arXiv:1509.03118v1 [cs.DC] 10 Sep 2015

Execution-Cache-Memory Performance Model:
Introduction and Validation

Johannes Hofmann Jan Eitzinger Dietmar Fey
Chair for Computer Architecture Erlangen Regional Computing Center (RRZE)Chair for Computer Architecture
University Erlangen—Nuremberg University Erlangen—Nuremberg University Erlangen—Nuremberg
Email: johannes.hofmann@fau.de Email: jan.eitzinger@fau.de Email: dietmar.fey@fau.de

Abstract—This report serves two purposes: To introduce Computer (CISC) architecture. It originates from the late
and validate the Execution-Cache-Memory (ECM) performane 70s and initially was a 16 bit ISA. During its long history
model and to provide a thorough analysis of current Intel proces- 4 55 extended to 32bit and finally 64bit. The ISA con-
sor architectures with a special emphasis on Intel Xeon Hasal-

EP. The ECM model is a simple analytical performance model tains complex instructions that can have variable number of
which focuses on basic architectural resources. The arctettural Operands, have variable opcode length and allow for address
analysis and model predictions are showcased and validatesing references in almost all instructions. To execute this type
a set of elementary microbenchmarks. of ISA on a modern processor with aggressive Instruction
Level Parallelism (ILP) the instructions must be converted
on the fly into a Reduced Instruction Set Computer (RISC)

Today’s processor architectures appear complex and iike internal instruction representation. Intel refers these
transparent to software developers. While the machineealdnstructions as micro-operationgpps for short. Fortunately
is already complicated the major complexity is introducedecoding of CISC instructions tpops works so well that
by the interaction between software and hardware. Procesgadoes not negatively impact instruction throughput. Béea
architectures are in principle still based on the storemyfam note that when talking about instructions we mean the RISC
computer design. In this design the actions of the computike internal instructions callegiops and not Intel 64 ISA
are controlled by a sequential stream of instructions. Thestructions. In the following, we will describe the most
instructions are plain numbers and therefore equivalent itaportant techniques to increase performance in conteanpor
data. Consequently they can be stored in the same meme@mpcessor architectures.

This is a strictly sequential design and the main focus of ILP - As any modern processor, Intel processors aggres-
a system designer is to increase the instruction throughgisiely employ parallel instruction execution within theictly

rate. Modern processors nevertheless employ parallelism sequential instruction stream. This parallelism is exphbi
various levels to increase throughput: instruction lewiEita dynamically by hardware during execution and requires no
processing level, and task level. It is possible to fornei@t programmer or compiler intervention. ILP comes in two fla-
very simple performance model which reduces the processers: Pipelining and superscalar execution. Pipeliningcexes

to its elementary resources: instruction execution anc dafifferent stages of multiple instructions simultaneoudly
transfers. To set up the model one needs to determine Huperscalar designs multiple execution pipelines exidtcam
time it takes to execute a given instruction sequence onpd active and execute instructions at the same time. Where
given processor core and to transfer the data, which is regjuipipelining enables an instruction throughput of one pelecyc

to do so. Intimate knowledge about processor architectuggiperscalar execution allows to retire multiple instrasi per
cache and memory architectures are necessary to do thés. lyicle. Due to dependencies between instructions the defree
still a worthwhile effort as the model gives in-depth indigh ILP that can be leveraged heavily depends on the instruction
about bottlenecks, runtime contributions, and optim@ati mix of a particular code and is typically limited. In order to
opportunities of a code on a specific processor. This repestploit even more parallelism most modern general purpose
introduces the model and provides a thorough analysis'dntgdrocessors support Out-of-Order (OoO) execution. In 00O
latest Haswell-EP processor architectures. execution the processor may change the order in which in-
structions are executed as long as semantic equivalency to
the original ordering is guaranteed. Common codes involve

Intel processors use the Intel (Bdnstruction Set Archi- many conditional branches which severely limit the size of
tecture (ISA) which is a so called Complex Instruction Sehe instruction window to apply ILP to. Therefore OoO

execution is usually combined with speculative execution.
_ 1Inte|_ 64 is Intel's implemen'ta_tion of x86-64, the 64 bit viers of the x86 This technique attempts to predict the outcome of branches
instruction set. x86-64 was originally developed by AMD anthe AMD64 .
moniker and while Intel 64 and AMDG64 are almost identicagréhexist minor and SpeCU|at'Ve|y executes the forecast code path befere th
differences that warrant differentiation. outcome is known. This may involve executing unnecessary

