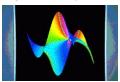
Automatic Proofs of Identities

Bruno Salvy@inria.fr

Algorithms Project, Inria



Séminaire Philippe Flajolet, May 26, 2011

I Introduction

In the beginning, there were handbooks of identities. Among the most cited documents in the scientific literature. Thousands of useful mathematical formulas, computed, compiled and edited by hand.

- In the beginning, there were handbooks of identities.
- Then, came computer algebra. Computation with exact mathematical objects.
 Several million users.
 - 30 years of algorithmic progress in effective mathematics.

- In the beginning, there were handbooks of identities.
- Then, came computer algebra.
- S Last, came the Web. New kinds of interaction with documents.

- 1 In the beginning, there were handbooks of identities.
- 2 Then, came computer algebra.
- Last, came the Web.

Aim of the project

DDMF = Mathematical Handbooks + Computer Algebra + Web

- Develop and use computer algebra algorithms to generate the formulas;
- Provide web-like interaction with the document and the computation.

http://ddmf.msr-inria.inria.fr/

Equations Are a Good Data Structure

- Classical: polynomials represent their roots better than radicals.
 Algorithms: Euclidean division and algorithm, Gröbner bases.
- Recent: same for linear differential or recurrence equations.
 Algorithms: non-commutative analogues.

About 25% of Sloane's encyclopedia, 60% of Abramowitz & Stegun.

egn+ini. cond.=data structure

Examples of Identities

$$\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} \sum_{j=0}^{k} \binom{k}{j}^{3} \quad [Strehl92]$$

$$\int_{0}^{+\infty} x J_{1}(ax) I_{1}(ax) Y_{0}(x) K_{0}(x) dx = -\frac{\ln(1-a^{4})}{2\pi a^{2}} \quad [GIMo94]$$

$$\frac{1}{2\pi i} \oint \frac{(1+2xy+4y^{2}) \exp\left(\frac{4x^{2}y^{2}}{1+4y^{2}}\right)}{y^{n+1}(1+4y^{2})^{\frac{3}{2}}} dy = \frac{H_{n}(x)}{\lfloor n/2 \rfloor!} \quad [Doetsch30]$$

$$\sum_{k=0}^{n} \frac{q^{k^2}}{(q;q)_k (q;q)_{n-k}} = \sum_{k=-n}^{n} \frac{(-1)^k q^{(5k^2-k)/2}}{(q;q)_{n-k} (q;q)_{n+k}}$$

$$\sum_{j=0}^{n} \sum_{i=0}^{n-j} \frac{q^{(i+j)^2+j^2}}{(q;q)_{n-i-j}(q;q)_i(q;q)_j} = \sum_{k=-n}^{n} \frac{(-1)^k q^{7/2k^2+1/2k}}{(q;q)_{n+k}(q;q)_{n-k}}$$

[Andrews74]

[Paule85].

More Identities

$$\sum_{k=0}^{n} \binom{n}{k} i(k+i)^{k-1} (n-k+j)^{n-k} = (n+i+j)^n \quad [Abel1826]$$

$$\sum_{k=0}^{n} (-1)^{m-k} k! \binom{n-k}{m-k} \binom{n+1}{k+1} = \binom{n}{m}, \quad [Frobenius1910]$$

$$\sum_{k=0}^{m} \binom{m}{k} B_{n+k} = (-1)^{m+n} \sum_{k=0}^{n} \binom{n}{k} B_{m+k}, \quad [Gessel03]$$

$$\int_{0}^{\infty} x^{k-1} \zeta(n, \alpha + \beta x) \, dx = \beta^{-k} B(k, n-k) \zeta(n-k, \alpha),$$

$$\int_{0}^{\infty} x^{\alpha-1} \operatorname{Li}_{n}(-xy) \, dx = \frac{\pi (-\alpha)^{n} y^{-\alpha}}{\sin(\alpha \pi)},$$

$$\int_{0}^{\infty} x^{s-1} \exp(xy) \Gamma(a, xy) \, dx = \frac{\pi y^{-s}}{\sin((a+s)\pi)} \frac{\Gamma(s)}{\Gamma(1-a)}$$

Computer Algebra Algorithms

Aim

- Prove these identities automatically (fast?);
- Compute the rhs given the lhs;
- Explain why these identities exist.

