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Introduction

Dynamic Dictionary of Mathematical Functions

@ In the beginning, there were handbooks of identities.
Among the most cited documents in the scientific literature.

Thousands of useful mathematical formulas,
computed, compiled and edited by hand.
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Introduction

Dynamic Dictionary of Mathematical Functions

© In the beginning, there were handbooks of identities.

@ Then, came computer algebra. Computation with exact
mathematical objects.
Several million users.
30 years of algorithmic progress in effective mathematics.
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Introduction

Dynamic Dictionary of Mathematical Functions

@ In the beginning, there were handbooks of identities.
@ Then, came computer algebra.

@ Last, came the Web. New kinds of interaction with
documents.
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Introduction

Dynamic Dictionary of Mathematical Functions

@ In the beginning, there were handbooks of identities.
© Then, came computer algebra.
© Last, came the Web.

Aim of the project
DDMF = Mathematical Handbooks + Computer Algebra + Web

© Develop and use computer algebra algorithms
to generate the formulas;

@ Provide web-like interaction with
the document and the computation.

http://ddmf.msr-inria.inria.fr/


http://127.0.0.1:8888/ddmf?service=MainIndex&rendering=jsMath

Introduction
Equations Are a Good Data Structure

o Classical:
polynomials represent their roots better than radicals.
Algorithms: Euclidean division and algorithm, Grobner bases.

@ Recent:
same for linear differential or recurrence equations.
Algorithms: non-commutative analogues.

About 25% of Sloane’s encyclopedia, ENCYCT§§I’EDIA
60% of Abramowitz & Stegun. INTEGER

SEQUENCES

HANDBOOK OF
HEMATICAL FUNCTIONS

MATI

egn—+ini. cond.=data structure

N
SIMON PLOUFFE

*
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Examples of ldentities
n 2 2 n k 3
<Z> (n : k) =2 <k> (n ’ k) > ( ) [Strehl92]
k k=0 ‘o

=0
+00 (1 )
xJ1(ax)h(ax) Yo(x)Ko(x) dx = ——~—=—= [GIM094]
0 2ma
2 2
(14 2xy 4+ 4y?) exp ( 15
i. ¥ 4y2> dy = H”(X)I [Doetsch30]
27i yn+1(]_ _|_4y2 > Ln/2J.
n k2 n _ 1Yk 4(5k*>—k)/2
Z il = Z (=1)%q [Andrews74
(@ Dk(a: Dok = (9:9)n—k(: Dk
n qli+)*+72 N (_1\kT/2K241/2k
- (=) [Pauless].
== (@ a)n-i-j(aia)ilaia); ==, (a4 a)n+k(qi @)nk
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Introduction
More ldentities
n
n
¢
k=0

(—1)m—’<kl<” - l;) {Zi} = <:7> [Frobenius191(
m —
k

0
i( ) ik = 1)’”+”Zn:<Z)Bm+k, [Gessel03]

k=0 k=0

/OO XL (n,a + Bx) dx = B7*B(k,n — k)¢(n — k, ),
0

a1y _ =)y
/0 X7 Lip(—xy) dx = sin(ar)

> s—1 X I — Wy_s r(S)
/0 oL@ ) d = G T T - )
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Introduction
Computer Algebra Algorithms

@ Prove these identities automatically (fast?);

@ Compute the rhs given the lhs;

@ Explain why these identities exist.

Examples:
o l1st slide: Zeilberger's algorithm and variants;
@ 2nd slide (1st 3): Majewicz, Kauers, Chen & Sun;

@ last 3: recent generalization of previous ones
(with Chyzak & Kauers).

Confinement in finite dimension + Creative telescoping.
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Confinement

|| Confinement in Finite Dimension
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Confinement
Confinement Provokes Identities

—

k + 1 vectors in dimension k — an identity.
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Confinement
Confinement Provokes Identities

—

k + 1 vectors in dimension k — an identity.

Idea: confine a function and all its derivatives.
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Confinement

First Algorithmic Proof: sin®+ cos? = 1

> series(sin(x) " 2+cos(x)"2-1,x,4);

O(x*)
Why is this a proof?
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Confinement

First Algorithmic Proof: sin®+ cos? = 1

> series(sin(x) " 2+cos(x)"2-1,x,4);

O(x*)
Why is this a proof?