I. INTRODUCTION

Il. PROCESSORMICROARCHITECTURE

http://arxiv.org/abs/1509.03118v1

instructions but enables to exploit ILP across branchegtwh executions units, multiple cores form a die, there might be
is crucial for loop bodies of limited size. ILP is still a majo multiple dies on one package (socket), and finally a node migh
technology for generating high performance, but it is naontain multiple sockets. The trend of the system on a chip
a dominating driver of performance improvements anymordesigns transfers more and more components which where
Implementations already are highly optimized and in all&utformerly offered in the Northbridge on the motherboard or
selected special cases work very well. by separate chips onto the processor die. This involves not
SIMD - Another level of parallelism are data parallebnly the memory controllers but also Peripheral Component
instructions which simultaneously perform the same ojmrat Interconnect Express (PCle) interfaces, network intesaand
on multiple data items. To make use of this architectur@PUs. For a programmer this adds additional complexity. For
feature, dedicated so called Single Instruction Multiplatdd memory access data locality becomes an issue as main mem-
(SIMD) instructions have to be used by the software. Thosey is distributed in multiple locality domains (ccNUMA)OI
SIMD instructions are provided by means of instruction seind network access performance might depend on the origin
extensions to the core ISA. Currently SIMD is a major drivesf the request within the system.
for performance. The reason is that it is relatively simgle t The central part of a microarchitecture are its scheduler
implement in hardware since the overall instruction thigug and execution units. With the introduction of the Pentium
is not altered. SIMD is characterized by its register widthe Pro in 1995 Intel provided a very accessible abstraction for
current width is 256 bit (Advanced Vector Extensions (AVX)}he scheduler. The scheduler can issue instructions to so
with 512 bit already employed in Intel's Knights Corner arch called ports. There is a maximum number of instructions the
tecture (Initial Many Core Instructions (IMCI)) and ann@ed scheduler can issue in a single cycle. Behind every porether
for regular Xeon processors with the advent of Skylake (AVXean be one or more execution units. The maximum number of
512). Apart from performing multiple operations in a singlénstructions which can retire may be different from the nemb
instruction another benefit of SIMD is that of loading an@f instructions which can be issued. Because of speculative
storing data block-wise. The same amount of work can lexecution it makes sense to issue more instruction than can
done with a factor less instructions. It can be already ptedi retire. This layout allows an analytical access to predict
that the role of SIMD as a major driver for performance comeéke instruction throughput of a given instruction sequence
to an end with the introduction of 512 bit SIMD width. assuming that there are no hazards and dependencies among
Multicore chips - Moore’s law continues to drive the instructions.
number of transistors which can be packed on a singleChanges in microarchitectures can be grouped in incremen-
chip. During the 90s the increase in register count enabltd, capability and functional changes. An incrementalngea
by the shrinking of manufacturing size was accompaniésle.g. to add more entries to a queue the benefit usually is in
by increasing clock speed as a major way to increase the single digit percentage range. Capability changes .are e
performance of processors. In the early 2000s a paradigmreasing SIMD width, adding more execution units or widen
shift occurred. The vendors did not manage to further irsgeaa data path. Benefits range from percentage improvements
clock speed without running into cooling issues. The answer factors. Functional changes are adding new instructions
to this dilemma was to put multiple (processor) cores on thtroducing a new functionality, e.g. gather/scatter oks&d
same die. Early designs had completely separated caches Mduodtiply-Add (FMA) instructions. In recent years with emngr
only shared main memory access. Later some of the caclkkessumption a new dimension was added in microarchitecture
were private and some shared. For a programmer a multicdesign. This is driven on one side by the rise of mobile devise
processor feels like a multi-processor SMP system. Pérallehere energy consumption is a primary requirement for pro-
programming is required to leverage the performance. Thessors but also in Supercomputing with energy consumption
core is now a building block and a major engineering effolimiting the economic feasibility of large scale machines.
is put into how to interconnect cores on the die and how
to route data from main memory controllers to the caches. o
At the moment a still moderate number of cores is put ofy Core Pipeline
one die connected by one or more segmented ring buses. ThEigure[1 illustrates the simplified core layout of the Hagwel
Last-Level Cache (LLC) is usually also segmented. Multiplaicroarchitecture. As all modern designs, this microaezhi
memory controllers with multiple channels are connected tare uses a Harvard design for the innermost cache level, i.e
the bus to inject data. Already now and even more in the futuirestructions and data are stored in separate caches.n8tarti
the system on a chip designs will be the performance definimgth the L2 cache it is based on a von Neumann design
feature of a processor. On Intel chips the cores includingth unified caches for instructions and data. The core ftch
caches private to a core are logically separated from shaiestructions in chunks of 16 byte from the address provided
entities on the chip. Those shared entities are groupedtiadh by the Branch Prediction Unit (BPU)—typically this address
called uncore. LLC-segments, ring-bus, on-board intemeots is just a 16 byte increment of the last address from which data
and memory controllers are all part of the uncore. was fetched; in the case of branches it will be the address
System Design- A compute node employs elementanof instructions that are the most likely to be executed. Afte
building blocks on different levels. A core is built of mylte instructions have been fetched, a pre-decoder deterntires t

