

inverses, square-roots,. . . by Newton iteration, same cost;

n!

by divide-and-conquer:

n! = n × · · · × dn/2e︸ ︷︷ ︸
size O(n log n)

×bn/2c × · · · × 1︸ ︷︷ ︸
size O(n log n)

Cost: O(n log3 n log log n)

any linear recurrence of order 1 (coeffs in Q(n)): idem;

arbitrary order: same idea, same cost (matrix factorial).
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Numerical Evaluation of Solutions of LDEs

Principle:

f (x) =
N∑

n=0

anxn

︸ ︷︷ ︸
fast evaluation

+
∞∑

n=N+1

anxn

︸ ︷︷ ︸
good bounds

.

f solution of a LDE with coefficients in Q(x) (our data-structure!)

linear recurrence in N for the first sum (easy);
tight bounds on the tail (technical);
no numerical roundoff errors.

The technique used for recent records of π:

1

π
=

12

C 3/2

∞∑
n=0

(−1)n(6n)!(A + nB)

(3n)!n!3C 3n

with A = 13591409, B = 545140134, C = 640320.

Analytic Continuation: compute f (x), f ′(x), . . . , f (d)(x) as new
initial conditions and handle propagation of errors.

Analytic Continuation inside the disk of convergence: balance
between size of x and number of operations for the sum.

Ad.: Marc Mezzarobba’s package NumGfun; his defense next
Thursday at École polytechnique.
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III Algebraic Series and Matters of Size
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Algebraic Series can be Computed Fast

P(X ,Y ) ∈ Q[X ,Y ] irreducible, deg P = D, S ∈ Q[[X ]],

P(X ,S) = 0.

Wanted: first N coefficients of S , for large N.

Application: combinatorics (context-free languages).

Idea:

S satisfies a LDE of order ≤ D (Abel, Cockle, Harley, Tannery);

translate into a linear recurrence;

unroll the recurrence → O(N) operations.

Question: dependence on D?

Bruno Salvy Computational Variations on Linear Differential Equations
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Algebraic Series can be Computed Fast

P(X ,Y ) ∈ Q[X ,Y ] irreducible, deg P = D, S ∈ Q[[X ]],

P(X ,S) = 0.

Wanted: first N coefficients of S , for large N.

Application: combinatorics (context-free languages).

Idea:
S satisfies a LDE of order ≤ D (Abel, Cockle, Harley, Tannery);
Algorithm:

1 invert PY mod P in Q(X )[Y ];
2 S ′ = P−1

Y (S)PX (S) = Q1(S) with degY Q1 < degY P;
3 obtain S (i) = Qi (S) for i = 2, . . . , d , with degY Qi < degY P;
4 linear algebra to eliminate S2, . . . ,Sd−1.

translate into a linear recurrence;

unroll the recurrence → O(N) operations.

Question: dependence on D?
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Minimality has a cost

order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)O(D^2)

Corresponding recurrences

order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)

O(D^2)

Differential equation corresponding to recurrence of small order

order

degree

O(D)

O(D^3)

Minimal differential equation (Cormier, Singer, Trager, Ulmer + Nahay) 

O(D)

O(D^2)

Nice differential equation (Bostan, Chyzak, Lecerf, S., Schost)

O(D^2)

O(D^2)
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Bounds by Creative Telescoping

S(z) =
1

2πi

∮
yPy (z , y)

P(z , y)︸ ︷︷ ︸
F (z,y)

dy .

O(D)

O(D^2)

O(D^2)

O(D^2) order

degree

O(D)

O(D^2)

O(D^2)

O(D^2)

Creative telescoping: an algorithm for differentiation under
∫

and
integration by parts.

1 Find Λ = A(z , ∂z) + ∂yB(z , ∂z , y , ∂y ) s.t. Λ · F = 0;

2 return A.

Bounds by counting dimensions

z i∂jz∂
k
y · F =

Q

P j+k+1
, deg Q ≤ i + (j + k + 1)D.

Bruno Salvy Computational Variations on Linear Differential Equations
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2 return A.

Bounds by counting dimensions

z i∂jz∂
k
y · F =

Q

P j+k+1
, deg Q ≤ i + (j + k + 1)D.