© sin and cos satisfy a 2nd order LDE: y” + y = 0;

@ their squares (and their sum) satisfy a 3rd order LDE;
© the constant 1 satisfies a 1st order LDE: y' = 0;

Q — sin?+ cos? —1 satisfies a LDE of order at most 4;

© Cauchy's theorem concludes.
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Confinement

First Algorithmic Proof: sin®+ cos? = 1

> series(sin(x) "2+cos(x)"2-1,x,4);
O(X4)
Why is this a proof?

sin and cos satisfy a 2nd order LDE: y” + y = 0;
their squares (and their sum) satisfy a 3rd order LDE;
the constant 1 satisfies a 1st order LDE: y’ = 0;

— sin? + cos? —1 satisfies a LDE of order at most 4;
Cauchy’s theorem concludes.

00000

What about sin’ = cos?
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Confinement

First Algorithmic Proof: sin®+ cos? = 1

> series(sin(x) " 2+cos(x)"2-1,x,4);

O(x*)
Why is this a proof?

© sin and cos satisfy a 2nd order LDE: y” + y = 0;

@ their squares (and their sum) satisfy a 3rd order LDE;
© the constant 1 satisfies a 1st order LDE: y' = 0;

Q — sin?+ cos? —1 satisfies a LDE of order at most 4;

© Cauchy's theorem concludes.
Second algorithmic proof (same idea): F2 — F, 1F, 1 = (—1)"1

> for n to 5 do
fibonacci(n) "2-fibonacci(n+1)*fibonacci(n-1)+(-1)"n od;
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Third Proof: Contiguity of Hypergeometric Series

F(a, bic;z) = ;) (?Z;E:)ln z", (X)n :=x(x+1)---(x+n—1).

Ua n+1 (a + n)(b + n) " !
JAR 1-2)F —(a+ b+1)z)F — abF =
Uan (c+n)(n+1) = 2 2)F +(c—(atb+1)7) ? 0,

ﬁﬂﬂ:g+14$F:F@+L&aA:§P+F

Ua.n
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Third Proof: Contiguity of Hypergeometric Series

o0

F(a, b; c; z)

n (X)n = x(x+1)---(x+n—-1).

ua,n

Uany1 _ (a+n)(b+n)
Uan “(c+n)(n+1) — 21—z

Ua+1,n_ﬁ+1 S Fl—
el Nl L JF =
a

Ua.n

(c—(a+b+1)z)F' — abF =0,

Py r >
@ >

0,
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Third Proof: Contiguity of Hypergeometric Series

F(a,b;c;z) = Z (2)n(b)n z"
prd (c)nn!
Uant1 (a4 n)(b+n) jnz(l _,
Uan  (c+n)(n+1)
Uati,n _ n

S 1 ASF)=Fla+ LD

(x)n = x(x+1)---(x+n—1).

(c—(a+b+1)z)F —abF =0,

¢ z)= ZF 4 F.
a

Uz n

Gauss 1812: contiguity relation.
dim=2 = S2F,S,F,F linearly dependent:
(Coordinates in Q(a, b, c, z).)

%),
(a+1)(z—1)S2F+((b—a—1)z+2—c+2a)S,F +(c—a—1)F = 0.



Confinement

Grobner Basis: Euclidean Division in Several Variables

@ Monomial ordering: order on N,
compatible with 4+, 0 minimal.

\
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Confinement

Grobner Basis: Euclidean Division in Several Variables

@ Monomial ordering: order on N,
compatible with 4+, 0 minimal.

@ Grobner basis of a (left) ideal Z:
corners of stairs.
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Confinement

Grobner Basis: Euclidean Division in Several Variables

@ Monomial ordering: order on N,

compatible with 4+, 0 minimal. ‘?‘
@ Grobner basis of a (left) ideal Z: d e
corners of stairs. ‘: e
© Quotient modZ: d e
basis below the stairs (Vect{9“f}). : e
& - r '
‘l - r - r
‘l - r - r
nl_‘_‘_‘_‘_'—>
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Confinement

Grobner Basis: Euclidean Division in Several Variables

@ Monomial ordering: order on Nk,

compatible with +, 0 minimal. ée
@ Grobner basis of a (left) ideal Z: d o
corners of stairs. ‘: ¢
© Quotient modZ: d o
basis below the stairs (Vect{9“f}). ‘: e
@ Reduction of P: d : : : P
Rewrite P mod Z on this basis. : e
‘_‘_‘_‘_‘_'—>

— An access to (finite dimensional) vector spaces
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Confinement

Grobner Basis: Euclidean Division in Several Variables

@ Monomial ordering: order on N,
compatible with 4+, 0 minimal.