Examples:

- 1st slide: Zeilberger's algorithm and variants;
- 2nd slide (1st 3): Majewicz, Kauers, Chen & Sun;
- last 3: recent generalization of previous ones (with Chyzak & Kauers).

Ideas

Confinement in finite dimension + Creative telescoping.

Il Confinement in Finite Dimension

Confinement Provokes Identities

Obvious

k+1 vectors in dimension $k \to an$ identity.

Confinement Provokes Identities

Obvious

k+1 vectors in dimension $k \to an$ identity.

Idea: confine a function and all its derivatives.

> series(
$$\sin(x)^2+\cos(x)^2-1,x,4$$
);
$$O(x^4)$$
 Why is this a proof?

- > $series(sin(x)^2+cos(x)^2-1,x,4);$
 - $O(x^4)$

Why is this a proof?

- sin and cos satisfy a 2nd order LDE: y'' + y = 0;
- their squares (and their sum) satisfy a 3rd order LDE;
- 3 the constant 1 satisfies a 1st order LDE: y' = 0;
- \bullet \rightarrow $\sin^2 + \cos^2 1$ satisfies a LDE of order at most 4;
- Oauchy's theorem concludes.

> series(
$$\sin(x)^2 + \cos(x)^2 - 1, x, 4$$
);
$$O(x^4)$$
Why is this a proof?

- sin and cos satisfy a 2nd order LDE: y'' + y = 0;
- 2 their squares (and their sum) satisfy a 3rd order LDE;
- **3** the constant 1 satisfies a 1st order LDE: y' = 0;
- \bullet \rightarrow $\sin^2 + \cos^2 1$ satisfies a LDE of order at most 4;
- Second the second concludes.

What about sin' = cos?

> $series(sin(x)^2+cos(x)^2-1,x,4);$

$$O(x^4)$$

Why is this a proof?

- sin and cos satisfy a 2nd order LDE: y'' + y = 0;
- their squares (and their sum) satisfy a 3rd order LDE;
- **3** the constant 1 satisfies a 1st order LDE: y' = 0;
- \bullet \rightarrow $\sin^2 + \cos^2 1$ satisfies a LDE of order at most 4;
- Second the contract of the

Second algorithmic proof (same idea): $F_n^2 - F_{n+1}F_{n-1} = (-1)^{n+1}$

> for n to 5 do
 fibonacci(n)^2-fibonacci(n+1)*fibonacci(n-1)+(-1)^n od;

Third Proof: Contiguity of Hypergeometric Series

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \underbrace{\frac{(a)_n(b)_n}{(c)_n n!}}_{u_{a,n}} z^n, \qquad (x)_n := x(x+1)\cdots(x+n-1).$$

$$\frac{u_{a,n+1}}{u_{a,n}} = \frac{(a+n)(b+n)}{(c+n)(n+1)} \to z(1-z)F'' + (c-(a+b+1)z)F' - abF = 0,$$

$$\frac{u_{a+1,n}}{u_{a,n}} = \frac{n}{a} + 1 \to S_aF := F(a+1,b;c;z) = \frac{z}{a}F' + F.$$

Third Proof: Contiguity of Hypergeometric Series

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \underbrace{\frac{(a)_n(b)_n}{(c)_n n!}}_{u_{a,n}} z^n, \qquad (x)_n := x(x+1) \cdots (x+n-1).$$

$$\frac{u_{a,n+1}}{u_{a,n}} = \frac{(a+n)(b+n)}{(c+n)(n+1)} \to z(1-z)F'' + (c-(a+b+1)z)F' - abF = 0,$$

$$\frac{u_{a+1,n}}{u_{a,n}} = \frac{n}{a} + 1 \to S_aF = F(a+1,b;c;z) = \frac{z}{a}F' + F.$$