Taking i ≤ Nz , j + k ≤ N∂ ,

dim(lhs) = (Nz+1)

(
N∂ + 2

2

)
, dim(rhs) =

(
(N∂ + 1)D + Nz + 2

2

)
.
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1 Find Λ = A(z , ∂z) + ∂yB(z , ∂z , y , ∂y ) s.t. Λ · F = 0;
2 return A.

Bounds by counting dimensions

z i∂jz∂
k
y · F =

Q

P j+k+1
, deg Q ≤ i + (j + k + 1)D.

Taking i ≤ Nz , j + k ≤ N∂ , Nz = 4D2, N∂ = 4D,

dim(lhs) = (Nz+1)

(
N∂ + 2

2

)
> dim(rhs) =

(
(N∂ + 1)D + Nz + 2

2

)
.
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IV Combinatorial Walks
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Gessel’s Walks in the 1/4 plane

G (x , y , t) :=
∑
n≥0

∑
i ,j

fi ,j ;nx iy j tn

79 inequivalent step sets;

long history of special cases;

Gessel’s was left;

conjectured not soln of LDE.

Bostan-Kauers 2010

G is algebraic!

Computer-driven discovery and proof

Bruno Salvy Computational Variations on Linear Differential Equations
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Computation

G (x , y , t) :=
∑
n≥0

∑
i ,j

fi ,j ;nx iy j tn

Compute G up to t1000;

conjecture LDE with 1.5 billion coeffs!;

check for sanity (bit size, more coeffs, Fuchsian, p-curvature);

Oho!

conjecture polynomials (deg ≤ (45, 45, 25), 25 digit coeffs);

Proof by (big) resultants.

Minimal polynomial ≈ 30 Gb (but unnecessary).

Bruno Salvy Computational Variations on Linear Differential Equations
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V Automatic Proofs of Identities
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Examples of Identities

n∑
k=0

(
n

k

)2(n + k

k

)2

=
n∑

k=0

(
n

k

)(
n + k

k

) k∑
j=0

(
k

j

)3

[Strehl92]

∫ +∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2
[GlMo94]

1

2πi

∮ (1 + 2xy + 4y 2) exp
(

4x2y2

1+4y2

)
yn+1(1 + 4y 2)

3
2

dy =
Hn(x)

bn/2c!
[Doetsch30]

n∑
k=0

qk2

(q; q)k(q; q)n−k
=

n∑
k=−n

(−1)kq(5k2−k)/2

(q; q)n−k(q; q)n+k
[Andrews74]

n∑
j=0

n−j∑
i=0

q(i+j)2+j2

(q; q)n−i−j(q; q)i (q; q)j
=

n∑
k=−n

(−1)kq7/2k2+1/2k

(q; q)n+k(q; q)n−k
[Paule85].

Bruno Salvy Computational Variations on Linear Differential Equations
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More Identities

n∑
k=0

(
n

k

)
i(k + i)k−1(n − k + j)n−k = (n + i + j)n [Abel1826]

n∑
k=0

(−1)m−kk!

(
n − k

m − k

){
n + 1
k + 1

}
=

〈
n
m

〉
, [Frobenius1910]

m∑
k=0

(
m

k

)
Bn+k = (−1)m+n

n∑
k=0

(
n

k

)
Bm+k , [Gessel03]∫ ∞

0
xk−1ζ(n, α + βx) dx = β−kB(k , n − k)ζ(n − k, α),∫ ∞

0
xα−1 Lin(−xy) dx =

π(−α)ny−α

sin(απ)
,∫ ∞

0
x s−1 exp(xy)Γ(a, xy) dx =

πy−s

sin((a + s)π)

Γ(s)

Γ(1− a)

Bruno Salvy Computational Variations on Linear Differential Equations
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Computer Algebra Algorithms

Aim

Prove these identities automatically (fast?);

Compute the rhs given the lhs;

Explain why these identities exist.

Examples:

1st slide: Zeilberger’s algorithm and variants;

2nd slide (1st 3): Majewicz, Kauers, Chen & Sun;

last 3: recent generalization of previous ones
(with Chyzak & Kauers).

Ideas

Confinement in finite dimension + Creative telescoping.

Bruno Salvy Computational Variations on Linear Differential Equations
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Framework: Ore polynomials

(fg)′ = f ′g + fg ′, ∆n(fngn) = fn+1∆n(gn) + ∆n(fn)gn,

q-analogues of these and many more

are captured by A〈∂〉 (A integral domain) with commutation

∂a = σ(a)∂ + δ(a),

σ ring morphism, δ σ-derivation (δ(ab) = σ(a)δ(b) + δ(a)b).