@ Grobner basis of a (left) ideal Z:
corners of stairs.

© Quotient modZ:
basis below the stairs (Vect{9“f}).

@ Reduction of P:
Rewrite P mod Z on this basis.

@ Dimension of Z:
“size” of the quotient ooly far.

— An access to (finite dimensional) vector spaces
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Confinement

Grobner Basis: Euclidean Division in Several Variables

@ Monomial ordering: order on N,
compatible with 4+, 0 minimal.

@ Grobner basis of a (left) ideal Z:
corners of stairs.

© Quotient modZ:
basis below the stairs (Vect{9“f}).

d e
ll r
@ Reduction of P: ‘: eee
Rewrite P mod Z on this basis. oo
© Dimension of Z: deeeod ,

“size” of the quotient ooly far.
@ D-finiteness: dim = 0.

— An access to (finite dimensional) vector spaces
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Confinement

Examples

Binomial coeffs (Z) wrt S,, Sk Bessel J,(x) wrt S,, Ox
Hypergeometric sequences Orthogonal pols wrt S, Ox

« -‘l S —>
- —_—
I

Abel type wrt S, Sy, Sk, Ss
hgm(m, k)(k + r)k(m — k 4+ s)™k e
T dim = 2 in space of dim 4.

Stirling nbs wrt S, Sk
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Confinement
Closure Properties

Proposition

dimann(f + g) < max(dimann f,dimann g),
dimann(fg) < dimannf +dimanng,
dimanndf < dimannf.

Algorithms by linear algebra.
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Confinement

Fourth Algorithmic Proof: Mehler's Identity for Hermite

Polynomials

u(xy—u(x3+y?
ZHH(X)Hn(y)F = W
n=0 ’ —au

@ Definition of Hermite polynomials (D-finite over Q(x)):
recurrence of order 2;

@ Product by linear algebra: H, x(x)Hpik(y)/(n+ k)l k € N
generated over Q(x, n) by

Hn(X)Hn()/) Hn+1(X)Hn(Y) Hn(X)HnJrl(}/) Hn+1(X)Hn+1(Y)
n! ’ n! ’ n! ’ n!

— recurrence of order at most 4:
© Translate into differential equation.

DAy
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Creative Telescoping

[l Creative Telescoping
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Creative Telescoping
Summation by Creative Telescoping

Iy = Z (Z) =,

k=0
IF one knows Pascal'’s triangle:

n+1\ (n . n _ 5 n i n n
k) \k k—1) “\k k—1 k)’
then summing over k gives

lﬂ+1 - 2/,7

The initial condition Iy = 1 concludes the proof.
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Creative Telescoping

Creative Telescoping (Zeilberger 90)

IF one knows A(n, S,) and B(n, k,S,, Sx) such that

(A(n, Sn) + AkB(n. k, Sn, Sk)) - unk =0,

then the sum “telescopes”, leading to A(n, S,) - F, = 0.
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Creative Telescoping

Creative Telescoping (Zeilberger 90)

I(x) = / u(x,y)dy =7
Q
IF one knows A(x,0x) and B(x, y, dx,dy) such that

(A(X7 8)() + 8yB(X-/Y7a><aay)) : U(X7Y) =0,

then the integral “telescopes”, leading to A(x,0x) - I(x) = 0.
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Creative Telescoping

Creative Telescoping (Zeilberger 90)

I(x) = /Q u(x,y)dy =?
IF one knows A(x,0x) and B(x, y, 0y, d,) such that
(A(x, ) + 8y B(x.y. 0. 8,)) - u(x,y) =0,
then the integral “telescopes”, leading to A(x, dy) - I(x) = 0.

