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Bifurcation in epigenetics: Implications in development, proliferation, and diseases
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Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity
of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the
modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics
of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable
and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the
dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation
diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation.
In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic
identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the
effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental
transitions where the system is shifted close to the critical point to benefit from high susceptibility to
developmental cues.
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Cellular differentiation occurs during the development of
multicellular organisms and leads to the formation of many
different tissues where gene expression is modulated without
modification of the genetic information [1]. These modulations
are in part encoded by biochemical tags, called epigenetic
marks, that are set down at the chromatin level directly
on DNA or on histone tails. These marks are directly or
indirectly involved in the local organization and structure of the
chromatin fiber, and therefore may modulate the accessibility
of DNA to transcription factors or enzymatic complexes,
playing a fundamental role in the transcriptional regulation
of gene expression.

Each tissue is characterized by a distinct epigenetic pat-
tern [2] that is mainly shaped during cellular differentiation by
developmental signals driven mainly by transcription factors.
For a differentiated cell, these specific signals disappear and
the global epigenetic state of a cell is robustly maintained
throughout the cell life and in its daughter cells. This mainte-
nance, despite the fast turnover rate of epigenetic marks [3] or
the dilution of epigenetic information during cell division [4],
implies the existence of mechanisms to avoid the rapid loss of
epigenetic information.

At the gene level, there are active or inactive epigenetic
marks that influence the transcriptional activity of the gene [5].
A coherent activity needs the gene promoter to be covered
by a majority of active or inactive marks. Recently, many
efforts both experimentally [6–8] and theoretically [9–18]
have been dedicated to study the mechanisms responsible for
the spreading and maintenance of an epigenetic state at the
gene level for different biological organisms and contexts. In
particular, it has been shown for many examples, such as for the
locus MAT in fission yeast [9,12] or for the vernalization of the
floral repressor FLC in Arabidopsis [7,15], that long-range or
cooperative interactions between epigenetic marks are neces-
sary for the emergence of stable coherent states. Of particular
interest is also the work of the Sengupta group, showing that
differences between activating and silencing rates might be
responsible for hysteresis in epigenetic silencing by the silent
information regulator (SIR) system in budding yeast [11,18].

In this Rapid Communication, we develop a general
formalism that describes the dynamics of epigenetic marks
and that accounts, at the same time, for the plasticity and
robustness of the epigenome. Using statistical and nonlinear
physics methods, we characterize the emergence of coherent
epigenetic states from the recruitment of modifying enzymes
and we study the bifurcations occurring in the system when
altering the recruitment intensities. Finally, we discuss in detail
the implications of our findings in concrete biological contexts
during development, differentiation, or disease. In particular,
we propose that the experimentally observed regulation of the
cell cycle during development might have a strong impact on
the efficiency of epigenetic switches.

a. Model. Inspired by the model introduced by Dodd
et al. for the mating-type switch of the fission yeast
(S. pombe) [9,10,12], we consider a DNA region, consisting
of n nucleosomes, that is located between two bound-
aries that epigenetically isolate the region from neighboring
DNA [13,19]. We assume that the epigenetic state of each
nucleosome can fluctuate between three different states:
unmarked (U), active (A), and inactive (I). Active marks would
be, for example, associated with acetylation of the lysine 9 of
histone 3 (H3K9), and inactive marks with tri-methylation
of H3K9 (HP1-type chromatin) or with the methylation of
H3K27 (Polycomb-type chromatin) [5]. However, the actual
epigenetic marks associated with each state are not important
for our purpose and we only need two well-separated kinds of
marks that can be exchanged to each other by passing through
an intermediate state (I � U � A).

We assume that the nucleosomal state can be modified
by two mechanisms: (i) Recruitment of modifying enzymes
(for example, histone demethyl- or methyltransferases and
histone deacetyl- or acetyltransferases) by surrounding active
or inactive nucleosomes that occurs at a rate εXρX where ρX

is the local density of the modified state X (A or I) that, by
considering a spatial mean-field approximation, we identified
to the global density nX/n with nX the corresponding number
of nucleosomes. (ii) Random transitions between states that
occur at a rate k0 and that represents recruitment-independent
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enzymatic activity, nucleosome turnover, or dilution due to
replication. Note that to facilitate the analysis, we lumped
into k0 processes (turnover vs replication) with presumably
different time scales and statistical properties. However,
previous works on epigenetic modeling [9,10] suggest that
the main conclusions of our study should not depend on
that approximation. The corresponding system of biochemical
reactions is composed of four possible state transitions given
below with their respective propensities:

