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Letter

A novel strategy of transcription regulation
by intragenic nucleosome ordering
Cédric Vaillant,1,2,5 Leonor Palmeira,1,2,3,5 Guillaume Chevereau,1,2 Benjamin Audit,1,2

Yves d’Aubenton-Carafa,4 Claude Thermes,4 and Alain Arneodo1,2,6

1Université de Lyon, F-69000 Lyon, France; 2Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, ENS-Lyon,

69364 Lyon Cedex 07, France; 3Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive,

F-69622 Villeurbanne, France; 4Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France

Numerous studies of chromatin structure showed that nucleosome free regions (NFRs) located at 59 gene ends contribute
to transcription initiation regulation. Here, we determine the role of intragenic chromatin structure on gene expression
regulation. We show that, along Saccharomyces cerevisiae genes, nucleosomes are highly organized following two types of
architecture that depend only on the distance between the NFRs located at the 59 and 39 gene ends. In the first type, this
distance constrains in vivo the positioning of n nucleosomes regularly organized in a ‘‘crystal-like’’ array. In the second type,
this distance is such that the corresponding genes can accommodate either n or (n + 1) nucleosomes, thereby displaying two
possible crystal-like arrays of n weakly compacted or n + 1 highly compacted nucleosomes. This adaptability confers ‘‘bi-
stable’’ properties to chromatin and is a key to its dynamics. Compared to crystal-like genes, bi-stable genes present higher
transcriptional plasticity, higher sensitivity to chromatin regulators, higher H3 turnover rate, and lower H2A.Z enrich-
ment. The results strongly suggest that transcription elongation is facilitated by higher chromatin compaction. The data
allow us to propose a new paradigm of transcriptional control mediated by the stability and the level of compaction of the
intragenic chromatin architecture and open new ways for investigating eukaryotic gene expression regulation.

[Supplemental material is available online at http://www.genome.org.]

The small-scale chromatin structure, as defined by the local nu-

cleosome occupancy, conditions the regulation of transcription by

modulating the accessibility of transcription factors to their cog-

nate regulatory sites (Kornberg and Lorch1999, Li et al. 2007;

Morse 2007; Rando and Ahmad 2007; Segal and Widom 2009). In

yeast, recent high-resolution experiments revealed a specific gene

promoter nucleosome pattern characterized by a nucleosome de-

pleted region (NFR) of typical size 100–200 base pairs (bp) up-

stream of the transcription start site (TSS) and, to a lesser extent, at

the gene 39 end (Yuan et al. 2005; Albert et al. 2007; Lee et al.

2007;Mavrich et al. 2008; Shivaswamy et al. 2008). Interestingly,

gene expression level is negatively correlated with nucleosome

occupancy at promoter, whereas relative nucleosome occupancy

would rather control the ability for genes to adapt their expression

under environmental changes (Lam et al. 2008; Tirosh and Barkai

2008). For example, genes with higher relative occupancy up-

stream of the TSS present higher transcriptional plasticity (Tirosh

and Barkai 2008; Radman-Livaja and Rando 2009). In contrast,

genes with a pronounced nucleosome depleted region at the TSS

are generally constitutively expressed. Some genes, thus, have

a rather static chromatin pattern facilitating the permanent access/

recruitment of activators/repressors, while others present a more

homogeneous and dynamic chromatin reflecting a fine regulation

by nucleosome positioning at regulatory sites (Morse 2007; Boeger

et al. 2008; Lam et al. 2008; Tirosh and Barkai 2008).

These observations raise the issue of determining if intragenic

nucleosome organization might also be a determinant of gene

expression regulation and, if this is the case, to what extent this

organization would be directly encoded (hard-wired) in the un-

derlying gene sequence? At promoters, NFRs are enriched in

poly(dA:dT) motifs that are known to alter nucleosomal DNA struc-

ture (Bao et al. 2006) and to favor nucleosome disassembly (Iyer

and Struhl 1995; Suter et al. 2000). Periodically well-positioned

nucleosomes reveal a 10 bp periodic distribution of AA/TT dinu-

cleotides (Ioshikhes et al. 2006; Mavrich et al. 2008; Shivaswamy

et al. 2008), but this periodicity mainly concentrates at the two

proximal nucleosomes on both sides of the TSS (Mavrich et al.

2008; Shivaswamy et al. 2008). It is unlikely that this sequence

specificity accounts for the periodic stretches of nucleosomes ob-

served genome-wide and, in particular, along genes, since most

positioned nucleosomes are not associated with strong nucleo-

some positioning sequences (Peckham et al. 2007; Yuan and Liu

2008). Along this line, in vitro experiments showed that more than

95% of genomic sequences have the same affinity for histones

than random DNA sequences (Lowary and Widom 1997). Periodic

ordering of nucleosomes along gene sequences could then result

from nonlocal effects induced by the NFRs located at both gene

extremities (Kornberg and Stryer 1988). Here, we analyze yeast

genome-wide nucleosome mapping and reveal a strikingly orga-

nized intragenic chromatin architecture. We show that the dis-

tance between the 59 and 39 NFRs controls this architecture and

that this boundaries-directed nucleosome organization constitutes

a newly evidenced strategy of gene expression regulation.

