Estimation of Parallel Complexity with Rewriting Techniques

Christophe Alias*, Carsten Fuhs†, Laure Gonnord‡

* INRIA & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France, christophe.alias@ens-lyon.fr
† Birkbeck, University of London, United Kingdom, carsten@dcs.bbk.ac.uk
‡ University of Lyon & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France, laure.gonnord@ens-lyon.fr

Languages, Compilation and Semantics, LIP Seminar
November, 3rd 2016
1. Introduction

2. Parallel complexity of regular programs
 Parallelization \leftrightarrow Termination

3. Parallel complexity of recursive programs
 Termination \leftrightarrow Parallelization

4. Conclusions
Parallel Systems

⇝ Many models: KPN (and variants), SDF (and variants), etc

Correctness
 - Determinism
 - Termination

Efficiency
 - Latency
 - Bandwidth
... generated by parallelizing compilers!

From the source code:

- Target latency? \geq termination
- Target bandwidth?
Trace ($\Omega_{\mathcal{I}}, \prec_{\text{seq}}$): sequence of operations executed by the program on the input \mathcal{I}.

Undecidable in general!

- Restrict program model \rightsquigarrow Polyhedral model
- Over-approximate $\Omega_{\mathcal{I}} \rightsquigarrow$ Abstract interpretation

Regular Program $\Omega_{\mathcal{I}}$ does not depend on \mathcal{I}.
\rightsquigarrow Polyhedral model
for $i := 0$ to $2*N$
 ℓ_1: $c[i] := 0$;
for $i := 0$ to N
 for $j := 0$ to N
 ℓ_2: $c[i+j] := c[i+j] + a[i]*b[j]$;

- for loop with arrays + affine constraints
for i := 0 to 2*N
 ℓ₁: c[i] := 0;
for i := 0 to N
 for j := 0 to N
 ℓ₂: c[i+j] := c[i+j] + a[i]*b[j];

- **for loop with arrays** + affine constraints
- \(\Omega_I \) can be encoded with integer polyhedra:
 \[\langle \ell_1, i \rangle : i \in [0, 2N] \]
 \[\langle \ell_2, i, j \rangle : (i, j) \in [0, N]^2 \]
- Static analysis with ILP: dependences, scheduling, allocation
Each node (subtree) of t is an operation of Ω_t
Not exactly regular, but Ω_t is decidable!
Data Dependence relate communicating/conflicting operations,
\[\rightarrow \subseteq \Omega \times \Omega \]
\[\leadsto \text{usually split into flow-, anti-, output-dependences} \]

Schedule Assign dates to operations, \(\theta : \Omega \rightarrow (D, \prec) \)

Induced order \(\prec_\theta = \{(s, t), \, \theta(s) \prec \theta(t)\} \)

Correctness \(s \rightarrow t \implies \theta(s) \prec \theta(t) \)

Hence: \(\rightarrow \subseteq \prec_\theta \)

Ordres séquentiels

...
// Compute $y = Ax$
for $i := 0$ to $N-1$
\[\ell_1: y[i] := 0; \]
for $j := 0$ to $N-1$
\[\ell_2: y[i] := y[i] + a[i][j] \times x[j]; \]
\[\lambda = \mathcal{O}(N) \]

Latency λ longest chain of \to
Degree of sequentiality smallest $s \in \mathbb{N}$ s.t. $\lambda = \mathcal{O}(N^s)$
Counterpart in the Tree Model?
Transition system

- Σ set of states
- $\Sigma_0 \subseteq \Sigma$ initial states
- $\rightarrow \subseteq \Sigma \times \Sigma$ transition relation

Termination Exhibit a ranking function $\rho : \Sigma \rightarrow (\mathcal{D}, \prec)$ s.t.

$$s \rightarrow t \Rightarrow \rho(t) \prec \rho(s)$$

WCET

$$\lambda = \max\{n, \exists \sigma_0 \in \Sigma_0 : \sigma_0 \rightarrow^n \sigma\}$$

Upper bound:

$$\lambda \leq \#\{\rho(\sigma), \exists \sigma_0 \in \Sigma_0 : \sigma_0 \rightarrow^* \sigma\}$$
\textbf{while}(p \neq q)\
\hspace{1em}\textbf{if}(p < q)\
\hspace{2em}p := p - q;\
\hspace{1em}\textbf{else}\
\hspace{2em}q := q - p;\

Each state of Σ is a pair $\langle \ell, \vec{i} \rangle$

ρ is affine per control point:

$\rho : \langle \ell, \vec{i} \rangle \mapsto Ai + b, \quad \Sigma \to (\mathbb{Z}^p, \ll)$
<table>
<thead>
<tr>
<th>Parallelization</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependence</td>
<td>Transition system</td>
</tr>
<tr>
<td>Schedule Latency</td>
<td>Ranking function</td>
</tr>
<tr>
<td></td>
<td>WCET</td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Parallel complexity of regular programs
 Parallelization \leftrightarrow Termination

3. Parallel complexity of recursive programs
 Termination \leftrightarrow Parallelization

4. Conclusions
for $i := 0$ to $2*N$
 ℓ_1: $c[i] := 0$;
for $i := 0$ to N
 for $j := 0$ to N
 ℓ_2: $c[i+j] := c[i+j] + a[i]*b[j]$;

Idea: Given a consumer, find the last producer \leadsto ILP.
Dependence Analysis

for i := 0 to 2*N
 ℓ1: c[i] := 0;
for i := 0 to N
 for j := 0 to N
 ℓ2: c[i+j] := c[i+j] + a[i]*b[j];

Idea: Given a consumer, find the last producer \rightsquigarrow ILP.

