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Don’t Expect the Worst

Complexity for m equations, degree d , n variables:

worst case: 22O(n)
[Mayr-Meyer82, Möller-Mora84]

generically: mO(1)dO(n) [Lazard83, Giusti84]

Questions:

1 how small can be the exponent in dO(n)?

2 what about overdetermined systems? does the extra
information help?
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Motivation from Cryptography

Wanted: Solutions in F2 of a system in F2[x1, . . . , xn].
Possible approach: add the equations x2

i − xi = 0 →
overdetermined system.
Faugère-Joux 2003: break the HFE challenge thanks to a small
regularity:

→ How do these stairs grow?
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Setting for the Talk

homogeneous system f1 = · · · = fm = 0

in k[x1, . . . , xn], with char k = 0;

deg f1 = · · · = deg fm = d ;

system regular if m ≤ n; semi-regular if n ≤ m;

coordinates in simultaneous Noether position wrt the system;

all bases are computed for the degree reverse lexicographical
order (grevlex).

See the forthcoming article for extensions to

1 formulæ with di = deg fi and d1 ≤ · · · ≤ dm;

2 non-homogeneous systems;

3 k = F2.
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Starting Point: the Macaulay Matrix MD

all multiples of the
fi of degree D

m1f1
...

mk f1
m2f2
...

mk fm




Columns indexed by
monomials of degree D
(sorted by ≺)

For D large enough
Buchberger’s algorithm ↔ (Structured) Gaussian elimination

Reductions to 0 ↔ “Useless” lines
Algorithm F5 ↔ Construct matrices by increasing degrees
[Faugère 02] avoiding useless lines coming from

fi fj = fj fi .
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Linear Algebra and its Complexity

Proposition (General Upper Bound)

The number of operations in k required to compute the GB up to
degree D is bounded by

O

(
mD

(
n + D − 1

D

)ω)
,

2 ≤ ω ≤ 3 is the complexity of matrix product.

Strassen: ω < 2.81; Coppersmith-Winograd: ω < 2.376.

Needed: bounds on D.

Regular system: D ≤ n(d − 1) + 1 [Macaulay]

⇒ bound ≈
(

dd

(d − 1)d−1

)ωn
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F5 for Regular Systems in Simultaneous Noether Position

Theorem (BaFaSa06, m = n)

F5 computes the GB in at most

A(d)nn (C + O(1/n)) operations in k , n →∞,

with A(d) root of a simple polynomial of degree 2d − 1.

Quantifies how F5 exploits the structure of the Macaulay matrix.
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Semi-Regular Systems in Simultaneous Noether Position I.

Theorem (BaFaSa06, m = n + k (k ≥ 1))

D ≤ ireg =
d − 1

2
m − αk

√
d2 − 1

6

√
m + · · · , n →∞,

αk largest root of kth Hermite polynomial.

Quantifies the gain brought by the
extra equations.
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Semi-Regular Systems in Simultaneous Noether Position II.

Theorem (BaFaSa06, m = [αn] (α > 1))

D ≤ ireg = φd(α)m + a1ψd(α)m1/3 + · · · , n →∞

a1 largest root of the Airy function, φd & ψd algebraic,

φd(α) =
d − 1

2
−

√
d2 − 1

3
(α− 1)1/2 + · · · , α→ 1.
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Introduction Regular Systems Semi-Regular Systems

II Regular Systems
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Hilbert: Function, Polynomial, Series

I(m) := 〈f1, . . . , fm〉
Hilbert Function:

HFI(m)(d) := (dim k[x1, . . . , xn]/I(m))d .

Using the Macaulay matrix Md :

HFI(m)(d) = #cols(Md)− rank(Md).

For d large enough, this is a polynomial.

The first such d is called the index of regularity
(ireg(I(m))).

Hilbert series:

HI(m)(z) :=
∑
d≥0

HFI(m)(d)zd =
P(z)

(1− z)δ
.
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Regular Systems

Definition ((f1, . . . , fm) regular)

For all i = 1, . . . ,m, fi is not a zero-divisor in k[x1, . . . , xn]/I(i−1).

⇔ (k[x1, . . . , xn]/I(i−1))d
fi ·−→ (k[x1, . . . , xn]/I(i−1))d+di

injective ∀d ≥ 0

⇔ HFI(i)(d + di ) = HFI(i−1)(d + di )− HFI(i−1)(d) for all d

⇔ HI(m)(z) =

∏m
j=1(1− zdj )

(1− z)n
.