Then | come along and try differentating under the
integral sign, and often it worked. So | got a great
reputation for doing integrals.

Richard P. Feynman 1985

’Creative telescoping= “differentiation” under integral+ “integration” by parts‘
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Creative Telescoping
Diff. under [ + Integration by Parts — Algorithm?

1
t
Ex.: / BT dt =S Uo(z), (2 + I+ zdo =0, Jp(0) = 1).
0 \_V—J

A(zvaz)'-lo
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Creative Telescoping
Diff. under [ + Integration by Parts — Algorithm?

1
Ex.: / OS2 gp = gJo(z), (2J! + Jb + zJy = 0, Jo(0) = 1).
0 —,_/

V1—t?
A(z,0;7)-Jo
I(z)—/l cos zt dt /'(z)—/l—t sin zt dt
0o Vi—t2 0 Vi—t2
I"(z)—/l—t2 coszt dt“——/(z)%—/1 V1 — t? cos zt dt
0 V1—t2 0 7

: 1 1 : /

t t sinzt I'(z)

I// —I—I :[ 1_t2SInZ] +/ dt — — .
() +1(2) [ == .
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Creative Telescoping
Diff. under [ + Integration by Parts — Algorithm?

1
Ex. / CoZt gy (), (2 + Sy + 2Jo =0, Jo(0) = 1).
0 —,_/

1—¢t2
A(z,0;7)-Jo
I(2) /1 cos zt dt, I'(2) /1 ; sin zt dt
z) = , z) = — ,
0 1—t2 0 V1—1t2
1 1
t
"(z :/ e [ +/ V1 — t2cos zt dt,
©=) e @,
. 1 1 . /
t t sinzt I'(z)
I"(z —|—Iz:[ 1—t2smz]+/ dt = — .
(2)+1(2) R -
0
cos zt t2—1
annmaA(z,ﬁz)—& 0,
no t, 0, .
e anything
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Creative Telescoping
Diff. under [ + Integration by Parts — Algorithm?

1
t
Ex.: / L. gJo(z), (20 + Jy + zJy = 0, Jo(0) = 1).
0 \—/—J

1—1t2
A(z,0;)-Jo
2
cos zt tc—1.
ann > A(z,0;) —0: 0
V1—t2 t
no t, 0 anything

Creative Telescoping

Input: generators of (a subideal of) ann f;
Output: A, B such that A— 0;B € annf, A free of t, ;.
Algorithm: sometimes. (Why would they exist?)

Telescoping of Z wrt t:

TH(Z) = (T + 0:Q(z, 1)(0z, 0:)) N Q(2)(0%).
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Creative Telescoping
Diff. under [ + Integration by Parts — Algorithm?

1
Ex. / Edt =" do(2), (2l + o+ 2dy =0, b(0) = 1)
0 ﬁf_/

V1—t?
A(z,0;7)-Jo
cos zt 2 -1
ann > A(z,0,) —0 0,
Viee =2
no t, 0 anything

Creative Telescoping

Input: generators of (a subideal of) ann f;
Output: A, B such that A— 0B € annf, A free of t, 0.
Algorithm: sometimes. (Why would they exist?)

Telescoping of Z wrt t:
T:+(Z) .= (Z + 0:Q(z, t)(0,0¢)) N Q(2)(0y).
Note: holonomy is a sufficient condition for

0 # (Z +3:0(2) (0, 0)) N Q(2)(3%)-
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Creative Telescoping
Example: Pascal's Triangle Again

(SnSk—Sk—1)- () =0=(Sn—2 + (Sk—1)(Sn— 1)) - (})
no k, Sy
Sum over k = (5, —2) >, (¥) =0.
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Creative Telescoping
Example: Pascal's Triangle Again

(SnSk—Sk—1) - (}) =0=(Sn— 2+ (Sk = 1)(Sa — 1)) - (}).

n+1 n—k
].—)1, Snﬁm]., 5k_>k—|—1

2 (n+2)(n+1) > (n—k—=1)(n—k)
I P ws s gy Sy o s S

n+1
5 Sk—> k—|—11
Dy = (k+1)(k+2)(n+1—k)(n+2— k).

