Toward a Polynomial Model
with Application to the OpenStream Language

Paul Feautrier
with Albert Cohen and Alain Darte

June 13, 2016
Models in General

- A model is a mathematical (or computational) object that emulate a real world object (syntax).
- The “natural operations” of the model must emulate the behaviour of the real world object (semantics).
- An example: Newton’s laws of motion:

\[
F = m\gamma, \quad F = G\frac{m.m'}{r^2}
\]

A system of ordinary differential equations. Semantics:
- Proof of the existence of solutions
- Computing the solution, either in closed form or numerically
- If properly initialized the solution matches the trajectory of a rocket in the solar system.

NB. Modern programs and architectures are so complex they can be considered as real world objects.
Models of Programs

To reason about the behaviour of a program, one needs a notation for:

- its set of operations (*instances*, not statements)
- the execution order (a.k.a. the *Happens Before Relation* HB)
- a mapping from operations to memory *cells*

These sets are enormous: a 1 Gflops processor (big deal!) running for 1 second generates 10^9 operations.

The only possibility is to take advantage of regularities and represent these sets by symbolic constraints.

The HB relation can in some cases be represented by a *schedule*. Program optimization or parallelization $=$ changing the schedule.
A model must be faithful and manageable. The necessary operations must have efficient implementations:

- emptiness test
- intersection, union, complement
- projection, image
- optimization

Beware: do not confuse “efficient implementation” with decidability.
The Instancewise Approach

Constraints

- The schedules must be positive in the respective domains:
 \[x \in S \Rightarrow \theta_S(x) \geq 0, \]
 \[y \in T \Rightarrow \theta_T(y) \geq 0, \]

- The delay must be positive in the dependence relation:
 \[\Delta(x, y) \Rightarrow \theta_T(y) - \theta_S(x) \geq \tau. \]
Problems

All such problems have the same form:

- Given a set S defined by constraints:
 \[S = \{ x | g_1(x) \geq 0, \cdots, g_n(x) \geq 0 \}, \]

- characterize all function f of a given shape such that $x \in S \Rightarrow f(x) \geq 0$.

All solutions are in the form of a certificate of positivity

\[f(x) = \sum_{k=1}^{N} \lambda_k h_k(x), \lambda_k \geq 0, \]

where the $h_k(x) \geq 0$ are obvious consequences of the g_i constraints.
Sets are represented by Z-polyhedra: the set of integral solutions of affine inequalities. These sets are associated to \textit{regular} loop nests.

\begin{align*}
\text{for}(i=0; i<n; i++) \\
\text{for}(j=0; j<i; j++)
\end{align*}
- Farkas lemma: construct an affine formula positive inside a polyhedron
- Linear programming: to solve the resulting constraints, emptiness test
- Fourier Motzkin elimination algorithm: emptiness test, projection

Linear programming has very efficient implementations: glpk, CPLEX, gurobi, and parametric extensions (PIP).
Most (large) programs do not fit into the polyhedral model. Some approaches:

- Extract small polyhedral kernels (SCOPs), optimize independently and plug the results back into the original program. A SCOP running time must represents a significant portion of the total running time (Amdhal law).

- Approximate: construct a polyhedral program with more operations, more dependences and more memory than the original. Optimizations valid for the approximations are valid for the original but the approximation may have no parallelism.

- Invent other models.
Other Models

The Tree model

- Represent sets by formal languages
- Regular languages for flat programs
- Context free languages for (recursive) procedures
- Many questions are undecidable by reduction to Post correspondence problem.

The Polynomial Model

- Represent sets by semi-algebraic sets.
- Problem 1: no projection algorithm in integers
- Problem 2: Hilbert 10th problem.
The Basic Problem

Given: a set K and a function f, is f positive in K:

$$\forall x \in K : f(x) > 0?$$

Extension: f is a template depending on a vector of parameters μ. Find μ such that:

$$\forall x \in K : f_{\mu}(x) > 0.$$

Farkas lemma is the case where K is a polyhedron $K = \{ x \mid Ax + b \geq 0 \}$ and f is affine. The solution is:

$$f(x) = \lambda_0 + \lambda.(Ax + b), \lambda \geq 0$$
A semi-algebraic set (sas):

$$K = \{x \mid p_1(x) \geq 0, \ldots, p_n(x) \geq 0\}$$

where x is a set of unknowns x_1, \ldots, x_p and the p_is are polynomials in x.

A polyhedron is an sas such that all the p_is are of first degree. One usually include the trivial $1 \geq 0$ among the p_is.