Third Proof: Contiguity of Hypergeometric Series

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \underbrace{\frac{(a)_n(b)_n}{(c)_n n!}}_{n} z^n, \qquad (x)_n := x(x+1) \cdots (x+n-1).$$

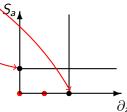
$$\frac{u_{a,n+1}}{u_{a,n}} = \frac{(a+n)(b+n)}{(c+n)(n+1)} \xrightarrow{u_{a,n}} z(1-z)F'' + (c-(a+b+1)z)F' - abF = 0,$$

$$\frac{u_{a+1,n}}{u_{a,n}} = \frac{n}{a} + 1 \xrightarrow{S_aF} F(a+1,b;c;z) = \frac{z}{a}F' + F.$$

Gauss 1812: contiguity relation.

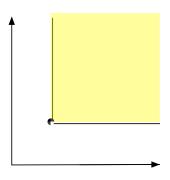
dim=2 $\Rightarrow S_a^2 F, S_a F, F$ linearly dependent:

(Coordinates in $\mathbb{Q}(a, b, c, z)$.)

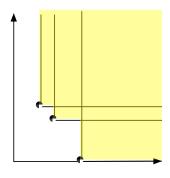


$$(a+1)(z-1)S_a^2F + ((b-a-1)z+2-c+2a)S_aF + (c-a-1)F = 0.$$

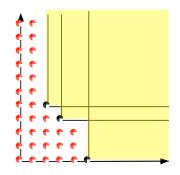
• Monomial ordering: order on \mathbb{N}^k , compatible with +, 0 minimal.



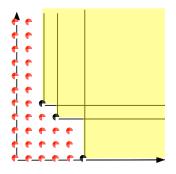
- Monomial ordering: order on \mathbb{N}^k , compatible with +, 0 minimal.
- ② Gröbner basis of a (left) ideal \mathcal{I} : corners of stairs.



- Monomial ordering: order on \mathbb{N}^k , compatible with +, 0 minimal.
- ② Gröbner basis of a (left) ideal \mathcal{I} : corners of stairs.
- **3** Quotient mod \mathcal{I} : basis below the stairs (Vect $\{\partial^{\alpha}f\}$).

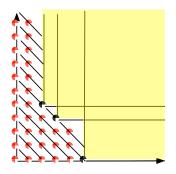


- Monomial ordering: order on \mathbb{N}^k , compatible with +, 0 minimal.
- Gröbner basis of a (left) ideal I: corners of stairs.
- **3** Quotient mod \mathcal{I} : basis below the stairs (Vect $\{\partial^{\alpha} f\}$).
- Reduction of P: Rewrite P mod I on this basis.



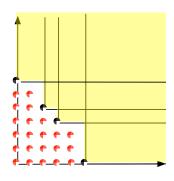
 \rightarrow An access to (finite dimensional) vector spaces

- Monomial ordering: order on \mathbb{N}^k , compatible with +, 0 minimal.
- **②** Gröbner basis of a (left) ideal \mathcal{I} : corners of stairs.
- **Quotient** mod \mathcal{I} : basis below the stairs (Vect $\{\partial^{\alpha} f\}$).
- Reduction of P: Rewrite P mod I on this basis.
- **⑤** Dimension of \mathcal{I} : "size" of the quotient ∞ ly far.