Results

Yeast genes display a highly organized nucleosomal pattern

In order to determine how nucleosomes are organized along gene

length, we ordered the genes by the distance L that separates
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the first 59 nucleosome downstream of the 59 NFR and the last 39

nucleosome upstream of the 39 NFR (Mavrich et al. 2008; Venters

and Pugh 2009). Note that we used L as a substitute for the distance

L between the 59 and 39 NFRs, which was more difficult to measure

accurately because of the NFR shape variability. We plotted verti-

cally, from top to bottom, from the shortest to the longest gene,

the organized nucleosome occupancy profiles observed in vivo

(Lee et al. 2007) (Methods) and obtained a two-dimensional (2D)

map that reveals a strikingly organized nucleosome ordering (Fig.

1A). Small genes (L & 1.5 kbp) present a clear periodic packing

between the two bordering NFRs with a well-defined number n of

regularly spaced nucleosomes (Fig. 1C). As L increases, these

‘‘crystallized’’ genes cluster in domains of genes displaying the

same number n of nucleosomes, from n = 2 to about 10 nucleo-

somes (L & 1.5 kbp). For larger gene size, the periodic nucleosome

positioning remains visible, but appears fuzzy in the region where

the confinement induced by both boundaries is probably too weak

to strongly constrain the positioning of central nucleosomes.

Close inspection of this 2D map shows that the range of influence

of the 59 NFR extends to about seven nucleosomes as compared to

about five nucleosomes for the 39 NFR. This likely results from NFR

nucleosome occupancy profiles that are more pronounced, on

average, at the 59 than at the 39 gene extremities (Supplemental Fig.

S1). We thus observe a periodic ordering that extends inside the

genes, consistently with a statistical ordering mechanism induced

by exclusion from the boundaries. In this ordering mechanism, the

strength, period, and range depend on the degree of nucleosome

confinement that increases with the nucleosome exclusion

strength of the boundaries and with the average nucleosome

density (Kornberg and Stryer 1988). The more nucleosomes are

confined, the more they adopt a long-range and compact periodic

organization, with the interboundary distance as an additional

control parameter.

This pattern was compared to a 2D map of intergenic regions

that displayed totally different nucleosome distributions (Supple-

mental Fig. S2). Along intergenic regions, which consist in regions

located between the NFRs of neighbor genes, only the bordering

nucleosomes are well-positioned. We observe no propagation of

nucleosome phasing from bordering to internal nucleosomes that

present a fuzzy distribution. This lack of intergenic crystal-like nu-

cleosomal organization is likely related to the asymmetric shape of

the NFRs that are significantly sharper on the gene side than on the

intergenic side, where their range of influence appears to be limited

to the closest nucleosome (Supplemental Fig. S1).

Two classes of genic chromatin architecture: crystal-like versus
bi-stable structures

To determine the contributions to the observed nucleosomal dis-

tribution of successive periodicities corresponding to n, (n + 1),. . .

nucleosomal arrays, we performed the spectral analysis of gene

nucleosome occupancy profiles (see Methods) and assigned them

to one of three categories, crystal-like (1940/4554), bi-stable (946/

4554) and other (1668/4554), depending on the crystallization

state of their chromatin (the lists of these genes are given in the

Supplemental material). Genes presenting a profile with a single

and dominant periodic contribution were considered as ‘‘crystal

genes’’ (Fig. 2A,C,D,F). Genes presenting two periodic contribu-

tions were considered as ‘‘bi-stable’’ genes. Among large genes, we

also detected genes presenting more than two periodic contribu-

tions, thus displaying properties of multi-stable genes.

We first observed a quantized distribution of L values for all

genes, with maxima corresponding to crystal-like genes with L =

n 3 167 (n = 2, 3, etc. . .) (Fig. 2G). It results that genes with L values

corresponding to bi-stability are underrepresented. Indeed, our

criteria to select bi-stable genes from their power spectrum was

chosen very stringent on purpose (Methods) in order to ensure no

contamination by ‘‘crystal’’ or ‘‘other’’ genes; this certainly con-

tributed to some underestimation of the bi-stable category to the

benefit of higher confidence levels. In agreement with analyses of

the 2D map (Fig. 1A), we found that the mean proportion of crystal

genes clearly presents a 167 bp periodicity as a function of L up to

around 1.5 kbp (Fig. 2H). In addition, this proportion is globally

larger at small L values and decreases when increasing L. This ac-

tually defines a crystallization regime associated with L values, in

which large domains of crystal-like genes alternate with smaller

domains, where crystal-gene density locally drops. At transitions

between n and n + 1 domains (Fig. 2I), intermediate L windows can

be identified where the nucleosome occupancy profile becomes

seemingly fuzzy without clear nucleosome positioning (Fig. 2B). As

revealed by the power spectrum analysis, this fuzziness does not

mean that the crystallization mechanisms are no longer at work

inside those genes. The presence of two dominating peaks in the

power spectrum reveals the statistical coexistence of two crystal-

like chromatin states with n and n + 1 nucleosomes (Fig. 2B,E).