Main property

P,Q ∈ A〈∂〉, then deg PQ = deg P + deg Q.

Consequences:
1 In one variable:

Euclidean division;
Euclidean algorithm (gcrd, lclm).

2 In several variables (allow for mixed diff-diff):

Gröbner bases.

Gröbner bases as a
data-structure to
encode special
functions

Bruno Salvy Computational Variations on Linear Differential Equations
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Example: Contiguity of Hypergeometric Series

F (a, b; c ; z) =
∞∑
n=0

(a)n(b)n
(c)nn!︸ ︷︷ ︸
ua,n

zn, (x)n := x(x +1) · · · (x +n−1).

ua,n+1

ua,n
=

(a + n)(b + n)

(c + n)(n + 1)
→ z(1− z)F ′′ + (c − (a + b + 1)z)F ′ − abF = 0,

ua+1,n

ua,n
=

n

a
+ 1→ SaF := F (a + 1, b; c ; z) =

z

a
F ′ + F .

Bruno Salvy Computational Variations on Linear Differential Equations
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Example: Contiguity of Hypergeometric Series

F (a, b; c ; z) =
∞∑
n=0

(a)n(b)n
(c)nn!︸ ︷︷ ︸
ua,n

zn, (x)n := x(x +1) · · · (x +n−1).

ua,n+1

ua,n
=

(a + n)(b + n)

(c + n)(n + 1)
→ z(1− z)F ′′ + (c − (a + b + 1)z)F ′ − abF = 0,

ua+1,n

ua,n
=

n

a
+ 1→ SaF := F (a + 1, b; c ; z) =

z

a
F ′ + F .

Sa

ss s

6

-

∂z

s
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(c + n)(n + 1)
→ z(1− z)F ′′ + (c − (a + b + 1)z)F ′ − abF = 0,

ua+1,n

ua,n
=

n

a
+ 1→ SaF := F (a + 1, b; c ; z) =

z

a
F ′ + F .

Gauss 1812: contiguity relation.
dim=2 ⇒ S2

a F ,SaF ,F linearly dependent:
(Coordinates in Q(a, b, c , z).)

Sa

ss s

6

-

∂z

s
(a+1)(z−1)S2

a F +((b−a−1)z +2−c +2a)SaF +(c−a−1)F = 0.

Bruno Salvy Computational Variations on Linear Differential Equations



22 / 31

DDMF Numerics Algebraic Series Combinatorial Walks Proofs of Identities Conclusion

Closure Properties

+

Proposition

dim ann(f + g) ≤ max(dim ann f , dim ann g),

dim ann(fg) ≤ dim ann f + dim ann g ,

dim ann ∂f ≤ dim ann f .

Algorithms by linear algebra
simple definitions → data-structures for more complicated functions
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Example: Mehler’s Identity for Hermite Polynomials

∞∑
n=0

Hn(x)Hn(y)
un

n!
=

exp
(

4u(xy−u(x2+y2))
1−4u2

)
√

1− 4u2

1 Definition of Hermite polynomials (D-finite over Q(x)):
recurrence of order 2;

2 Product by linear algebra: Hn+k(x)Hn+k(y)/(n + k)!, k ∈ N
generated over Q(x , n) by

Hn(x)Hn(y)

n!
,

Hn+1(x)Hn(y)

n!
,

Hn(x)Hn+1(y)

n!
,

Hn+1(x)Hn+1(y)

n!

→ recurrence of order at most 4;

3 Translate into differential equation.
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Creative Telescoping (Zeilberger 90)

Creative telescoping=“differentiation” under integral+“integration” by parts

Ex.:

∫ 1

0

cos zt√
1− t2

dt =
π

2
J0(z), (zJ ′′0 + J ′0 + zJ0︸ ︷︷ ︸

A(z,∂z )·J0

= 0, J0(0) = 1).
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Creative Telescoping (Zeilberger 90)

Creative telescoping=“differentiation” under integral+“integration” by parts

Ex.:

∫ 1

0

cos zt√
1− t2

dt =
π

2
J0(z), (zJ ′′0 + J ′0 + zJ0︸ ︷︷ ︸

A(z,∂z )·J0

= 0, J0(0) = 1).