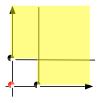
 \rightarrow An access to (finite dimensional) vector spaces

- Monomial ordering: order on \mathbb{N}^k , compatible with +, 0 minimal.
- Gröbner basis of a (left) ideal I: corners of stairs.
- **3** Quotient mod \mathcal{I} : basis below the stairs (Vect $\{\partial^{\alpha}f\}$).
- Reduction of P: Rewrite P mod I on this basis.
- **5** Dimension of \mathcal{I} : "size" of the quotient ∞ ly far.
- **o** D-finiteness: dim = 0.
 - → An access to (finite dimensional) vector spaces

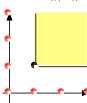


Examples

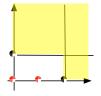
Binomial coeffs $\binom{n}{k}$ wrt S_n , S_k Hypergeometric sequences



Stirling nbs wrt S_n, S_k

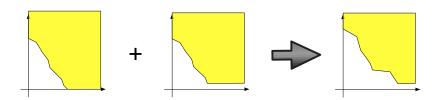


Bessel $J_{\nu}(x)$ wrt S_{ν}, ∂_{x} Orthogonal pols wrt S_{n}, ∂_{x}



Abel type wrt S_m, S_r, S_k, S_s $\operatorname{hgm}(m, k)(k+r)^k(m-k+s)^{m-k}\frac{r}{k+r}$ $\dim = 2$ in space of $\dim 4$.

Closure Properties



Proposition

$$\dim \operatorname{ann}(f+g) \leq \max(\dim \operatorname{ann} f, \dim \operatorname{ann} g),$$

 $\dim \operatorname{ann}(fg) \leq \dim \operatorname{ann} f + \dim \operatorname{ann} g,$
 $\dim \operatorname{ann} \partial f \leq \dim \operatorname{ann} f.$

Algorithms by linear algebra.

Fourth Algorithmic Proof: Mehler's Identity for Hermite Polynomials

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{u^n}{n!} = \frac{\exp\left(\frac{4u(xy - u(x^2 + y^2))}{1 - 4u^2}\right)}{\sqrt{1 - 4u^2}}$$

- **①** Definition of Hermite polynomials (D-finite over $\mathbb{Q}(x)$): recurrence of order 2;
- **②** Product by linear algebra: $H_{n+k}(x)H_{n+k}(y)/(n+k)!, k \in \mathbb{N}$ generated over $\mathbb{Q}(x,n)$ by

$$\frac{H_n(x)H_n(y)}{n!}, \frac{H_{n+1}(x)H_n(y)}{n!}, \frac{H_n(x)H_{n+1}(y)}{n!}, \frac{H_{n+1}(x)H_{n+1}(y)}{n!}$$

- \rightarrow recurrence of order at most 4;
- Translate into differential equation.

III Creative Telescoping

Summation by Creative Telescoping

$$I_n := \sum_{k=0}^n \binom{n}{k} = 2^n.$$

IF one knows Pascal's triangle:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} = 2\binom{n}{k} + \binom{n}{k-1} - \binom{n}{k},$$

then summing over k gives

$$I_{n+1}=2I_n.$$

The initial condition $I_0 = 1$ concludes the proof.

Creative Telescoping (Zeilberger 90)

$$F_n = \sum_k u_{n,k} = ?$$

IF one knows $A(n, S_n)$ and $B(n, k, S_n, S_k)$ such that

$$(A(n,S_n) + \Delta_k B(n,k,S_n,S_k)) \cdot u_{n,k} = 0,$$

then the sum "telescopes", leading to $A(n, S_n) \cdot F_n = 0$.

Creative Telescoping (Zeilberger 90)

$$I(x) = \int_{\Omega} u(x, y) \, dy = ?$$

IF one knows $A(x, \partial_x)$ and $B(x, y, \partial_x, \partial_y)$ such that

$$(A(x, \partial_x) + \partial_y B(x, y, \partial_x, \partial_y)) \cdot u(x, y) = 0,$$

then the integral "telescopes", leading to $A(x, \partial_x) \cdot I(x) = 0$.

Creative Telescoping (Zeilberger 90)

$$I(x) = \int_{\Omega} u(x, y) \, dy = ?$$

IF one knows $A(x, \partial_x)$ and $B(x, y, \partial_x, \partial_y)$ such that

$$(A(x, \partial_x) + \partial_y B(x, y, \partial_x, \partial_y)) \cdot u(x, y) = 0,$$

then the integral "telescopes", leading to $A(x, \partial_x) \cdot I(x) = 0$.