Reduce all monomials of degree < s = 2: J‘
|
[

1

|

Common denominator:

Dz, DQS,,, D25k, D25,2,, Dzsi, D25,,5k confined in
Vectgn (1, k1, K21, k31, k*1).

Bruno Salvy Automatic Proofs of Identities



Creative Telescoping
Example: Pascal's Triangle Again

(SnSk—Sk—1)- (1) =0=(Sa— 2+ (Sk = 1)(Sa — 1)) - (§)-

n+1 1 n—k
n+1—k"’ k+1 —
+2)(n+1) (n—k—=1)(n—k)
S? (n 1, S ,
" (n+2—k)(n+1-k) k (k+2)(k+1)
n+1
S”Sk_>k+1
Common denominator: D, = (k+1)(k+2)(n+1—k)(n+2 — k).

Reduce all monomials of degree < s = 2: J

1—-1, S,—

1.

D>, D5S,, D2Sy, D252, D252, D»S,S) confined in
Vectgn (L, k1, k°1, k31, k*1).

This has to happen for some degree: deg Ds = O(s).



Creative Telescoping
Polynomial Growth

Definition (Polynomial Growth p)

There exists a sequence of polynomials Ps, s.t. for all (a1, ..., ak)
with a1 +-- -+ ax < s, Psﬁfl . 8? reduces to a combination of
elements below the stairs with polynomial coefficients of

degree O(sP).

Theorem (ChyzakKauersSalvy2009)

dim T¢(Z) < max(dimZ + p — 1,0).
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Creative Telescoping
Polynomial Growth

Definition (Polynomial Growth p)

There exists a sequence of polynomials Ps, s.t. for all (a1, ..., ak)
with a1 +-- -+ ax < s, Psﬁfl . 8? reduces to a combination of
elements below the stairs with polynomial coefficients of

degree O(sP).

Theorem (ChyzakKauersSalvy2009)

dim T¢(Z) < max(dimZ + p — 1,0).

Proof. Same as above. Set g :=dimZ + p.
@ In degree s, dim O(s9) below stairs.
o Number of monomials in ¢, 9, ...,8;: O(s7™);

= any q variables linearly dependent = dim < g — 1.

This proof gives an algorithm. Also, bounds available.

Bruno Salvy Automatic Proofs of Identities



Creative Telescoping

Examples (all with p = 1)

e Proper hypergeometric [Wilf & Zeilberger 1992]: J

Q(n k)fk [1i=; (ain + bik + ¢;)! |
7 [T/~ (uin + vik + w;)l’ B

—

Q polynomial, £ € C, a;, b, uj, v; integers.
o Differential D-finite (definite integration);
@ Stirling: ok for n > 3, e.g., Frobenius:

. _ —k\ [n+1 n | J
—nm k(" = ("), g —
2ot G = ()
k=0 4
@ Abel type: dim =2 — ok for n > 4, e.g., Abel:

> <Z> itk+ ) n—k+)" =(n+i+j)"

k=0
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Conclusion

IV Conclusion

Bruno Salvy Automatic Proofs of Identities



Conclusion
Conclusion

@ Summary:
o Linear differential /recurrence equations as a data structure;
e Confinement in vector spaces + creative telescoping —
identities.

@ Also:

e g-analogues;

e Fast algorithms: Zeilberger 1990
(hypergeom); Chyzak 2000 (D-finite)
Us 2009 (non-D-finite).

e Bounds — identities;

e Fast algorithms for special classes;

o Efficient numerical evaluation.

@ Open questions:
o Replace polynomial growth by something intrinsic;
o Exploit symmetries;
e Structured Padé-Hermite approximants;
e Understand non-minimality.
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Conclusion
Conclusion

@ Summary:
o Linear differential /recurrence equations as a data structure;
e Confinement in vector spaces + creative telescoping —
identities.

@ Also:

e g-analogues;

e Fast algorithms: Zeilberger 1990
(hypergeom); Chyzak 2000 (D-finite)
Us 2009 (non-D-finite).

e Bounds — identities;

e Fast algorithms for special classes;

o Efficient numerical evaluation. THE END

@ Open questions:
o Replace polynomial growth by something intrinsic;
o Exploit symmetries;
e Structured Padé-Hermite approximants;
e Understand non-minimality.
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