U → A, ru,a ≡ (k0 + εAρA)(n − nA − nI ), (1)

U → I, ru,i ≡ (k0 + εIρI )(n − nA − nI ), (2)

A → U, ra,u ≡ (k0 + εIρI )nA, (3)

I → U, ri,u ≡ (k0 + εAρA)nI , (4)

where, for simplicity, we assumed that the rates of random
transitions are similar for each reaction and that possible
discrepancies between A and I occur at the recruitment level.

b. Analogy with an Ising model and phase transitions.
From a theoretical perspective, we remark that this model is
formally very similar to a zero-dimensional three-state Ising
model where nucleosomal states represent spins (for example,
I = −1, U = 0, A = +1), recruitment (εX) corresponds to
coupling between spins (J ), and random transitions (k0) are
associated with thermal fluctuations (kBT ).

This analogy suggests that a good observable for our system
will be the magnetization m = (nA − nI )/n. In biological
terms, this magnetization could be interpreted as the relative
activity of the DNA region if we consider that, in addition to
the favorable effect of active marks, the presence of inactive
marks penalizes the activity. In the following, we will consider
m as the relevant observable of our system.

As it is well known that zero-dimensional Ising models
do exhibit phase transitions between ordered and disordered
phases [20], we expect our system to display such dramatic
changes. To illustrate this, we consider the simple mass-action
model (equivalent to the mean-field approximation of the Ising
model) that captures the mean dynamics of the epigenetic
marks in the case of symmetric recruitment (εA = εI ≡ ε):

dρA

dt
= (k0 + ερA)(1 − ρA − ρI ) − (k0 + ερI )ρA, (5)

dρI

dt
= (k0 + ερI )(1 − ρA − ρI ) − (k0 + ερA)ρI . (6)

At the steady state, the previous dynamical system has, at
most, three relevant fixed points that, in term of the effective
magnetization m, are given by m0 = 0 (∀ε) and m± =
±(k0/ε)

√
(ε/k0 + 1)(ε/k0 − 3) (for ε > 3k0). Figure 1(a)

shows the classical supercritical pitchfork bifurcation
occurring at the critical point εc = 3k0. For weak recruitment
(ε < εc), m0 is the only stable fixed point and the activity of
the DNA region is not clearly defined. At the critical point, m0

turns unstable and stable coherent activities (m± for active or
inactive) are only observed for strong recruitments (ε > εc).

c. Distribution and stability of epigenetic states. To go
beyond the mean-field approximation, we aim at the full
distribution of probability for m. For simplicity, we assume
symmetric coupling in the following. The general situation
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FIG. 1. (Color online) Symmetric regime. (a) Bifurcation dia-
gram for m as a function of ε/k0. Full (dashed) lines represent stable
(unstable) fixed points of the dynamical system. Insets: Probability
distribution functions (p.d.f.) of m for n = 10 (black circles) or n =
100 (red squares) computed from the Fokker-Planck approximation
(dashed lines) or from stochastic simulations (squares). (b),(c) Mean
first passage time 〈τ 〉 (in k−1

0 units) to switch from m− to m+ as a
function of ε [(b) for n = 100] or of n [(c) for ε/k0 = 5], computed
from Eq. (9) (dashed lines) or from simulations (squares). Standard
errors on the estimation of 〈τ 〉 are smaller than the symbol size.

will be discussed in the next section. The starting point is to
write the master equation related to the set of biochemical
reactions given in Eqs. (1)–(4), but for the variables m and
s = (nA + nI )/n where s represents the density of marked
nucleosomes. Then, assuming that s is always large and that
its dynamics is fast compared to the one of m allows one to
perform a time-scale separation and leads, in the limit of large
n, to the Fokker-Planck equation for the probability P (m) (see
Supplemental Material [21] for details),

∂P

∂t
= − ∂

∂m

(
[w+(m) − w−(m)]P

− (1/2n)
∂

∂m
{[w+(m) + w−(m)]P }

)
, (7)

with w+ = (ru,a + ri,u)/n and w− = (ru,i + ra,u)/n, the
propensities to increase (using reactions 1 and 4) or decrease
(2 and 3) m by 1. Equation (7) is a classical Fokker-Planck
equation for the heterogeneous diffusion of a particle within
a unidimensional potential [22,23]. At the steady state, the
probability distribution is then given by