IIl. HASWELL MICROARCHITECTURE

LG L o Cade o processor registers has been doubled in size from 16 B to 32 B.
} 128bit ction Unt This means that AVX loads and stores (32 B in size) can now
firedecode retire in a single clock cycle as opposed to two clock cycles
required on the Sandy and Ivy Bridge architectures. The data
path between the L1 and L2 caches has also seen a doubling
' : . in size—at least on for transfers from L2 to the L1 cache; our
Complex Simple | Simpe | SimPe MisRoM (e, measurements indicate that evictions still occur at a bédttw
of 32B/c.
While the core is still limited to retiring only fout.ops per
— cycle, the number of ports has been increased from six td eigh
SuOfOrde in Haswell (shown in blue in Fid.]1). The newly introduced
e P port 6 contains the primary branch unit; a secondary unit
has been added to port 0. In previous designs only a single
branch unit was available and located on port 5. By moving

Instruction Queue

Allocate / Rename / Retire / Move Elimination / Zero Idiom

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

o ey el R febie LeDus [SwreDie it to a dedicated port in the new design, port 5—which is
AVXDiv_| [AVXAdd | | AVX Shuf the only port that can perform AVX shuffle operations—is
AVX Blend AVX Cvi AVX Bool . . .
AT freed up. Adding a secondary branch units benefits branch-
2nd Branch intensive codes. The other new port is port 7, which houses
Memory Control a so-called simple Address Generation Unit (AGU). This unit
tmb_t 4§ 2asovi was made necessary by the increase in register-L1 bandwidth
I X I . - .
256 KB Unified L2 Cache |I | | Using AVX on Sandy Bridge and Ivy Bridge, two AGUs
< > 32kB L1 Data Cache

512 bit were sufficient, because each load or store required twesycl
to complete, not making it necessary to compute three new
addresses every cycle, but only every second cycle. With
Haswell this has changed, because potentially a maximum of
three load/store operations can now retire in a single ¢ycle
bounds of the various instructions that were included in @aking a third AGU necessary. Unfortunately, this simple
given 16 byte block. In the next phase, decoding from CISKGU can not perform the necessary addressing operations
instructions top.ops occurs. A simple example would be gequired for streaming kernels on its own (see Sedfion VII-C
single arithmetic operation with memory address as operagfl more details).

(e.g.vaddpd ymD, ymD, [rax+r11x8])thatis split Apart from adding additional ports, Intel also extended
into two pops: one dedicated load operation and a dedicatggisting ports with new functionality. Operations intraed
arithmetic operation with register-only operands. Thisate py the FMA ISA extension are handled by two new, AVX-
ing phase is superscalar, with one complex and three simplgyaple units on ports 0 and 1. Haswell is also the first
complex decoders; also featured is a MSROM decoder whigfehitecture to feature the AVX2 ISA extension. Because AVX
is responsible for seldom used RISC instructions that decogltroduced 256 bit SIMD operations only for Single Preaisio

to more that 4.0ps. Decodegiops are stored in theop cache, (sp) and Double Precision (DP) floating-point data types,
which can hold up to 1536 micro-ops, and enables the reusegix2 extends the set of 256 bit SIMD operations to several
previously decoded instructions, e.g. in the event of 103p® jnteger data types. Haswell also saw the introduction of a
motivation for this cache is energy saving: whenever micr@acond AVX multiplication unit on port 1.