Then I come along and try differentating under the integral sign, and often it worked. So I got a great reputation for doing integrals.

Richard P. Feynman 1985

Creative telescoping="differentiation" under integral+"integration" by parts

Diff. under \int + Integration by Parts \rightarrow Algorithm?

Ex.:
$$\int_0^1 \frac{\cos zt}{\sqrt{1-t^2}} dt = \frac{\pi}{2} J_0(z), \quad (\underbrace{zJ_0'' + J_0' + zJ_0}_{A(z,\partial_z) \cdot J_0} = 0, \ J_0(0) = 1).$$

Diff. under \int + Integration by Parts \rightarrow Algorithm?

Ex.:
$$\int_{0}^{1} \frac{\cos zt}{\sqrt{1-t^{2}}} dt = \frac{\pi}{2} J_{0}(z), \quad (\underline{zJ_{0}'' + J_{0}' + zJ_{0}} = 0, \ J_{0}(0) = 1).$$

$$I(z) = \int_{0}^{1} \frac{\cos zt}{\sqrt{1-t^{2}}} dt, \quad I'(z) = \int_{0}^{1} -t \frac{\sin zt}{\sqrt{1-t^{2}}} dt,$$

$$I''(z) = \int_{0}^{1} -t^{2} \frac{\cos zt}{\sqrt{1-t^{2}}} dt = -I(z) + \int_{0}^{1} \sqrt{1-t^{2}} \cos zt \, dt,$$

$$I'''(z) + I(z) = \left[\sqrt{1-t^{2}} \frac{\sin zt}{z} \right]_{0}^{1} + \int_{0}^{1} \frac{t}{\sqrt{1-t^{2}}} \frac{\sin zt}{z} \, dt = -\frac{I'(z)}{z}.$$

Diff. under \int + Integration by Parts \rightarrow Algorithm?

Ex.:
$$\int_0^1 \frac{\cos zt}{\sqrt{1-t^2}} dt = \frac{\pi}{2} J_0(z), \quad (\underbrace{zJ_0'' + J_0' + zJ_0}_{A(z,\partial_z)\cdot J_0} = 0, \ J_0(0) = 1).$$

$$I(z) = \int_0^1 \frac{\cos zt}{\sqrt{1 - t^2}} dt, \quad I'(z) = \int_0^1 -t \frac{\sin zt}{\sqrt{1 - t^2}} dt,$$

$$I''(z) = \int_0^1 -t^2 \frac{\cos zt}{\sqrt{1 - t^2}} dt = -I(z) + \int_0^1 \sqrt{1 - t^2} \cos zt dt,$$

$$I''(z) + I(z) = \underbrace{\left[\sqrt{1 - t^2} \frac{\sin zt}{z}\right]_0^1}_{0} + \int_0^1 \frac{t}{\sqrt{1 - t^2}} \frac{\sin zt}{z} dt = -\frac{I'(z)}{z}.$$

$$\operatorname{ann} \frac{\cos zt}{\sqrt{1-t^2}} \ni \underbrace{A(z,\partial_z)}_{\operatorname{no} t,\partial_t} - \partial_t \underbrace{\frac{t^2-1}{t}\partial_z}_{\operatorname{anything}}$$

Diff. under \int + Integration by Parts \rightarrow Algorithm?

Ex.:
$$\int_0^1 \frac{\cos zt}{\sqrt{1-t^2}} dt = \frac{\pi}{2} J_0(z), \quad (\underbrace{zJ_0'' + J_0' + zJ_0}_{A(z,\partial_z)\cdot J_0} = 0, \ J_0(0) = 1).$$

$$\operatorname{ann} \frac{\cos zt}{\sqrt{1-t^2}} \ni \underbrace{\frac{A(z,\partial_z)}{\log t,\partial_t} - \partial_t}_{\operatorname{no} t,\partial_t} \underbrace{\frac{t^2 - 1}{t} \partial_z}_{\operatorname{anything}}$$

Creative Telescoping

Input: generators of (a subideal of) ann f;

Output: A, B such that $A - \partial_t B \in \text{ann } f$, A free of t, ∂_t .