Figure 1. 2D map of nucleosomes along yeast genes. (A) The 4554
genes are ordered vertically by the distance L between the NFRs first (59)
and last (39) nucleosomes. The nucleosome occupancy profile of each
gene is figured along a horizontal line: red dots correspond to the minima
of nucleosome occupancy; nucleosomes occupy the white zones; in vivo
data are retrieved from (Lee et al. 2007). (B) Predictions of our physical
modeling (blue) are drawn on top of experimental data (red). (Insets)
Mean experimental (red) and theoretical (blue) nucleosome occupancy
profiles for crystal genes harboring 5 nucleosomes (right, top), 6 nucleo-
somes (right, bottom), and for bi-stable genes with 5/6 nucleosomes (left).
(C ) Zoom on the first 2000 genes in B; gray-shaded areas correspond to
some bi-stable L -domains. In B and C, the black curves indicate the 59 - and
39 -end positions of the theoretical excluding nucleosome energy barriers.
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Indeed when increasing L, more peaks can appear in the power

spectrum suggesting some evolution from a bi-stable to a multi-

stable structure.

This quantized distribution of L values observed for all genes

classes (Fig. 2G,H,I) actually reflects specific crystallization mech-

anisms at work inside genes. A naive way to order nucleosomes in

a crystal-like fashion is to impose a strict period of 167 bp, which

will lead to a trivially quantized distribution of L distances: L = n 3

167 bp. A more realistic interpretation of the observed quantized

distributions is to relax this very strict constraint allowing the

nucleosomal repeat length (NRL) to fluctuate around a given value

with some lower and upper bounds: lmin < NRL = L/(n�1) ’ L/n <

lmax. Then n -crystal states will exist in the range (n�1)lmin < L <

(n�1)lmax. When L slightly increases [nlmin < L < (n�1)lmax], there is

possible coexistence of n- and (n + 1) -crystal states. Similarly, when

L slightly decreases [(n�1)lmin < L < (n�2)lmax], there is possible

coexistence of (n�1) - and n -crystal states. This very tentative

scenario raises the issue of the crystallization mechanisms that

would produce such NRL distribution and, in turn, the observed

succession of n -crystal genes separated by bi-stable (multi-stable)

genes (Fig. 1A).

We investigated whether crystal-like and bi-stable gene classes

display some enrichment in specific functions (Supplemental

Table S1). We only observed a slightly significant enrichment in

cytoskeleton organization and biogenesis genes among bi-stable

genes (56%, P = 10�2) and in genes involved in translation among

crystal-like genes (74%, P = 10�2).

Intragene chromatin architecture conforms to equilibrium
statistical ordering principles

Does the intragenic nucleosome organization only depend on the

properties (distance and nucleosome exclusion strength) of the 59

and 39 NFRs? To test this hypothesis, we predicted the nucleosome

occupancy profile inside the 4554 yeast genes using a thermody-

namical model of nucleosome assembly that depends on the

nucleosome size l, the chemical potential m (that fixes the aver-

age nucleosome density) and the nu-

cleosome energy landscape E(s) (see

Methods, Equation 1). To test whether

a statistical ordering mechanism induced

by excluding boundaries at gene extrem-

ities may account for the observed crys-

tallization features (Fig. 1), we imposed

a fixed force at gene extremities in the

form of linear energy barriers (see Meth-

ods, Equation 2) to mimic the effect of

experimental NFRs (Fig. 3A). For simplic-

ity, we considered identical 59 and 39 en-

ergy barrier shapes. In addition, no se-

quence effect was added in the energy

profile E(s) that remained constant be-

tween the bordering walls. This, coupled

with a hard-core interaction between

nucleosomes, allowed us to compute the

thermodynamical equilibrium density of

nucleosomes along genes (see Methods,

Equation 1) and to build the correspond-

ing intragenic nucleosome occupancy

profile (see Methods, Equation 3). By fix-

ing the nucleosome size to l = 146 bp and

adjusting the chemical potential so that

nucleosomes cover 75% of the yeast genome, we obtained the

averaged nucleosome occupancy profiles, as exemplified for n = 5

and 6 nucleosomes in Figure 3. The resulting 2D map (Fig. 1B) is in

remarkable agreement with the in vivo data. This simple model

predicts the existence of L domains of crystallization characterized

by a defined number of nucleosomes (Fig. 3A,C) alternating with

bi-stable domains presenting a seemingly fuzzy occupancy profile

(Fig. 3B). Globally, crystallization is observed up to gene sizes of at

Figure 2. Average experimental nucleosome occupancy profiles of crystal-like and bi-stable genes
(black), together with some examples of individual gene profiles (red): (A) crystal genes with n = 5
nucleosomes; (B) bi-stable genes at the transition between the n = 5 and n = 6 crystal gene domains; (C )
crystal genes with n = 6 nucleosomes. Power spectrum (PS) (see Methods) of nucleosome occupancy
profiles: (D) PS of one crystal gene profile with a dominant peak at n = 5 nucleosomes; (E ) PS of one bi-
stable gene with two main peaks of comparable magnitude at n = 5 and 6 nucleosomes; (F ) PS of one
crystal gene profile with a dominant peak at n = 6 nucleosomes. Total number of genes (G), proportion
(density) of crystal genes (H ), and proportion (density) of bi-stable genes (I ) as a function of the gene
size L (see Methods); the plotted data correspond to average values computed in a 50 bp sliding
window. In G–I, the vertical gray bands define bi-stability domains and the vertical dotted lines indicate
the successive L = n 3 167, with n = 2,3,. . .