ops from the cache are used, the legacy decode pipeline can
be powered down. B. Package Layout

Before pops leave the in-order front-end, the renamer allo- Figure[2 shows the layout of a 14-core Haswell processor
cates resources from the Physical Register File (PRF) th egrickage. Apart from the processor cores, the package tonsis
instruction. One of the improvements of Haswell in this ghasf what Intel refers to as the uncore. Attached to each core
is the elimination of register-registers moves throughsteg and its private L1 and L2 caches, we find a LLC segment, that
renaming without having to issue anyops. Dependency can hold 2.5MB of data. This physical proximity of core and
breaking idioms such as zero idioms (evxxor pd) and the cache segment does however not imply that data used by a core
ones idiom ¢npeq) can improve instruction parallelism byis stored exclusively or even preferably in its LLC segment.
eliminating false dependencies: The renamer notices wieeneData is placed in all LLC segments according to a proprietary
an architectural registers (e.gnm®) is set to zero and will hash function that is supposed provide uniform distributio
assign a fresh register from the PRF to it; the 00O schedutsirdata and prevent hotspots for a wide range of data access
will thus never see a false dependency. The size of the Op@tterns. An added benefit of this design is that singleathed
window has been increased from 168 to 192 micro-ops #pplications can make use of all available LLC.

Haswell. The cores and LLC segments are connected to a bidi-

The width of all three data paths between the L1 cache arattional ring interconnect that can transfer one Cache Lin

Fig. 1. Core layout for the Haswell Microarchitecture

two QP links
P T BT 150y T e 70
Ring-to-QPI (R3QPI)| Ring-to-PCle (R2PCle) “a 2! ! J
7 g 1~~~ 60
G G o =! ﬁ;
1
—) <= SBox0) 4= SBox2 4=, — = Elomnmmnrms~a Y d
) - o ' -50
Core3 CBox3 LLC LLC | CBox7 | Core? = 100 ﬁ: — Bandw. UFS :
= - 3 :
L1412 S f S L1412 k= O1 |—- Bandw. no UF$ 1] E
— |
- —
Core2 CBox2 LLC LLC | CBox 6 Core 6 Core 10 CBox 10, LLC LLC | CBox 13 Core 13 _g . ' 40 =
Segment |Segment Segment | Segment c 1 o
L14L2 L1412 L1fL2 L14L2 I I o1
g 1 | |— Power UFS | @, %
Corel CBox1| LLC || LLC | CBox5 Core5 Core9 CBox9| LLC || LLC |CBox 12| Core12 - ol | |- Power no UF$ £! 308
L1+L2 Segment | Segment: L1412 L1+L2 Segment ' Segment L1+L2 6 50_ 8/: : $: 4
= =
Core0 CBox0 LLC | LLC CBox4 Cored Core8 CBox8 LLC || LLC CBox1l Corell QE) £l & ' 120
G Segment |Segment G D Segment |Segment ED s 2! I ol]
[ettt
] I u
G 4= SBox 1 4= |SBox3 4= G O | 10
— — et
1 1 3 |
two DDR4 Ou_ll MR ERTT] B R | M P RTIT] B S AR T | L bl 0
ehannels Home Agent (HA) Home Agent (HA) annels 0 1 3 4 5
S e Conrlln (M) Ve Conollr (M) ot 10 10 10° 10 10 10

Dataset Size [kB]

Fig. 2. Chip layout for the Haswell-EP Microarchitecture . .
Fig. 3. Impact of UFS on Bandwidth and Power Usage.