Algorithm: sometimes. (Why would they exist?)

Telescoping of \mathcal{I} wrt t:

$$\mathcal{T}_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle.$$

Diff. under \int + Integration by Parts \rightarrow Algorithm?

Ex.:
$$\int_0^1 \frac{\cos zt}{\sqrt{1-t^2}} dt = \frac{\pi}{2} J_0(z), \quad (\underbrace{zJ_0'' + J_0' + zJ_0}_{A(z,\partial_z) \cdot J_0} = 0, \ J_0(0) = 1).$$

$$\operatorname{ann} \frac{\cos zt}{\sqrt{1-t^2}} \ni \underbrace{A(z,\partial_z)}_{\text{no } t,\partial_t} - \partial_t \underbrace{\frac{t^2 - 1}{t}}_{\text{anything}} \partial_z$$

Creative Telescoping

Input: generators of (a subideal of) ann f;

Output: A, B such that $A - \partial_t B \in \text{ann } f$, A free of t, ∂_t .

Algorithm: sometimes. (Why would they exist?)

Telescoping of \mathcal{I} wrt t:

$$T_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle.$$

Note: holonomy is a sufficient condition for

$$0 \neq (\mathcal{I} + \partial_t \mathbb{Q}(z) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle.$$

 $\sigma_z, \sigma_t/) \cap \mathcal{Q}(z) \setminus \sigma_z/$

Example: Pascal's Triangle Again

$$\begin{split} \left(S_n S_k - S_k - 1\right) \cdot \binom{n}{k} &= 0 = \left(\underbrace{S_n - 2}_{\text{no } k, S_k} + \left(S_k - 1\right)\!\left(S_n - 1\right)\right) \cdot \binom{n}{k}. \end{split}$$
 Sum over $k \Rightarrow \left(S_n - 2\right) \sum_k \binom{n}{k} = 0.$

Example: Pascal's Triangle Again

$$(S_nS_k - S_k - 1) \cdot {n \choose k} = 0 = (S_n - 2 + (S_k - 1)(S_n - 1)) \cdot {n \choose k}.$$

Reduce all monomials of degree $\leq s = 2$:

$$1 o 1, \quad S_n o rac{n+1}{n+1-k} 1, \quad S_k o rac{n-k}{k+1} 1 \ S_n^2 o rac{(n+2)(n+1)}{(n+2-k)(n+1-k)} 1, \quad S_k^2 o rac{(n-k-1)(n-k)}{(k+2)(k+1)} 1, \ S_n S_k o rac{n+1}{k+1} 1.$$

Common denominator: $D_2 = (k+1)(k+2)(n+1-k)(n+2-k)$.

$$D_2, D_2S_n, D_2S_k, D_2S_n^2, D_2S_k^2, D_2S_nS_k$$
 confined in $Vect_{\mathbb{Q}(n)}(1, k1, k^21, k^31, k^41).$

Example: Pascal's Triangle Again

$$(S_nS_k-S_k-1)\cdot \binom{n}{k}=0=(S_n-2+(S_k-1)(S_n-1))\cdot \binom{n}{k}.$$

Reduce all monomials of degree $\leq s = 2$:

$$1 o 1, \quad S_n o rac{n+1}{n+1-k} 1, \quad S_k o rac{n-k}{k+1} 1 \ S_n^2 o rac{(n+2)(n+1)}{(n+2-k)(n+1-k)} 1, \quad S_k^2 o rac{(n-k-1)(n-k)}{(k+2)(k+1)} 1, \ S_n S_k o rac{n+1}{k+1} 1.$$

Common denominator: $D_2 = (k+1)(k+2)(n+1-k)(n+2-k)$.

$$D_2, D_2S_n, D_2S_k, D_2S_n^2, D_2S_k^2, D_2S_nS_k$$
 confined in $Vect_{\mathbb{Q}(n)}(1, k1, k^21, k^31, k^41).$

This has to happen for some degree: $\deg D_s = O(s)$.