Figure 3. Theoretical probability of nucleosome occupancy at each
point of a box bordered by two linear energy barriers at gene extremities
(Methods, Equation 2): (A) Box large enough to shelter five nucleosomes
(green); (B) larger box where the two dotted and dashed configurations
are possible; the weighted average of the five and six nucleosome crystal-
like profiles yields a fuzzy-looking average profile (red); and (C ) larger box
where six nucleosomes can be accommodated.
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least 10 nucleosomes, as shown in the in vivo 2D map. In our

modeling, the 2D-map geometry is symmetrical with respect to

gene center by construction although in vivo the 39 NFR range of

influence is slightly smaller than on the 59 side. This elementary

thermodynamical modeling thus provides a simple interpretation

of the crucial role of the interbarrier distance as a fine control pa-

rameter of chromatin structure, and demonstrates that the com-

plex pattern of intragenic nucleosome distribution mainly de-

pends on the presence of the bordering NFRs and not so much on

the gene sequence.

This result is not in contradiction with the predictions of

models recently proposed to account for sequence effect on nu-

cleosome positioning, such as the Field et al. (2008) model, based

on statistical learning (model I), and the Vaillant et al. (2007)

model, based on the computation of the free-energy cost of

bending a DNA fragment of a given sequence from its natural

curvature to the final superhelical structure around the histone

core (model II). These models predict nucleosome occupancy pro-

files that account remarkably well for the recent nucleosome po-

sitioning in vitro data (Kaplan et al. 2009) obtained at lower nu-

cleosome density (30% as compared to 75% in vivo): the Pearson’s

correlation coefficient is r = 0.77 for model I and r = 0.70 for model

II (correlation between the two predicted profiles, r = 0.81). But

when comparing the 2D maps of nucleosome occupancy along

the yeast genes constructed with the in vitro data (Fig. 4A) and

predicted by model II (Fig. 4B), we observe, as expected, some

positioning of the 59 and 39 nucleosomes at gene extremities.

However, in the intragenic regions located between these border-

ing nucleosomes, none of these 2D maps display the regular

crystal-like and bi-stable nucleosomal patterns displayed in vivo

(Fig. 1A). Consistently with the previous studies, these results

demonstrate that the intragenic sequences are unable to generate

these strong regular nucleosome positioning patterns in vitro (at

low nucleosome density and in the absence of external factors such

as transcription factors, remodelers, etc.). They confirm that the

crystal-like and bi-stable nucleosomal patterns result from the

thermodynamical ordering at high nucleosome density imposed

by excluding energy barriers at gene extremities.

This understanding of intragenic nucleosome organization,

in terms of statistical ordering, is further supported by the nucle-

osome positioning observed in vivo in the central region (1 kbp) of

the N = 483 longest yeast genes with L > 3000 bp. In these regions

far away from the influence of the bordering inhibitory energy

barriers, 1270 nucleosomes were found to be well-positioned (see

Methods) corresponding to ; 39% coverage of the sequence (data

from Lee et al. 2007), i.e., a number smaller than the coverage

; 80% observed close to the gene extremities due to boundary

confining, but significantly larger than zero as an indication that

the sequence plays some role in the statistical positioning of cen-

tral nucleosomes (Supplemental Fig. S3). Importantly, among this

set of well-positioned central nucleosomes observed in vivo, only

191 correspond to (at a 35 bp precision) well-positioned nucleo-

somes also observed in the in vitro data (Kaplan et al. 2009). Since

intrinsic histone–DNA interactions are likely to result into well-

positioned nucleosomes at the lower in vitro nucleosome

density, this means that less than 15% (191/1270) of in vivo well-

positioned nucleosomes in central intragenic regions can be at-

tributed to strongly positioning DNA sequences. Again the major

determinant of nucleosome positioning is the statistical ordering

no longer imposed by the bordering excluding barriers, but by the

fluctuations in the central energy landscape induced by the DNA

sequence. As expected, our toy model with constant energy profile

E(s) between the bordering barriers did not generate any well-

positioned nucleosomes in the central region of large genes.

When artificially introducing in between the energy barriers, the

sequence-dependent energy profile predicted by the model II

(Vaillant et al. 2007), we numerically generated nucleosome oc-

cupancy profiles (Supplemental Fig. S3) that exhibit some central

nucleosome positioning. Indeed 1309 nucleosomes are predicted

to be well-positioned (corresponding to ; 40% coverage of the

sequence) among which we recover 28% (360/1270) of the in vivo

central nucleosomes including 53% (100/191) of the ones also

observed in vitro. Moreover, when shuffling the gene sequence, we

recovered a similar number ; 1140 of well-positioned nucleo-

somes as the signature of statistical ordering in a noisy energy

landscape, but we lost a majority (74/100) of the nucleosomes in-

trinsically positioned by sequences with high affinity to histones.

Altogether our results agree with the central conclusions of

recent experimental in vitro and in vivo studies of nucleosome

positioning in S. cerevisiae (Zhang et al. 2009), which provide ad-

ditional evidence that intrinsic histone–DNA interactions make

only a modest contribution to the in vivo intragenic nucleosome

positioning pattern, the major determinant being the statistical

ordering mainly induced by the excluding NFRs located at gene

extremities.