Schweighofer products: for each $\bar{e} \in \mathbb{N}^n$:

$$S_{\bar{e}}(x) = p_1^{e_1}(x) \cdots p_n^{e_n}(x) = \prod_{i=1}^{n} p_i^{e_i}(x).$$

The quantity $N = \sum_{i=1}^{n} e_i$ is the order of the product, not to be confused with its degree.
Given a finite subset $Z \subset \mathbb{N}^n$ the associated Schweighofer sum is:

$$S_Z(x) = \sum_{\vec{e} \in Z} \lambda_{\vec{e}}.S_{\vec{e}}(x), \lambda_{\vec{e}} > 0.$$

Clearly, all Schweighofer sums are positive in K.
Theorems

Theorem (Handelman, 1988)

If K is a compact polyhedron, then a polynomial p is strictly positive in K if and only if it can be represented as a Schweighofer sum for some finite $Z \in \mathbb{N}^n$.

Theorem (Schweighofer, 2002)

If K is the intersection of a compact polyhedron and a semi-algebraic set, then a polynomial p is strictly positive in K if and only if it can be represented as a Schweighofer sum for some finite $Z \in \mathbb{N}^n$.
Comparisons

Notice the similarity between the conclusion of the two theorems, and the difference with Farkas lemma: since there is no useful bound on the size of Z, it is usually impossible to obtain a negative answer.

Another difference: those two theorems deals with strictly positive inequalities, while Farkas deals with non-strict inequalities.
The aim of this algorithm is to collect a set C of constraints on the unknowns λ and μ.

- $C = \emptyset$.
- Given: a set of Schweighofer products $\{S_{\vec{e}}(x) \mid \vec{e} \in Z \subset \mathbb{N}^n\}$ and a polynomial (template) $p_\mu(x)$,
- Result: A system of constraints on the λ and μ.
- Completely expand the master equation:

$$E = p_\mu(x) - \sum_{\vec{e} \in Z} \lambda_{\vec{e}} S_{\vec{e}}(x).$$

- For each monomial $x_1^{f_1} \ldots x_p^{f_p}$, collect its coefficient c and add $c = 0$ to C. c is an affine form in the λ and μ.

Algorithm H works equally well in the Handelman or Schweighofer case, provided one use a uniform representation of polynomials, whatever their degree.

The main difficulty is the selection of the products. One may use an oracle(!), or all products of a given degree, or all products of a given order.

The resulting system of constraints may be used in many ways: it may be solved by itself, or may be combined with other constraints before solving.

If a solution for the λ and μ is found, this solution can be certified, independently of Handleman or Schweighofer, by straightforward algebraic evaluation.
Scheduling

Notations

- R, S, \ldots a set of instructions
- D_R the iteration domain of R, usually a polyhedron, sometimes an sas
- $\Delta_{RS} \subseteq D_R \times D_S$, a dependence set from R to S.

Problem For each statement R find a function $\theta_R : D_R \rightarrow \mathbb{N}$ such that:

\[
x \in D_R \Rightarrow \theta_R(x) \geq 0
\]

\[
\begin{pmatrix} x \\ y \end{pmatrix} \in \Delta_{RS} \Rightarrow \theta_R(x) + 1 \leq \theta_S(y)
\]
Method

- For each statement R, build a template schedule θ_R by applying the first part of algorithm H to D_R
- For each dependence, build a master equation for the delay $\theta_S(y) - \theta_R(x) - 1$ by applying algorithm H to Δ_{RS}
- Collect the constraints and solve for the λ and μs using a linear programming tool.
An Example

Find a schedule for:

```c
s = 0.;
for(i=1; i<N; i++)
    for(j=0; j<i; j++)
        s += a[i][j];
```

- This program has complexity $O(N^2)$, hence cannot have an affine schedule.
- One can find a bidimensional schedule, which can be converted into a quadratic schedule by counting.
- Can one find the quadratic schedule directly?
table((__node,S) = [[i,j],{(N >= i+1),(i >= j+1),(i >= 1),(j >= 0)}],(__nodes) = [S],(__transition,T0) = [S,S,table(i = i’,j = j’),{(i’ >= i+1)}],(__transition,T1) = [S,S,table(i = i’,j = j’),{(i = i’),(j’ >= j+1)}],(__transitions) = [T0,T1])