I (z) =

∫ 1

0

cos zt√
1− t2

dt, I ′(z) =

∫ 1

0
−t

sin zt√
1− t2

dt,

I ′′(z) =

∫ 1

0
−t2 cos zt√

1− t2
dt = −I (z) +

∫ 1

0

√
1− t2 cos zt dt,

I ′′(z) + I (z) =

[√
1− t2

sin zt

z

]1

0︸ ︷︷ ︸
0

+

∫ 1

0

t√
1− t2

sin zt

z
dt = − I ′(z)

z
.
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Creative Telescoping (Zeilberger 90)

Creative telescoping=“differentiation” under integral+“integration” by parts

Ex.:

∫ 1

0

cos zt√
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dt =
π

2
J0(z), (zJ ′′0 + J ′0 + zJ0︸ ︷︷ ︸

A(z,∂z )·J0

= 0, J0(0) = 1).

I (z) =

∫ 1

0

cos zt√
1− t2

dt, I ′(z) =

∫ 1

0
−t

sin zt√
1− t2

dt,

I ′′(z) =

∫ 1

0
−t2 cos zt√

1− t2
dt = −I (z) +

∫ 1

0

√
1− t2 cos zt dt,

I ′′(z) + I (z) =

[√
1− t2

sin zt

z

]1

0︸ ︷︷ ︸
0

+

∫ 1

0

t√
1− t2

sin zt

z
dt = − I ′(z)

z
.

ann
cos zt√
1− t2

3 A(z , ∂z)︸ ︷︷ ︸
no t, ∂t

−∂t
t2 − 1

t
∂z︸ ︷︷ ︸

anything
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0
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dt = −I (z) +

∫ 1
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I ′′(z) + I (z) =
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z

]1
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+

∫ 1

0

t√
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sin zt
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dt = − I ′(z)

z
.

ann
cos zt√
1− t2

3 A(z , ∂z)︸ ︷︷ ︸
no t, ∂t

−∂t
t2 − 1

t
∂z︸ ︷︷ ︸

certificate
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Creative Telescoping (Zeilberger 90)

Creative telescoping=“differentiation” under integral+“integration” by parts

Ex.:

∫ 1

0

cos zt√
1− t2

dt =
π

2
J0(z), (zJ ′′0 + J ′0 + zJ0︸ ︷︷ ︸

A(z,∂z )·J0

= 0, J0(0) = 1).

ann
cos zt√
1− t2

3 A(z , ∂z)︸ ︷︷ ︸
no t, ∂t

−∂t
t2 − 1

t
∂z︸ ︷︷ ︸

certificate

Creative Telescoping

Input: generators of (a subideal of) ann f ;
Output: A,B such that A− ∂tB ∈ ann f , A free of t, ∂t .
Algorithm: sometimes. (Why would they exist?)

Telescoping of I wrt t:

Tt(I) := (I + ∂tQ(z , t)〈∂z , ∂t〉) ∩Q(z)〈∂z〉.
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Creative Telescoping (Zeilberger 90)

Creative telescoping=“differentiation” under integral+“integration” by parts

Ex.:

∫ 1

0

cos zt√
1− t2

dt =
π

2
J0(z), (zJ ′′0 + J ′0 + zJ0︸ ︷︷ ︸

A(z,∂z )·J0

= 0, J0(0) = 1).

Creative Telescoping

Input: generators of (a subideal of) ann f ;
Output: A,B such that A− ∂tB ∈ ann f , A free of t, ∂t .
Algorithm: sometimes. (Why would they exist?)

Telescoping of I wrt t:

Tt(I) := (I + ∂tQ(z , t)〈∂z , ∂t〉) ∩Q(z)〈∂z〉.

Note: holonomy is a sufficient condition for

0 6= (I + ∂tQ(z)〈∂z , ∂t〉) ∩Q(z)〈∂z〉.

Bruno Salvy Computational Variations on Linear Differential Equations



25 / 31

DDMF Numerics Algebraic Series Combinatorial Walks Proofs of Identities Conclusion

Example: Discovering Pascal’s Triangle Automatically

(SnSk − Sk − 1) ·
(n
k

)
= 0 = ( Sn − 2︸ ︷︷ ︸

no k, Sk

+ (Sk − 1) (Sn − 1)︸ ︷︷ ︸
certificate

) ·
(n
k

)
.

Sum over k ⇒ (Sn − 2)
∑

k

(n
k

)
= 0.

