Fast Computation of Power Series Solutions of Systems of Differential Equations

Bruno Salvy
Bruno.Salvy@inria.fr

Algorithms Project, Inria

Joint work with
A. Bostan, F. Chyzak, F. Ollivier, É. Schost, A. Sedoglavic
Motivations:
- combinatorics (generating functions of ordered structures);
- numerical analysis (e.g., Padé approximants);
- cryptography (e.g., morphisms between curves).

Non-linear differential systems can be reduced to linear ones.

Problem

Input: linear differential equation/system of order \(r \) with power series coefficients, positive integer \(N \gg r \).

Output: \(N \) first terms of one solution or of a basis of solutions.

Complexity measure: number of arithmetic operations.

Aim: quasi-linear wrt \(N \), good wrt \(r \).

\[
M(N) = \mathcal{O}(N \log N) \quad \text{polynomial multiplication [Schönhage-Strassen71]}
\]

\[
MM(r, N) = \mathcal{O}(r^2 M(N) + r^\omega N) \quad \text{polynomial matrix product [Bostan-Schost05].}
\]
Results

<table>
<thead>
<tr>
<th>input /output</th>
<th>power series coefficients</th>
<th>polynomial coefficients</th>
<th>constant coefficients</th>
<th>output size</th>
</tr>
</thead>
<tbody>
<tr>
<td>equation/basis</td>
<td>$O(r^2 N \log N)$ *</td>
<td>$O(dr^2 N)$</td>
<td>$O(rN)$ *</td>
<td>rN</td>
</tr>
<tr>
<td>equation/1 soln</td>
<td>$O(rN \log^2 N)$ *</td>
<td>$O(drN)$</td>
<td>$O(\log rN)$ *</td>
<td>N</td>
</tr>
<tr>
<td>system/basis</td>
<td>$O(r^2 N \log N)$ *</td>
<td>$O(dr^\omega N)$</td>
<td>$O(r^2 \log rN)$ *</td>
<td>$r^2 N$</td>
</tr>
<tr>
<td>system/1 soln</td>
<td>$O(r^2 N \log^2 N)$ *</td>
<td>$O(dr^2 N)$</td>
<td>$O(r \log rN)$ *</td>
<td>rN</td>
</tr>
</tbody>
</table>

Previous results:
- $O(r^2 N^2)$ undetermined coefficients;
- $O(r^r N \log N)$ [Brent-Kung78];
- $O(r^2 N \log^2 N)$ [van der Hoeven02].
Results

<table>
<thead>
<tr>
<th>Input/output</th>
<th>Power series coefficients</th>
<th>Polynomial coefficients</th>
<th>Constant coefficients</th>
<th>Output size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>$O(r^2N)$ *</td>
<td>$O(dr^2N)$</td>
<td>$O(rN)$ *</td>
<td>rN</td>
</tr>
<tr>
<td>Basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation</td>
<td>$O(rN)$ *</td>
<td>$O(drN)$</td>
<td>$O(N)$ *</td>
<td>N</td>
</tr>
<tr>
<td>1 soln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>$O(r^2N)$ *</td>
<td>$O(dr^\omega N)$</td>
<td>$O(r^2N)$ *</td>
<td>r^2N</td>
</tr>
<tr>
<td>Basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>$O(r^2N)$ *</td>
<td>$O(dr^2N)$</td>
<td>$O(rN)$ *</td>
<td>rN</td>
</tr>
<tr>
<td>1 soln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous results:
- $O(r^2N^2)$ undetermined coefficients;
- $O(r^rN)$ [Brent-Kung78];
- $O(r^2N)$ [van der Hoeven02].
Results

<table>
<thead>
<tr>
<th>input/output</th>
<th>power series coefficients</th>
<th>polynomial coefficients</th>
<th>constant coefficients</th>
<th>output size</th>
</tr>
</thead>
<tbody>
<tr>
<td>equation/basis</td>
<td>$O(r^2N)$ *</td>
<td>$O(dr^2N)$</td>
<td>$O(rN)$ *</td>
<td>rN</td>
</tr>
<tr>
<td>equation/1 soln</td>
<td>$O(rN)$ *</td>
<td>$O(drN)$</td>
<td>$O(N)$ *</td>
<td>N</td>
</tr>
<tr>
<td>system/basis</td>
<td>$O(r^2N\log N)$ *</td>
<td>$O(dr^\omega N)$</td>
<td>$O(r^2N)$ *</td>
<td>r^2N</td>
</tr>
<tr>
<td>system/1 soln</td>
<td>$O(r^2N)$ *</td>
<td>$O(dr^2N)$</td>
<td>$O(rN)$ *</td>
<td>rN</td>
</tr>
</tbody>
</table>