P∞(m) = 1

Z

exp
{
2n

∫ m

−∞ dm′[w+(m′)−w−(m′)
w+(m′)+w−(m′)

]}
w+(m) + w−(m)

, (8)
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FIG. 2. (Color online) Asymmetric regime. (a) Cusp catastrophe surface representing the fixed points of the dynamical system as a function
of εA/k0 and εI /k0. (b) Stability diagram and boundaries between the mono- and bistable regions. (c)–(e) Bifurcation diagrams for m as a
function of εA/k0 for fixed values of εI /k0 [(c) = 1, (d) = 3, (e) = 5]. Legend as in Fig. 1(a).

with Z a normalization factor. The insets of Fig. 1(a) show
the very good agreement between the approximated solutions
given by Eq. (7) and the distributions computed from exact
stochastic simulations of the full system (1)–(4) using the
Gillespie algorithm [24]. While below the critical point we
observe a unimodal distribution centered around m0, for high
coupling (ε > εc), the distribution is bimodal and peaked
around the coherent epigenetic states m±, with the width
of each peak being proportional to [n(ε − εc)/k0]−1/2 [21].
At the critical point, we observe a nearly flat distribution,
characteristic of phase transitions.

In the presence of bimodality, we quantify the stability of a
coherent epigenetic state by computing the mean first passage
time 〈τ 〉 to switch from m− to m+. Using the Fokker-Planck
formalism introduced above, we show that [21]

〈τ 〉 ≈ 18π

(ε − εc)
√

3(ε/k0 + 3)
exp[V (0) − V (m−)], (9)

with V (m) = − log P∞ the effective potential corresponding
to the steady-state “epigenetic landscape.” As already pointed
out by Micheelsen et al. [12], we find that similar to transition
state theory [25], 〈τ 〉 mainly depends on the “energy barrier”
between the starting state (m = m−) and the transition state
(m = 0). As the coupling increases, the barrier is higher and the
epigenetic state is more stable [see Fig. 1(b)]. We also remark
that 〈τ 〉 scales exponentially with the size n of the system
[see Fig. 1(c)]. Such very long relaxation times are typical to
systems with long-range interactions [20,26] and means that
the larger the system, the more stable the epigenetic state.

d. Asymmetry and cusp catastrophe. In this section, we
consider the general situation where recruitments of enzymes
by active or inactive marks are different. In the next section, we
will focus on the study of the generalization of the dynamical
system, given by Eqs. (5) and (6), which captures the main
characteristics of asymmetric recruitment.

At the steady state, the system has, at most, three fixed
points and the bifurcation diagram shapes as a cusp catastrophe
surface [Fig. 2(a)], which is characteristic of dynamical
systems with asymmetry [27] and also observed, for example,
in the epigenetic SIR system in budding yeast [11,18] or in
insect outbreaks [28]. For every pair of parameters (εA,εI ),
the dynamical system is either monostable or bistable (with
an unstable fixed point). Using equality conditions on the
nullclines and their first derivatives [21], we find an exact
parametric expression for the boundary between the mono-
and bistable regions [Fig. 2(b)]. Depending on the relative
asymmetry between εA and εI , the single (stable) fixed point
of the monostable region corresponds to an active or inactive
epigenetic state. Bistability, with the coexistence of an active
and an inactive coherent activity, is observed only for strong
recruitments (εA,εI > εc) and small asymmetry.

Figures 2(c)–2(e) show the bifurcation diagram of the
system when increasing εA/k0 for fixed values of εI /k0. If
εI < εc, the system stays in the monostable region and the
unique fixed point goes continuously from an almost incoher-
ent state (m ∼ 0) to a coherent active state [Fig. 2(c)]. For
stronger recruitment (εI > εc), the system crosses the bistable
region making a typical hysteresis curve with two saddle-node
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bifurcations [Fig. 2(e)]. For example, starting from an inactive
state, as we increase the recruitment of active marks, the
system stays in the inactive state (even for εA > εI ) until it
switches abruptly to an active state. When crossing the cusp
point [Fig. 2(d)], the system becomes ultrasensitive and weak
asymmetries lead to important changes in the epigenetic state.

e. Implications in development, proliferation, and diseases.
Recent quantitative experiments in mice [8] have shown that
bistable activities take place in an epigenetically controlled
system and that modifications in the epigenome can be stably
imprinted by transcriptional factors. In particular, this study
suggests that, at least for some chromatin regions, symmetric
or weakly asymmetric recruitment may correspond to normal
biological situations, and that temporary strong asymmetries in
the recruitment of modifying enzymes may lead to long-term
modifications of the current epigenetic state.