Intragenic nucleosome density correlates positively
with transcription rate

We next assessed the functional implications of the intragenic

chromatin structure by analyzing how different features relate to

the two types of nucleosomal organizations identified in the in

vivo data. We first examined the way transcription rate, estimated

by the RNA polymerase II (Pol II) density (Steinmetz et al. 2006),

relates to L distance (Fig. 5A). In individual crystal n -domains, the

transcription rate decreases when increasing L. Some significant

anti-correlation is actually observed between internucleosome

distance (Fig. 5B) and transcription rate in n -crystal domains: for

n = 3, r = �0.2, P = 3.6 3 10�2; n = 4, r = �0.24, P = 7 3 10�4; n = 5,

r = �0.21, P = 3.5 3 10�3; n = 6, r = �0.3, P = 1.3 3 10�3, and n = 7,

Figure 4. 2D map of nucleosome occupancy along yeast genes (same
coding as in Fig. 1A). (A) In vitro data retrieved from Kaplan et al. (2009).
(B) Theoretical nucleosome energy gain [�E(s)] landscape predicted by
the model II (Vaillant et al. 2007).
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r =�0.23, P = 5 3 10�3. Hence, the more compact the nucleosomal

array, the shorter the linker size, the higher the transcription rate.

Consistently, in the intermediate bi-stable domains between the

n - and (n + 1) -crystal domains, we observed a local and sharp

increase of the rate coinciding with an increasing proportion of the

compact (n + 1) -crystal pattern that coexists with the more diluted

n -crystal chromatin state.

Genes showing a bi-stable dynamic chromatin structure
are expression regulated genes

The distribution of transcriptional plasticity, which quantifies for

each gene the variation of expression level as the result of envi-

ronmental condition changes (Tirosh and Barkai 2008), presents

large variations with the L distance, bi-stable (crystal) genes pre-

senting high (low) plasticity values (Fig. 5C). Bi-stable genes pre-

sent, at least, two crystal chromatin states, a diluted (NRL = L/

(n�1)) and a compact (NRL = L/n) state. According to our model,

their transcription rate profile results from the contributions of

high and low transcription rates. These genes may thus adopt one

of the two crystal states and switch from one to the other state

under some perturbation or condition changes, e.g., a very small

change in the L distance, that would in turn lead to strong changes

of transcription rate and to a high level of transcriptional plasticity.

In full agreement with this suggestion, we observed that bi-stable

gene density is significantly correlated to transcriptional plasticity

(r = 0.42, P = 1.1 3 10�3). These properties of the plasticity distri-

bution strongly sustain our model of the nucleosomal array com-

paction dependence of transcription rate.

In a recent study, it has been shown that gene expression

can substantially vary when disrupting chromatin regulators, in-

cluding chromatin modifiers, such as HATs, HDACs, HMTs, and

ATP-dependent chromatin remodeling

factors (Steinfeld et al. 2007). The distri-

bution of sensitivity to chromatin regu-

lators reveals that bi-stable genes are, on

average, significantly more sensitive than

crystal genes due to such a lack of struc-

tural regulation (Fig. 5E). This is consis-

tent with the fact that chromatin regula-

tors may control the interbarrier distance

L and in turn the distance L (; L �188

bp) via the statistical ordering imposed

by nucleosome excluding barriers. Note

that in the precise case of Isw2 remodel-

ing (Whitehouse et al. 2007), we did not

obtain conclusive results concerning the

crystal/bi-stable nature of the target genes

(data not shown). When compared to

crystal genes, bi-stable genes are thus

highly plastic, with a wide dynamic range

of expression level as the signature of

a more dynamic and regulated chromatin

structure.

Intragenic chromatin structure
and epigenetic marks

We next examined the histone variant

H2A.Z occupancy (Zhang et al. 2005;

Tirosh and Barkai 2008) and the histone

H3 turnover rate (Dion et al. 2007) within

crystal and bi-stable gene domains. Crystal genes present a high

enrichment in H2A.Z (Fig. 5F), whereas bi-stable genes present

a high H3 turnover rate (Fig. 5D). These results are in agreement

with the hypothesis that the H2A.Z histone variant, which is

mainly deposited at the 59 nucleosome position (Albert et al. 2007),

contributes to stabilize this nucleosome, thereby reinforcing the

position and possibly the nucleosome exclusion strength of the

59 end NFR. This would, in turn, enhance the crystallization prop-

erties (periodicity and phasing) of the nucleosome array along the

gene. Consequently H2A.Z incorporation may contribute to lock

the chromatin into a very stable crystal state. By contrast, low

H2A.Z enrichment in the 59 nucleosome of bi-stable genes may

favor the ability for these genes to change from one to the other of

the n - and (n + 1) -nucleosome states. On the other hand, the high

H3 turnover rate observed for bi-stable genes likely reflects the

dynamical nature of their chromatin resulting from a facilitated

transition between the n - and (n + 1) -nucleosome states. More

frequent eviction and reassembly of one nucleosome may thus

improve a de novo histone H3 deposition.

Discussion
The role of chromatin structure (nucleosome density and position-

ing) on gene expression regulation has been mostly investigated at

the level of transcription initiation and different regulation strategies

associated to different kinds of promoter structural design have been

revealed (Lee et al. 2007; Morse 2007; Boeger et al. 2008; Lam et al.