\rightarrow_N is an affine relation:
\[
\langle \ell_2, i-1, j+1 \rangle \rightarrow_N \langle \ell_2, i, j \rangle : i > 0 \land j < N \\
\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, 0, i \rangle : 0 \leq i \leq N \\
\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, i-N, N \rangle : N < i \leq 2N
\]
$N < i \leq 2N : (i) \rightarrow (i - N, N)$

$0 \leq i \leq N : (i) \rightarrow (0, i)$

$0 \leq i, j \leq N, i > 0, j < N : (i - 1, j + 1) \rightarrow (i, j)$

\rightarrow_N is an affine relation:

$\langle \ell_2, i - 1, j + 1 \rangle \rightarrow_N \langle \ell_2, i, j \rangle : i > 0 \land j < N$

$\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, 0, i \rangle : 0 \leq i \leq N$

$\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, i - N, N \rangle : N < i \leq 2N$

... finitely represented as a graph (PRDG)
Scheduling

Timestamps are vectors of \((\mathbb{N}^{d\ell}, \ll)\).

Affine schedule: \(\theta_{\ell} : \vec{x} \mapsto A_{\ell} \vec{x} + B_{\ell} \vec{N} + \vec{c}_{\ell} \quad D_{\ell} \rightarrow (\mathbb{N}^{d\ell}, \ll)\)

Can be computed with **ILP**
Scheduling

 Timestamps are vectors of \((\mathbb{N}^{d_\ell}, \ll)\).

 Affine schedule: \(\theta_{\ell} : \vec{x} \mapsto A_{\ell} \vec{x} + B_{\ell} \vec{N} + \vec{c}_\ell \quad D_{\ell} \to (\mathbb{N}^{d_\ell}, \ll)\)

 Can be computed with ILP

 Bonus: reverse the order: termination algorithm! \([\text{Rank}, 2010]\)
Outline

1 Introduction

2 Parallel complexity of regular programs
 Parallelization \leftrightarrow Termination

3 Parallel complexity of recursive programs
 Termination \leftrightarrow Parallelization

4 Conclusions
public int treeMax() {
 int leftMax = Integer.MIN_VALUE;
 int rightMax = Integer.MIN_VALUE;
 if (this.left != null)
 leftMax = this.left.treeMax();
 if (this.right != null)
 rightMax = this.right.treeMax();
 return Math.max(this.val,
 Math.max(leftMax, rightMax));
}

Each node (subtree) of t is an operation of Ω_t.

\rightarrow can be encoded as a term rewrite system (TRS):

$$
\text{dep(Tree(val, left, right))} \rightarrow \text{dep(left)}
$$

$$
\text{dep(Tree(val, left, right))} \rightarrow \text{dep(right)}
$$

How to schedule (check the termination of) a TRS?

\Rightarrow With monotone interpretations! [AProVE, KoAT]
Given a TRS \rightarrow over a term algebra $\mathcal{T}(\Sigma)$:

- Assign each symbol $a/n \in \Sigma$ with $[a] : \mathbb{R}^n \rightarrow \mathbb{R}$.
- The monotone interpretation of a term is:

$$[f(t_1, \ldots, t_n)] = [f](t_1, \ldots, t_n)$$

- Correctness: $t \rightarrow u \Rightarrow [t] > [u]$.
- Polynomial interpretations can be computed by KoAT.
Putting it all together

```java
public int treeMax() {
    int leftMax = Integer.MIN_VALUE;
    int rightMax = Integer.MIN_VALUE;
    if (this.left != null)
        leftMax = this.left.treeMax();
    if (this.right != null)
        rightMax = this.right.treeMax();
    return Math.max(this.val,
                     Math.max(leftMax, rightMax));
}
```

<table>
<thead>
<tr>
<th>Monotone interpretation</th>
<th>Parallel complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{dep}] (x_1)) = x_1</td>
<td>(\lambda = \mathcal{O}(\text{height}(t)))</td>
</tr>
<tr>
<td>([\text{Tree}] (x_1, x_2, x_3)) = (x_2 + x_3 + 1)</td>
<td>(\lambda = \mathcal{O}(\text{height}(t)))</td>
</tr>
</tbody>
</table>

Monotone interpretation

1. \([\text{dep}] (x_1)\) = \(x_1\)
2. \([\text{Tree}] (x_1, x_2, x_3)\) = \(x_2 + x_3 + 1\)
What happens on polyhedral programs?

```plaintext
for (i=0; i<=N; i++)
  for (j=0; j<=N; j++)
    //Block S
    {
      m1[i][j] = Integer.MIN_VALUE;
      for (k=1; k<=i; k++)
        m1[i][j] = max(m1[i][j], H[i-k][j] + W[k]);
      m2[i][j] = Integer.MIN_VALUE;
      for (k=1; k<=j; k++)
        m2[i][j] = max(m2[i][j], H[i][j-k] + W[k]);
      H[i][j] = max(0, H(i-1, j-1) + s(a[i], b[i]),
                    m1[i][j], m2[i][j]);
    }
```

dep(i, j) → dep(i – 1, j – 1): 0 ≤ i ≤ n, 0 ≤ j ≤ n

dep(i, j) → dep(i – k, j): 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ k ≤ i

dep(i, j) → dep(i, j – ℓ): 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ ℓ ≤ j

Result: [dep](x₁, x₂) = x₁ + x₂ λ ≤ 2n

Same as in the polyhedral model!
Conclusions

Position:
- Two successful experiences of cross fertilization
 \emph{Parallelization} \leftrightarrow \emph{Termination}.
- Monotonic interpretations can benefit to automatic parallelization.
- Natural extension of affine scheduling to recursive programs

Locks:
- How to define/find the best schedule?
- How to count the steps?
- Steps towards a parallelizing compiler:
 - Computation partitioning?
 - Generation of the parallel code given a schedule?
Thanks!