Reduce all monomials of degree ≤ s = 2:

1→ 1, Sn →
n + 1

n + 1− k
1, Sk →

n − k

k + 1
1

S2
n →

(n + 2)(n + 1)

(n + 2− k)(n + 1− k)
1, S2

k →
(n − k − 1)(n − k)

(k + 2)(k + 1)
1,

SnSk →
n + 1

k + 1
1.

Common denominator: D2 = (k + 1)(k + 2)(n + 1− k)(n + 2− k).

D2,D2Sn,D2Sk ,D2S2
n ,D2S2

k ,D2SnSk confined in

VectQ(n)(1, k1, k21, k31, k41).
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Example: Discovering Pascal’s Triangle Automatically

(SnSk − Sk − 1) ·
(n
k

)
= 0 = (Sn − 2 + (Sk − 1) (Sn − 1)︸ ︷︷ ︸

certificate

) ·
(n
k

)
.

Reduce all monomials of degree ≤ s = 2:

1→ 1, Sn →
n + 1

n + 1− k
1, Sk →

n − k

k + 1
1

S2
n →

(n + 2)(n + 1)

(n + 2− k)(n + 1− k)
1, S2

k →
(n − k − 1)(n − k)

(k + 2)(k + 1)
1,

SnSk →
n + 1

k + 1
1.

Common denominator: D2 = (k + 1)(k + 2)(n + 1− k)(n + 2− k).

D2,D2Sn,D2Sk ,D2S2
n ,D2S2

k ,D2SnSk confined in

VectQ(n)(1, k1, k21, k31, k41).

This has to happen for some degree: deg Ds = O(s).

Bruno Salvy Computational Variations on Linear Differential Equations



26 / 31

DDMF Numerics Algebraic Series Combinatorial Walks Proofs of Identities Conclusion

Polynomial Growth

Definition (Polynomial Growth p)

There exists a sequence of polynomials Ps , s.t. for all (a1, . . . , ak)
with a1 + · · ·+ ak ≤ s, Ps∂

a1
1 · · · ∂

ak
k reduces to a combination of

elements below the stairs with polynomial coefficients of
degree O(sp).

Theorem (ChyzakKauersSalvy2009)

dim Tt(I) ≤ max(dim I + p − 1, 0).

Proof. Same as above. Set q := dim I + p.

In degree s, dim O(sq) below stairs.

Number of monomials in ∂t , ∂i1 , . . . , ∂iq : O(sq+1);

⇒ any q variables linearly dependent ⇒ dim ≤ q − 1.

This proof gives an algorithm. Also, bounds available.
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Examples (all with p = 1)

Proper hypergeometric [Wilf & Zeilberger 1992]:

Q(n, k)ξk
∏u

i=1 (ain + bik + ci )!∏v
i=1 (uin + vik + wi )!

,

Q polynomial, ξ ∈ C, ai , bi , ui , vi integers.

Differential D-finite (definite integration);

Stirling: ok for n ≥ 3, e.g., Frobenius:

n∑
k=0

(−1)m−kk!

(
n − k

m − k

){
n + 1
k + 1

}
=

〈
n
m

〉
.

Abel type: dim = 2→ ok for n ≥ 4, e.g., Abel:
n∑

k=0

(
n

k

)
i(k + i)k−1(n − k + j)n−k = (n + i + j)n.
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VI Conclusion

Bruno Salvy Computational Variations on Linear Differential Equations



29 / 31

DDMF Numerics Algebraic Series Combinatorial Walks Proofs of Identities Conclusion

Conclusion

Summary:

Linear differential/recurrence equations as a data structure;
Confinement in vector spaces + creative telescoping →
identities.

Also:

q-analogues;
Fast algorithms: Zeilberger 1990
(hypergeom); Chyzak 2000 (D-finite);
Us 2009 (non-D-finite).
Bounds → identities;
Fast algorithms for special classes;
Efficient numerical evaluation.
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Conclusion

Summary:

Linear differential/recurrence equations as a data structure;
Confinement in vector spaces + creative telescoping →
identities.

Also:

q-analogues;
Fast algorithms: Zeilberger 1990
(hypergeom); Chyzak 2000 (D-finite);
Us 2009 (non-D-finite).
Bounds → identities;
Fast algorithms for special classes;
Efficient numerical evaluation. THE END
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