(CL) (64B in size) every two cycles in each direction. Ir?) h lock d in for th &
order to reduce latency, the cores are arranged to form t\ﬁ(r)enmes, the separale clock domain for the uncore ofiers a

rings, which are connected via two queues. Each ring hﬁgnificant potential for power saving, especially for aeri

associated to it a Home Agent (HA) which is responsibl%O es.

for cache snooping operations and reordering of memoryi9urel3 shows the sustained bandwidth (ipftxis) mea-
requests to optimize memory performance. Attached to eatf€d for the Schonauer vector triad (cf. Table 1) using a
HA is a Memory Controller (MC), each featuring two 8 byteSInglé core along with the power consumption (righéxis)
wide DDR4 memory channels. Also accessible via the m{&r varying dataset sizes. As expected the performancetis no

interconnect are the one-die PCle and QuickPath Interaann@fluénced by whether UFS is active or not when data resides
(QPI) facilities. in a core’s private caches (L1+L2). Although we observe a

Haswell also saw the introduction of an on-die Fully Intedifférence in performance as soon as the LLC is involved,

grated Voltage Regulators (FIVR). This FIVR allows Haswelf’® performance impact is very limited. Wh|le the bandwidth
to draw significantly less power than the previous Ivy Bridg8/©PS from 24 to 21GB/s (about 13%) in the LLC, power
microarchitecture, because it allows for faster entering atSage is reduced from 55 to 40W (about 27%). In multicore
exiting power-saving states. It also allows a more finergrdi Scenarios that work on data in the LLC or main memory
control of CPU states: instead of globally setting the cpEjiS effect can no longer be observed because the uncore is
frequencies for all cores on a package, Haswell can now Q'élﬁam'_ca”y ad]usted_to run at the maximum clock speed of
cores frequencies and sleep states individually. 3GHz in order to satisfy demand from all cores.

C. Uncore Frequency Scaling D. Memory

When Intel first introduced the shared on-die LLC with Microarchitectures preceding Haswell show a strong corre-
Nehalem, it maintained distinct clock domains for CPU cordation between CPU frequency and the achievable sustained
and the uncore, which houses the LLC, because this cachemory bandwidth. This behaviour is demonstrated in Fig-
cache was not considered latency sensitive and could thus [4, which shows the measured chip bandwidth for the
run at a lower frequency thereby saving power. In the negtream Triad—adjusted by a factor of 1.3 to account for write
microarchitecture, Sandy Bridge, Intel changed this deaigd allocates—on the Sandy Bridge, lvy Bridge, and Haswell
made the uncore run at the same clock frequency as the CRigroarchitectures.
cores. While this drastically benefited latency, it brougith For each system, the bandwidth was measured using the
it the problem of on-die graphics accessing data from the LLIGBwest possible frequency (1.2GHz in each case) and the
with low performance when CPU cores were in power savirgglvertised nominal clock speed. While Sandy Bridge can
mode and clocked the uncore down along with them. hgchieve a sustained bandwidth of 35.5GB/s when clocked
Bridge tried to solve this problem with a dedicated L3 graphi at 2.7 GHz, the result using 1.2 GHz is only 24.2 GHz—just
cache, but eventually data would have to be brought in fro2j3 of the best-case chip bandwidth! On Ivy Bridge, the
the regular L3 cache. In the new Haswell microarchitectunepminal clock speed of 3.0 GHz delivers a sustained chip
Intel moved back to the Nehalem design: having two separdtandwidth of 42.5 GHz; at 1.2 GHz the performance degrades
clock domains for core and uncore. Haswell also offersta 28.1 GB/s—again, jus/3 of the best-case chip band-
feature called Uncore Frequency Scaling (UFS), in which theidth. For Haswell, we observe that the sustained bandwidth
uncore frequency is dynamically scaled based on the numibér52.3GHz is identical in both cases. Even the saturation
of stall cycles in the CPU cores. Although reintroducingrhigpoint—the number of cores required to reach the sustained

(2]
o

E. Cluster on Die

As shown previously in Sectidn 1I1iB, the CPU cores are
arranged around two rings with each ring having a dedicated
memory controller. In Cluster on Die (CoD) mode, the cores
get equally separated into two memory domains. This means
1 that each core will only use a single memory controller.
- To keep latencies low, the general approach is to make a
{ core access main memory through the memory controller

a
o
I

N
o
I

Bandwidth [GB/s]
w
?