2008; Tirosh and Barkai 2008; Segal and Widom 2009). Here, we

show that the intragenic chromatin architecture is significantly

associated with the regulation of gene expression, very likely at

the level of transcription elongation, and that this architecture is,

to a main part, a consequence of a statistical ordering induced by

Figure 5. Bi-stable nucleosome organization controls gene expression. Sliding window (50 bp)
analysis of average transcription rate estimated by Pol II density (Steinmetz et al. 2006) (A), nucleosome
repeat length (dark-blue) and intragenic mean nucleosome occupancy (light-blue) (B), transcriptional
plasticity (Tirosh and Barkai 2008) (C ), H3 turnover rate (Dion et al. 2007) (D), sensitivity to chromatin
regulators disruption (Steinfeld et al. 2007) (E ), and H2A.Z occupancy (Zhang et al. 2005; Tirosh and
Barkai 2008) (F ), as a function of the distance L. The vertical gray bands define bi-stability domains. The
dotted curves correspond to the results obtained when excluding the 175 (out of 4554) ribosomal
protein genes from the analysis; no significant changes are observed.
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inhibitory boundaries located at both gene extremities. In particular,

we demonstrate that a thermodynamical model of nucleosome as-

sembly at equilibrium accounts very well for the evolution of the

chromatin pattern as a function of the gene size measured by the

distance between the 59 and 39 NFRs. We mainly identified two types

of nucleosomal architectures: crystal-like genes with regularly posi-

tioned nucleosomes and bi-stable genes with a fuzzy-looking nu-

cleosomal profile resulting from the coexistence of two possible

crystal-like states with different compaction levels. As compared to

crystal-like genes that present a constitutive expression level, bi-

stable genes show a higher transcriptional plasticity and are more

sensitive to chromatin regulators. We further show that the tran-

scription rate tends to increase when the nucleosome linker size

decreases. Accordingly, by means of a single nucleosome switching,

bi-stable genes may drastically alter their expression level in response

to external changes. Interestingly we obtained the same functional/

structural relationship for the intragenic chromatin as those ob-

served by Tirosh and Barkai (2008) at promoters. Crystal genes, as

DPN (depleted proximal nucleosome) genes, correspond to consti-

tutively expressed genes with a well-defined and stable chromatin

pattern, i.e., a periodic nucleosome arrangement for crystal genes

and a well-localized and pronounced NFR for DPN (Supplemental

Fig. S4). On the other hand, bi-stable genes, as OPN (occupied

proximal nucleosomes) genes, correspond to transcriptionally plas-

tic genes with a more dynamic and regulated chromatin. We observe

a seemingly fuzzy pattern for bi-stable genes (Fig. 2B) that actually

corresponds to the statistical superposition of two crystal states and

an extended less depleted region for OPN genes (Supplemental Fig.

S4). However, despite similar structural regulation strategies, we did

not observe any significant correlation between the bi-stable/crystal

nature of genes and their OPN/DPN promoter architecture (Sup-

plemental Fig. S5). For both crystal-like and bi-stable genes, nucleo-

some organization results from the presence of NFRs at gene ex-

tremities. These gene categories are not expected to be correlated

with the OPN and DPN gene classes that reflect the presence or the

absence of a deep trough in the nucleosome occupancy profile up-

stream of the TSS. DPN genes are significantly enriched in crystal and

bi-stable genes (56% are crystal and 25% are bi-stable) as compared to

OPN genes (40% are crystal and 20% are bi-stable). This latter level

of enrichment indicates that OPN genes still present sufficiently

strongly bound nucleosomes at the 59 and 39 ends to induce nucle-

osome confinement and a periodic ordering for short gene sizes, as

confirmed by the periodicity observed at the 59 gene end in the av-

erage nucleosome occupancy profile (Supplemental Fig. S4).

Since intragenic nucleosome arrangement may drastically

affect the elongation process, our analysis raises the question of

why a well-ordered and regularly compacted nucleosome array

would enhance the transcription rate. As previously proposed

(Morse 2007), a compact 10 nm chromatin fiber is likely to restrict

aberrant binding of transcription factors or of other factors that

may perturb the proper progression of Pol II and/or induce cryptic

transcription. Crystallization of the nucleosome array actually

means stronger linear confinement, i.e., well-defined nucleosome

positioning within genes. Pol II elongation has to deal with chro-

matin structure and, in particular, requires structural regulation

that involves nucleosome modifications and remodeling. We guess

that a regular intragenic nucleosome array might, upon gene ac-

tivation, enhance transcription rate by reducing intrinsic distur-

bances. According to geometrical modeling of the 30 nm chro-

matin fiber (Lesne and Victor 2006), a short linker size would

rather lead to an open well-ordered chromatin secondary structure

that would facilitate the sequential action of chromatin regulators

associated with Pol II progression, such as the FACT complex

(Hartzog, 2003), as well as the action of chromatin modifiers. Re-

cently, reversomes (for reverse nucleosomes, built on a right-

handed tetrasome) were proposed to form under the action of

a DNA supercoiling wave pushed in front of the RNA polymerase

(Lavelle and Prunell 2007). The nucleosome reversome would fa-

cilitate transcription elongation by giving the RNA polymerase

a lever to break the docking of the H2A–H2B dimers, which oth-

erwise exerts a stringent blocking against transcription in absence

of other factors (Bancaud et al. 2007). By a dynamical domino-like

effect, the elongation process of compact regularly spaced nucle-

osomal intragenic arrays might result in a reversome wave that

would progress faster than the RNA polymerase.