Previous results:
- $O(r^2N^2)$ undetermined coefficients;
- $O(r^rN)$ [Brent-Kung78];
- $O(r^2N)$ [van der Hoeven02].
Basic Idea: Newton Iteration has Good Complexity

To solve \(\phi(y) = 0 \), iterate

\[
y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n)u_{n+1} = \phi(y_n).
\]

Example 1: \(\phi(y) = 3y^2 + y - 1 \)

\[
\begin{align*}
y_0 &= 0.5 \\
y_1 &= 0.43750000000000000000000000000000 \\
y_2 &= 0.43426724137931034482758620 \\
y_3 &= 0.43425854597357627223447451 \\
y_4 &= 0.43425854591066488218983000
\end{align*}
\]

The cost is dominated by the last iteration.
To solve $\phi(y) = 0$, iterate

$$y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n) u_{n+1} = \phi(y_n).$$

Example 2: $\phi(y) = ty^2 + y - 1$

$y_0 = 0$

$y_1 = 1$

$y_2 = 1 - t + 2t^2 - 4t^3 + 8t^4 - 16t^5 + 32t^6 - 64t^7 + \ldots$

$y_3 = 1 - t + 2t^2 - 5t^3 + 14t^4 - 42t^5 + 132t^6 - 428t^7 + \ldots$

The cost is dominated by the last iteration.
Newton for Power Series

\[y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n)u_{n+1} = \phi(y_n). \]

- Reciprocal [Sieveking72, Kung74]: \(\phi(y) = a(t) - 1/y; \)

\[y_{n+1} = y_n - u_{n+1}, \quad u_{n+1} = y_n \times (y_n \times a(t) - 1). \]

→ Same complexity \(\mathcal{O}(M(N)) \) as polynomial multiplication.
Newton for Power Series

\[y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n)u_{n+1} = \phi(y_n). \]

- Reciprocal [Sieveking72, Kung74]: \(\phi(y) = a(t) - 1/y; \)
- Logarithm [Brent75]: \(\log a(t) = \int a'(t)/a(t); \)

→ Same complexity \(\mathcal{O}(M(N)) \) as polynomial multiplication.
Newton for Power Series

\[y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n)u_{n+1} = \phi(y_n). \]

- Reciprocal [Sieveking72, Kung74]: \(\phi(y) = a(t) - 1/y; \)
- Logarithm [Brent75]: \(\log a(t) = \int a'(t)/a(t); \)
- Exponential [Brent75]: \(\phi(y) = a(t) - \log y. \)

\[y_{n+1} = y_n - u_{n+1}, \quad u_{n+1} = y_n \times (\log y_n - a(t)). \]

→ Same complexity \(\mathcal{O}(M(N)) \) as polynomial multiplication.
Newton for Power Series

\[y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n)u_{n+1} = \phi(y_n). \]

- Reciprocal [Sieveking72, Kung74]: \(\phi(y) = a(t) - 1/y \);
- Logarithm [Brent75]: \(\log a(t) = \int a'(t)/a(t) \);
- Exponential [Brent75]: \(\phi(y) = a(t) - \log y \).
- 1st order LODE [Brent & Kung 78]: \(y'(t) - a(t)y(t) = b(t) \)
 - Homogeneous Case (\(b = 0 \)): \(y(t) = y_0(t) := \int \exp(a(t)) \);
 - Non-homogeneous Case: variation of constants, \(y(t) = y_0(t) \int b(t)/y_0(t) \).

→ Same complexity \(O(M(N)) \) as polynomial multiplication.
Newton for Power Series

\[y_{n+1} = y_n - u_{n+1}, \quad \phi'(y_n)u_{n+1} = \phi(y_n). \]

- Reciprocal [Sieveking72, Kung74]: \(\phi(y) = a(t) - 1/y \);
- Logarithm [Brent75]: \(\log a(t) = \int a'(t)/a(t) \);
- Exponential [Brent75]: \(\phi(y) = a(t) - \log y \).
- 1st order LODE [Brent & Kung 78]: \(y'(t) - a(t)y(t) = b(t) \)
 - Homogeneous Case (\(b = 0 \)): \(y(t) = y_0(t) := \int \exp(a(t)) \);
 - Non-homogeneous Case: variation of constants, \(y(t) = y_0(t) \int b(t)/y_0(t) \).