Index of regularity:
m∑

i=1

(di − 1) + 1.

Bruno Salvy Complexity of Gröbner Bases
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F5 for Regular Systems

Proposition (Faugère02)

For regular systems, F5 constructs matrices M̃(i)
d such that

#cols(M̃(i)
d )−#rows(M̃(i)

d ) = HFI(i)(d).

No reduction to 0 at all!

Example: n = m = 4, d = 3
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Noether Position

Definition ((x1, . . . , xm) in Noether position wrt (f1, . . . , fm))

1 Their canonical images in k[x1, . . . , xn]/〈f1, . . . , fm〉 are
algebraic integers over k[xm+1, . . . , xn];

2 k[xm+1, . . . , xn] ∩ 〈f1, . . . , fm〉 = 〈0〉.

Definition (Simultaneous Noether position)

For i = 1, . . . ,m, (x1, . . . , xi ) in Noether position wrt (f1, . . . , fi ).

⇒ the leading terms of the elements of the grevlex GB do not
depend on xm+1, . . . , xn.
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Shape of a Gröbner Basis I

Theorem (new?)

(x1, . . . , xn) in simultaneous Noether position. Gi reduced Gröbner
basis of (f1, . . . , fi ), 1 ≤ i ≤ m. The number of polynomials of

degree d in Gi \ Gi−1 is bounded by b
(i)
d , where

Bi (z) =
∞∑

d=0

b
(i)
d zd = zdi

i−1∏
k=1

1− zdk

1− z
.
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Shape of a Gröbner Basis II

Number of operations for F5

bounded by

m∑
i=1

ireg∑
d=di

b
(i)
d

(
n + d − 1

d

)(
i + d − 1

d

)
.
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III Semi-Regular Systems
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Introduction Regular Systems Semi-Regular Systems

Definition

Regular systems cannot be overdetermined.

Definition ((f1, . . . , fm) semi-regular (m ≥ n))

HFI(i)(d) = HFI(i−1)(d)− HFI(i−1)(d − di ), di ≤ d < ireg(I(m))

Proposition (Hilbert Series)

HI(m)(z) =

[∏m
j=1(1− zdj )

(1− z)n

]
.

Notation:[∑
i≥0

aiz
i
]

=
∑
i≥0

biz
i , with bi =

{
ai if aj > 0 for 0 ≤ j ≤ i

0 otherwise.

Bruno Salvy Complexity of Gröbner Bases
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Asymptotics of the Index of Regularity

Approach:

1 Compute an asymptotic approximation of the coefficient
sequence in the neighborhood of the 0;

2 find its smallest zero.
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Introduction Regular Systems Semi-Regular Systems

Few More Equations than Unknowns

∏m
j=1(1− zdj )

(1− z)n
= (1− z)m−n

m∏
j=1

1− zdj

1− z︸ ︷︷ ︸
F (z)

.

Coefficients of F (z) approximated well by the saddle-point method.

Cauchy: [zk ]F (z) =
1

2iπ

∮
F (z)

dz

zk+1

(1− z)m−n

zk+1
dz

1 Saddle-point: F ′(ρ) = 0;

2 Locally:
F (z) ≈ F (ρ)e−λu2

(1− ρ− iu)m−n;

3 coeff ≈ F (ρ)

2π

∫ ∞

−∞
e−λu2

(1− ρ− iu)m−n du︸ ︷︷ ︸
√

π

2k
√

λk+1 Hm−n((1−ρ)
√

λ)

.
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Even More Equations

1

2iπ

∮
(1− zd)αn

(1− z)nzk+1
dz

Small k Transition Larger k

The coalescence of saddle-points is captured by the Airy function.
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Coalescent Saddle-Points [Chester-Friedman-Ursell 57]

Capture both saddle-points by a cubic change of variables.
Leads to uniform asymptotic expansions involving

Ai(z) =
1

2iπ

∫ ∞e iπ/3

∞e−iπ/3
et3/3−ztdt.

Airy z 6= 0,
two neighboring saddle-points

Airy z = 0
A double saddle-point

Bruno Salvy Complexity of Gröbner Bases
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