(N * N)*mu_6+N*i*mu_11+N*i*mu_8+N*j*mu_15+N*mu_5+(i * i)*mu_12+
...+
(j * j)*mu_16-j*mu_15-j*mu_17-j*mu_16-j*mu_7-mu_10-mu_5-mu_7

dependence polyhedron [(N >= i+1),(N >= i’,i’ >= i+1),(i >= j+1),(i >= 1),(i’ >= j’,j’ >= j+1),(i’ >= 1),(j’ >= 0)]

dependence polyhedron [(N >= i+1),(N >= i’,(i = i’),(i >= j+1),(i >= 1),(i’ >= j’,j’ >= j+1),(i’ >= 1),(j’ >= j),j’ >= 0)]

table(mu = 0,mu_10 = 1/2,mu_11 = 0,mu_12 = 0,mu_13 = 1/2,mu_14 = 1,mu_15 = 0,mu_16 = 0,mu_17 = 0,mu_18 = 0,mu_5 = 0,mu_6 = 0,mu_7 = 0,mu_8 = 0,mu_9 = 0)

theta[S] = [1/2*(i * i)+j-1/2*i] == (j) + 1/2 . (i-1)*(i-1) + 1/2 . (i-1)

delay [T0] = 1/2*i+1/2*(i’ * i’)+j’-1/2*(i * i)-1/2*i’-j-1

== (j’) + 1/2 . (i’-i-1)*(i’-1) + 1/2 . (i’-i-1)*(i-1) + (i-j-1) + (i’-i-1)
What is the use(s) of a schedule?

- Detecting programming errors (e.g. when an infinity of tasks are to be executed at the same time), or when the program needs unbounded memory.
- Proving the absence of deadlock.
- Parallel code generation, solved for polyhedra (CLooG, Cédric Bastoul), work in progress for polynomials.

But:

- Sequential programs do not have deadlocks. Applies only to parallel programs (e.g. OpenStream) or process networks (e.g. KPN) with infinite loops.
- Deadlocks are caused by cycles in the stream structure.
Introduction to the OpenStream Language

#pragma omp task output (x) // Task T1
x = ...;
for (i = 0; i < N; ++i) {
 int window_a[2], window_b[3];

 #pragma omp task output (x << window_a[2]) // Task T2
 window_a[0] = ...; window_a[1] = ...;
 if (i % 2) {
 #pragma omp task input (x >> window_b[2]) // Task T3
 use (window_b[0], window_b[1]);
 }
 #pragma omp task input (x) // Task T4
 use (x);
}

- Sequential control program for task activations.
- Reservation for reads/writes in streams with burst and horizon.
- Single assignment in streams (by construction) + dataflow semantics.
- Instance of Pop-Cohen CDDF (Control-Driven Data Flow).
- Optimization in Erbium runtime system explored by Pop & Miranda.
- Unlike KPN, streams with multiple inputs/outputs (but deterministic).
Some properties of polyhedral OpenStream

- The order of task activations is \prec, the sequential order of the control program.
- Each stream s has a write index, I_s and a read index, J_s, which are functions of the iteration vector of the task instance.
- At each task activation, the relevant indices are incremented by the corresponding burst.

$$I_s(t, i) = \sum_{t' \text{writes } s} \sum_{<t', i'> \prec <t, i>} \text{burst}(t', i')$$

- In the polyedral case, can be evaluated by tools for counting integer point inside a polyhedron.
- The degree of the result is the loop depth of the task activation.
- Dependence analysis amount to comparing indices and needs polynomial tools.
Deadlocks

Deadlock characterization iff there is, in the unrolled dependence graph,

- a statement T and an infinite sequence $(i_j)_{j \in \mathbb{N}}$ such that
 $T(i_j)$ depends on $T(i_{j+1})$ and i_j is before i_{j+1} in the
 activation program;
- a cycle if the program is bounded or follows Kahnian semantics.

Consequence: There is no deadlock iff there is a schedule.
Scheduling OpenStream

- Compute the read and write indices using (for instance) the ISL library.
- Construct a polynomial template for each task.
- Construct a scheduling problem for each pair of tasks, one writing and the other reading the same stream.
- Use algorithm H to convert this problem into a system of affine constraints and solve.
- If this system is infeasible, either the program has a deadlock or the order is not large enough.

One can use additional constraints for bounding the streams or construct *bounded delay schedules*.
The method works well and give interesting results in acceptable time, at least for small problems.

Other applications: transitive closure, program termination, (perhaps) invariant construction, resource allocation, ...

Complexity, very high, exponential in the order of Schweighofer products. However, well within the capability of glpk or CPLEX.

Can one use an oracle to guess which products are useful?
We are still far from a polynomial model.
Other polynomial tools: CAD, Bernstein, combine?
Very preliminary implementation using glpk and Z3.
Dependence Analysis

- Early work by B. Pugh et. al. using uninterpreted functions, and by van Engelen et. al. using interval analysis.
- Polynomial minimization using a Bernstein expansion, implemented in ISL.

Armin Größlinger: using Cylindrical Algebraic Decomposition for code generation.

Work in progress by A. Maréchal and M. Périn (Verimag) on linearization (i.e. getting rid of polynomials) using Handelman theorem and an oracle to control complexity.
THE END – QUESTIONS