Natural idea: LDE of order \(r \) equivalent to 1st order matrix equation:

\[Y'(t) - A(t)Y(t) = B(t), \]

but \(\int \exp A(t) \) is **not** a solution of \(Y'(t) = A(t)Y(t) \).
Newton Iteration for Operators

Newton iteration for $\phi(Y) = 0$:

$$Y_{k+1} = Y_k - U_{k+1}, \quad \left[D\phi \right]_{Y_k} \cdot U_{k+1} = \phi(Y_k).$$

Special cases:

Matrix inversion [Schulz33]:

$$\phi(Y) = AY - I,$$

$$\left[A \right]_{Y_k} \cdot U_{k+1} = AY_k - I;$$

Complexity: $MM(r, N) = O\left(r^2 M(N) + r\omega N \right)$.

Our problem: $\phi(Y) = Y' - AY$. Note that $D\phi = \phi'$.

Bruno Salvy Fast Resolution of Differential Systems
Newton Iteration for Operators

Newton iteration for $\phi(Y) = 0$:

$$Y_{k+1} = Y_k - U_{k+1}, \quad \left. D\phi \right|_{Y_k} \cdot U_{k+1} = \phi(Y_k).$$

Special cases:

- **Matrix inversion** [Schulz33]: $\phi(Y) = AY - I$, $D\phi \cdot U = AU$.
- → equation $AU_{k+1} = AY_k - I$; $U_{k+1} = Y_k(AY_k - I)$.
- Complexity: $\text{MM}(r, N) = \mathcal{O}(r^2 \text{M}(N) + r^\omega N)$.

Bruno Salvy
Fast Resolution of Differential Systems
Newton iteration for $\phi(Y) = 0$:

$$Y_{k+1} = Y_k - U_{k+1}, \quad \left. D\phi \right|_{Y_k} \cdot U_{k+1} = \phi(Y_k).$$

Special cases:

- **Matrix inversion** [Schulz33]: $\phi(Y) = AY - I$, $D\phi \cdot U = AU$.

 - Equation $AU_{k+1} = AY_k - I$; $U_{k+1} = Y_k(AY_k - I)$.

 - Complexity: $\text{MM}(r, N) = \mathcal{O}(r^2 M(N) + r\omega N)$.

- **Our problem**: $\phi(Y) = Y' - AY$. Note that $D\phi = \phi$!
New Algorithm and its Complexity

To iterate \(Y_{k+1} = Y_k - U_{k+1} \), we need to solve

\[
U'_{k+1} - A(t)U_{k+1} = Y'_{k} - A(t)Y_k.
\]

Variation of constants:

\[
U_{k+1} = Y_k Z_{k+1},
\]

\[
Y_k Z'_{k+1} + Y'_k Z_{k+1} - A(t)Y_k Z_{k+1} = Y'_k - A(t)Y_k,
\]

\[
Y_{k+1} = Y_k - Y_k \int Y_k^{-1}(Y'_k - A(t)Y_k) \mod t^{2k+1}, \quad \text{det } Y_0 \neq 0
\]

- Quadratic convergence;
- a whole basis of solutions is computed;
- its inverse is computed simultaneously;
- complexity \(\mathcal{O}(r^2 M(N) + r^\omega N) \);
- good for \(r = 1 \) ([Hanrot-Zimmermann02] for \(\exp(a(t)) \)).
Experimental results

Polynomial matrix multiplication vs. solving $Y' = AY$ by our method.
Newton again: \(y_{k+1} = y_k - u_{k+1}, \quad D\phi|_{y_k} \cdot u_{k+1} = \phi(y_k). \)

A 1st order example from number theory (related to \(\wp \)):

\[
\phi(y) = (x^3 + ax + b)y'^2 - y^3 - Ay - B = 0.
\]

Differential:

\[
\phi(y_k+u_{k+1})-\phi(y_k) = (x^3 + ax + b)2y'_ku'_{k+1} - (3y_k^2 - A)u_{k+1} + \cdots .
\]

\(D\phi|_{y_k} \cdot u_{k+1} \)

→ Linear differential equation with power series coefficients

→ fast algorithm for isogenies between elliptic curves [BoMoSaSc06].

Higher order → a linear differential system at each step.
Final Comments

Have a look at the paper for

- constant coefficients
 (including nice and fast algorithm for $\exp(tA)$);
- a divide-and-conquer algorithm for only one solution (instead of a basis) in the general case.

Still to be saved:

- a factor r for (1 equation, a basis of solutions);
- a factor $\log N$ for only one solution.