To examine a possible relation between chromatin state and

the presence of introns, we selected the 107 genes containing one

intron from the 4554 yeast genes and observed that they prefer-

entially localize within bi-stable domains (Fig. 6A). We suggest that

intron size in yeast might work as a mechanism allowing for the

transition of a gene from one to another crystal-like/bi-stable nu-

cleosomal architecture. Observation that intronic size distribution

is bimodal with peaks at 90 and 410 bp (Fig. 6B) sustains this hy-

pothesis. Similar bimodal distributions were also obtained for

Saccharomyces kluywerii, Kluyveromyces thermotolerans, and Debar-

yomyces hansenii (data not shown). Indeed, 90 bp is about the

distance that would allow a gene to change from bi-stable to crystal

chromatin state (and vice versa). Unfortunately, when using our

model to compute the nucleosome occupancy profiles on intron-

containing intragenic sequences with and after removing the in-

tron (Parenteau et al. 2008), the sampling of each category (crystal,

bi-stable, other) was too small to draw significant conclusions. An

alternative hypothesis relies on recent studies indicating that

splicing regulation might be associated with chromatin-mediated

regulation of transcriptional elongation, involving the action of

remodeling factors, such as Swi/Snf (Kornblihtt 2006; Allemand

et al. 2008). A proper chromatin structure might thus be favored in

order to facilitate/regulate intron splicing.

Ribosomal protein genes are generally short, highly tran-

scribed, and intron containing. Among the 107 single intron-

containing genes, the subset of 54 ribosomal protein genes is sig-

nificantly enriched in bi-stable genes (Fig. 6A), consistent with our

previous observation concerning the high plasticity level of bi-

stable genes (Fig. 5).

The nucleosomal structure of promoters and its implica-

tions in transcription initiation has been studied in various or-

ganisms from yeast to human, including the nematode and Dro-

sophila (Bernstein et al. 2004; Lee et al. 2004, 2007; Yuan et al.

Figure 6. (A) Proportion of single intron containing yeast genes (107/
4554) as a function of the gene size L; the vertical gray bands define bi-
stability domains. The dotted curves correspond to the density of ribo-
somal protein genes (54) (black dotted curve) and to the density of the
nonribosomal protein genes (53) (red dotted curve). (B) Histogram of
intron sizes in single-intron containing genes.
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2005; Ozsolak et al. 2007; Mavrich et al. 2008; Miele et al. 2008;

Shivaswamy et al. 2008; Tirosh and Barkai 2008; Valouev et al.

2008). In this work, we have identified new regulation mecha-

nisms in S. cerevisiae that involve intragenic chromatin structure.

To what extent these chromatin-mediated regulation processes

generalize to distant eukaryotic species is a very challenging

question for future studies.

Methods

Data source

Gene data

A selection of 4554 yeast genes for which high-confidence tran-
scription start and termination sites could be assigned was de-
termined as follows. We used the high resolution transcriptome
analysis from David et al. (2006), in which genome-wide tiling
arrays were used to define a set of transcribed segments along the
S. cerevisiae genome. Transcribed segments overlapping known
nondubious genes on less than 50% of the segment length were
not considered. The transcription start and end sites were de-
termined from the boundaries of the given transcribed segments.
Note that the transcribed segment used to determine the 59 end
could be different from the one used for the 39 end of the gene.
This resulted in 4554 genes for which high-confidence transcrip-
tion start and termination sites could be assigned. Genes con-
taining introns were downloaded from the Saccharomyces Ge-
nome Database (SGD project; http://www.yeastgenome.org/).
Only genes with one intron were retained for our analysis of intron
size. Genome-wide data on yeast RNA polymerase II (Pol II) were
retrieved from Steinmetz et al. (2006). A given position was con-
sidered enriched in Pol II when its score was in the highest quintile.
We also considered that each polymerase has a certain occupancy
in space, therefore we considered each enriched Pol II position to
be included in a 630 bp surrounding box. Transcription plasticity
was retrieved from (Tirosh and Barkai 2008): it is the average of the
square log2 expression ratio estimated from a large number of
microarray experiments. Sensitivity to disruption of chromatin
modifiers was obtained from Steinfeld et al. (2007) and Tirosh and
Barkai (2008): it quantifies the extent by which gene expression
depends on chromatin regulators activity.

Nucleosome data

In vivo nucleosome occupancy for 4554 yeast genes (log2 ratio)
was retrieved from microarray data. For the computation of the
power spectrum (see below), we used the microarray data from
(Whitehouse et al. 2007) that correspond to the detrended com-
ponent of the nucleosome occupancy profile as obtained by Lee
et al. (2007). In vitro nucleosome occupancy data were retrieved
from Kaplan et al. (2009). OPN and DPN classes were taken from
Tirosh and Barkai (2008, Supplemental Table 2). Histone variant
Htz1 (also known as H2A.Z) occupancy was obtained from Zhang
et al. (2005) and Tirosh and Barkai (2008). Histone H3 turnover
between transcription start and end sites were determined from
chromatin immunoprecipitation with microarray hybridization
(ChIP-chip) genome-wide data (Dion et al. 2007).