Polynomial Growth

Definition (Polynomial Growth p)

There exists a sequence of polynomials P_s , s.t. for all (a_1, \ldots, a_k) with $a_1 + \cdots + a_k \leq s$, $P_s \partial_1^{a_1} \cdots \partial_k^{a_k}$ reduces to a combination of elements below the stairs with polynomial coefficients of degree $O(s^p)$.

Theorem (ChyzakKauersSalvy2009)

$$\dim T_t(\mathcal{I}) \leq \max(\dim \mathcal{I} + p - 1, 0).$$

Polynomial Growth

Definition (Polynomial Growth p)

There exists a sequence of polynomials P_s , s.t. for all (a_1, \ldots, a_k) with $a_1 + \cdots + a_k \leq s$, $P_s \partial_1^{a_1} \cdots \partial_k^{a_k}$ reduces to a combination of elements below the stairs with polynomial coefficients of degree $O(s^p)$.

Theorem (ChyzakKauersSalvy2009)

$$\dim T_t(\mathcal{I}) \leq \max(\dim \mathcal{I} + p - 1, 0).$$

Proof. Same as above. Set $q := \dim \mathcal{I} + p$.

- In degree s, dim $O(s^q)$ below stairs.
- Number of monomials in $\partial_t, \partial_{i_1}, \dots, \partial_{i_q}$: $O(s^{q+1})$;
- \Rightarrow any q variables linearly dependent \Rightarrow dim $\leq q-1$.

This proof gives an algorithm. Also, bounds available.

Examples (all with p = 1)

• Proper hypergeometric [Wilf & Zeilberger 1992]:

$$Q(n,k)\xi^{k}\frac{\prod_{i=1}^{u}(a_{i}n+b_{i}k+c_{i})!}{\prod_{i=1}^{v}(u_{i}n+v_{i}k+w_{i})!},$$

Q polynomial, $\xi \in \mathbb{C}$, a_i, b_i, u_i, v_i integers.

- Differential D-finite (definite integration);
- Stirling: ok for $n \ge 3$, e.g., Frobenius:

$$\sum_{k=0}^{n} (-1)^{m-k} k! \binom{n-k}{m-k} \binom{n+1}{k+1} = \binom{n}{m}.$$

• Abel type: dim = 2 \rightarrow ok for $n \ge 4$, e.g., Abel:

$$\sum_{k=0}^{n} \binom{n}{k} i(k+i)^{k-1} (n-k+j)^{n-k} = (n+i+j)^{n}.$$

IV Conclusion

Conclusion

• Summary:

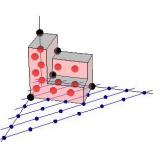
- Linear differential/recurrence equations as a data structure;
- \bullet Confinement in vector spaces + creative telescoping \rightarrow identities.

Also:

- q-analogues;
- Fast algorithms: Zeilberger 1990 (hypergeom); Chyzak 2000 (D-finite) Us 2009 (non-D-finite).
- Bounds → identities:
- Fast algorithms for special classes;
- Efficient numerical evaluation.

Open questions:

- Replace polynomial growth by something intrinsic;
- Exploit symmetries;
- Structured Padé-Hermite approximants;
- Understand non-minimality.



Conclusion

• Summary:

- Linear differential/recurrence equations as a data structure;
- \bullet Confinement in vector spaces + creative telescoping \rightarrow identities.

Also:

- q-analogues;
- Fast algorithms: Zeilberger 1990 (hypergeom); Chyzak 2000 (D-finite) Us 2009 (non-D-finite).
- Bounds → identities;
- Fast algorithms for special classes;
- Efficient numerical evaluation.

THE END

Open questions:

- Replace polynomial growth by something intrinsic;
- Exploit symmetries;
- Structured Padé-Hermite approximants;
- Understand non-minimality.