In vivo, differentiated cells exhibit a robust phenotype
within the population and in time. The analysis of the symmet-
ric regime of our formalism (Fig. 1) suggests that such robust-
ness needs strong recruitments (ε > εc) and large cooperative
units (n � 1) in order to stabilize coherent epigenetic states
(active or inactive) and to avoid spurious switches between
coherent states. Moreover, Fig. 2 suggests that epigenetic states
of differentiated cells are also stable against small fluctuations
of the recruitment couplings. Such fluctuations induce asym-
metries in the system that do not impact significantly on the
epigenetic state as long as εA and εI remain in the bistability
region. This property is crucial for the maintenance of a robust
phenotype in weakly fluctuating environments.

However, when modifications of the environment are
important, it would be beneficial to adapt to the current
environment by modifying the epigenetic state, such as, for
example, for plants at seasonal transitions [29]. Misadaptation
to the current environment may lead to stress signalings that
might result in asymmetric recruitment forcing the current
epigenetic state towards an adapted state, such as in the cold-

induced silencing of the FLC locus in plant vernalization [7].
Figure 2(e) suggests that such asymmetric signals have to be
strong enough to allow an epigenetic switch. Once the switch is
performed, the hysteretic shape of the bifurcation insures that
the epigenome will remain stable in its new state. This property
allows adaptation but only if needed, i.e., only when the
organism is strongly misadapted to the current environment.

Many diseases have been related to epigenetic pertur-
bations, from neurologic disorder to cancer [30]. Within
our formalism, these perturbations could be interpreted by
anomalous values for the recruitment (ε/k0) that shift the
steady state of the system below or close to the critical point,
and that make the epigenetic state incoherent or unstable and
very sensitive to external noise. For example, cancer is often
associated with an increase in the frequency of replication
during tumorigenesis [31]. In our model, this means an
increase of the random transition rate k0 due to replication.
This may modify the position of the critical point and therefore
may lead to epigenetic instability and misregulation of some
tumor suppressor proteins, for example.

During development, cellular differentiation occurs in
successive stages. Cells pass through a series of developmental
transitions where epigenetic states are modified by develop-
mental cues that presumably force locally the desired state.
Previously, we saw that, for differentiated cells, the hysteretic
shape of the bifurcation may be valuable for the buffering
of environmental fluctuations or for adaptation. Within the
context of development, this could represent a hindrance at
developmental transitions when the epigenetic state has to
efficiently switch in a short time window. Our formalism
suggests that a possible strategy to overcome this apparent
issue would be to temporarily shift the system at or close
to the critical point during developmental transition. Indeed,
Fig. 2(d) shows that at the cusp point, the epigenetic state
is very sensitive to weak asymmetries. Going back to the
original analogy between our model and an Ising model with
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FIG. 3. Epigenetics and criticality. (a) Proposed strategy for guided epigenetic switching at developmental transitions when temporary
asymmetric signal (εA > εI = 6) and modification of k0 are applied during a finite time period T . (b) Probability to be active (m > 0) after a
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phase transition, this is related to the concept of susceptibility
that is maximal at the critical point. In many organisms,
experimental evidence suggests that the cell cycle length
is regulated during development, alternating between short
cycles during developmental transitions and longer cycles
between the transitions and in the differentiated state [32].
In our model, this means that at developmental transitions,
k0 may be increased and therefore the effective recruitment
strength (ε/k0) may be reduced and may become closer to
the critical value. Under this hypothesis, we test the ability
to switch between two coherent states when applying a
weak asymmetric signal (the developmental signal) during a
finite time period (the developmental transition) by running

Gillespie simulations. As expected, Fig. 3 shows that the
switching efficiency is optimal when εI /k0 ∼ 3 during the
transition. Compared to the situation where k0 is not changed
during the transition and where only a few cells have switched
their epigenetic state, going close to the critical point leads
to a stable switch for almost all of the cells. Assuming the
necessary experimental verifications of the proposed strategy,
our results strongly suggest that it could be advantageous,
during developmental transitions, to be close to criticality to
benefit from the high sensitivity to external stimuli, as already
observed in various other biological systems [33].

I thank Cédric Vaillant for fruitful discussions.
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