Nucleosome data analysis

59/39 nucleosomes

To determine the first (‘‘59’’) and last (‘‘39’’) nucleosomes of a given
gene in relation to the transcription start sites (TSS) and tran-
scription termination sites (TTS), we smoothed the nucleosome

occupancy (log2 ratio) profile by a (s = 18 bp) Gaussian window
and then computed the first (respectively last) maxima of this
smoothed signal in the interval [�50 bp, +200 bp] (respectively
[�200 bp, +50 bp]) with respect to the TSS (respectively TTS). The
extra 50 bp considered on the left (respectively right) of the TSS
(respectively TTS) allowed for an inaccuracy in the annotated po-
sition of the transcript 59 (respectively 39) extremity.

Bi-stable and crystal-like genes

For each of the 4554 genes, we computed the power spectrum
S2 (k), k = 0,. . .,L/2 and the normalized power spectrum ~S2ðkÞ =

S2ðkÞ=+i=1S2ðiÞ, of the nucleosome occupancy profile in between
the 59 and 39 bordering nucleosomes, using the fftw3 library
(http://www.fftw.org) interfaced with LastWave signal processing
software (http://www.cmap.polytechnique.fr/;bacry/LastWave).
The main maxima of this spectrum were determined, as well as
their corresponding periods. Periods were considered informative
when in the range [125 bp, 210 bp]; they were otherwise discarded.
Crystal-like genes were defined as having a unique maximum over
a 0.06 threshold. Bi-stable genes were defined as having their first
two maxima over a 0.06 threshold and the mean of the two periods
in the range [160 bp, 170 bp]. This threshold was intentionally
chosen stringent enough to ensure that the set of bi-stable genes
was not contaminated by crystal or other genes. This led to some
underestimation of the set of bi-stable genes.

Well-positioned nucleosomes

To determine the nucleosomes that can be considered as well-
positioned in the central region of large genes (Supplemental Fig.
S3), we smoothed the nucleosome occupancy data by a (s = 18 bp)
Gaussian window and then selected the maxima above a 0.20
threshold for in vivo data from Lee et al. (2007) and a 1.5 threshold
for in vitro data from Kaplan et al. (2009). For the theoretical nu-
cleosome occupancy profile, we selected the maxima of the
smoothed P(s) (see Equation 3, below) above a 0.718 threshold.

Physical model

Nucleosome density profile

As proposed in Vaillant et al. (2007), when focusing on the dy-
namical assembly of histone octamers along the DNA chain, chro-
matin can be reasonably modeled by a fluid of one-dimensional
rods of finite extension l (the DNA wrapping length around the
octamer), binding and moving in an external potential E(s,l ) (the
effective nucleosome formation potential at position s), and in-
teracting through a hard core potential of size l. Within the grand
canonical formalism, considering that the fluid is in contact with
a thermal bath (at reciprocal temperature b) and a histone octamer
reservoir (at chemical potential m), the equilibrium density r(s) of
hard rods in an external field E(s,l ) obeys the nonlinear integral
equation (Percus 1976):

bm = bEðsÞ+ ln rðsÞ � ln 1�
ðs + l

s

rðs0Þds0
� �

+

ðs

s�l

rðs0Þ
1�

Ð s0 + l
s0 rðs00Þds00

ds0: ð1Þ

Nucleosome formation energy: Modeling NFRs at gene extremities

Our model of the energy landscape E(s) consists in simply taking
into account the NFRs observed in vivo at yeast gene extremities,
and in neglecting the effect of the gene sequence. If a significant
part of the observed NFRs at yeast genes TSS and TTS are encoded in
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the DNA sequence (Vaillant et al. 2007; Miele et al. 2008), some are
not, probably due to the binding of external proteic factors like
transcription factors or PIC/Pol II. To model the observed 59 and 39

NFRs, we locally imposed the presence of an ‘‘effective’’ energy
barrier at both the TSS (s = sTSS) and the TTS (s = sTTS). The linear
shape of these energy barriers amounts to impose a constant force
on both sides of the intragenic nucleosome array. Inside the genes,
we considered the energy to be constant. This led to the following
energy profile (see Fig. 3A):

EðsÞ= EM s < s1 = sTSS � D

EðsÞ= EMð1� ðs� s1Þ=DÞ s1 < s < sTSS

EðsÞ= 0 for sTSS < s < s2 = sTTS � D

EðsÞ= EMðs� s2Þ=D s2 < s < sTTS

EðsÞ= EM s > sTTS

������������

������������
; ð2Þ

where the parameters EM = 6kT and D = 80 bp were fixed to re-
produce as faithfully as possible the 2D map of nucleosome oc-
cupancy along yeast genes (Fig. 3B,C).

To investigate the role of the DNA sequence on nucleosome
positioning in the central region of the largest yeast genes, we have
considered, as an alternative model, an energy profile E(s) with the
same bordering energy barriers, but with the sequence-dependent
nucleosome wrapping energy profile in between these barriers
predicted by model II (Vaillant et al. 2007).

Nucleosome occupancy profile

Equation 1 has an explicit solution (Vanderlick et al. 1986) that
requires numerical integration. We fixed the chemical potential to
m = 1 kT and the hard-rod (nucleosome) size to l = 146 bp to get the
75% nucleosome coverage observed in vivo. The nucleosome oc-
cupancy probability profile P(s) was obtained by convolving the
nucleosome density r(s) with the rectangular function P of width
146 bp:

PðsÞ= r o P146ðsÞ: ð3Þ

P(s) is the probability for a base pair located at s to be occupied by
a nucleosome of length 146 bp.
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