>— SNB 1.2 GHz

20k - attached to its ring. However, with the number of cores in
TeINB AT SHZ | the affinity domains bei I, th tri t

I o= |VB 1.2 GHz | | y ins being equal, the asymmetric core coun

= a|VB 3.0 GHz on the two physical rings makes exceptions necessary. In

=
o
I

TIHSWI2GHE T the design shown in Fig2 the 14 cores are divided into

I 1 two affinity domains of 7 cores each. Using a simple load-
1 1 1 1 1 1 1 1 1 | | | | s - .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 benchmark together withi kwi d- perfctr [?] to access
Number of Cores performance counters and measure the number of memory

accesses for each individual memory channel, we find that

cores 0—6 access main memory through the memory channels

associated with the memory controller on the left ring, and

cores 7-13 those associated with the memory controller on

) _)) _ring 1. Thus, only a core number 7 has to take a detour across
socket bandwidth—of 7—8 cores is almost identical. Bearlr}%QS to access data from main memory. With CoD active

in mind that CPU frequency is the most important variable || C also becomes segmented. As each affinity domain
influencing package power usage, this invariance of memQyntains seven LLC segments (2.5 MB each), the total amount
bandwidth from frequency has significant ramifications fq& [| c for each domain is 17.5 MB—exactly half of the total
energy usage for bandwidth-limited algorithms: absent thg,ount of 35 MB.

need for a high clock frequency to perform actual prqcessing The CoD mode is intended for highly optimized Non-
the CPU f_requen_cy can be lowered, th_ereby decreasing poWg{iform Memory Access (NUMA) codes and serves two
consumption, while the memory band_W|dth stay; constard. TBurposes: The first is to decrease latency by reducing the
consequences for energy usage are illustrated in the e& Mamount of endpoints in the affinity domain. Instead of 14
shown in Figure§]5 arld 6. The former illustrates the requirgd c segments, data will be distributed in only 7 segments
energy-to-solution to compute the Stream triad for a datasgside each affinity domain, thereby decreasing the mean hop
size of 10GB on Sandy Bridge, Ivy Bridge, and Haswelloynt. Also, the requirement to pass through the two buffers
microarchitectures. We observe that the so-called race-fnnecting the rings is eliminated for all but one LLC segmen
idle is not very efficient for all three microarchitecturds. The second benefit of CoD is to that bandwidth is increased
terms of energy-to-solution adding more CPU speed makgs reducing the probability of ring collisions that is imei

no sense as soon as main memory bandwidth is saturaigdiowering the number of participants from 14 to 7.
We find that for the Sandy and Ivy Bridge microarchitectures;

using half the number of available cores at moderate clock IV. ECM MODEL

frequencies provides the best energy-to-solution redaft; The ECM model], [?], [?] is a simple resource oriented
Haswell, using the lowest possible CPU frequency is viablgnalytical performance model focusing on the elementary
Overall, for the Stream triad Haswell offers an improvememgsources instruction throughput and data transfers. it ca
of 23% respectively 12% over the Sandy and Ivy Bridggredict the runtime for a steady-state execution of a loop
microarchitectures when it comes to energy consumptioe. Thody and can break down different runtime contributionsfro
improvement becomes even more pronounced when taking #)@cution and data transfers. The ECM model is a lightspeed
runtime into account: the Energy-Delay Product (EDP) meetrinodel: It puts a optimal throughput assumption on instarcti
weighs the consumed energy by the total runtime to incluégecution and assumes that all data transfers are bandwidth
time-constraints that are typically found in HPC scenariogmited. Any hazards, dependencies and latency influenees a
For Sandy and Ivy Bridge we observe that the optimum EDfeglected. Setting up the model requires intimate knowdedg
solution requires high clock frequencies in order to lowes t about execution capabilities, data paths and bandwidinesal
runtime; however, increasing the clock frequency will fesufor the complete memory hierarchy. This involves sometimes
in higher energy usage, thus increasing the other inpubfacinformation beyond the vendor specification data sheet.

of the EDP. As we have shown previously, on Haswell the]))

sustained bandwidth is independent of CPU frequency, whiéh Model input, construction, and assumptions

is why a very low frequency can be used. As a result, Haswell The total estimated runtime is decomposed into execution
outperforms the Sandy and lvy Bridge microarchitectures lbiyne and data transfer times. There are rules when contribu-
55% and 35% respectively in terms of EDP. tions can overlap with each other. Times are always in CPU

Fig. 4. Stream Triad Bandwidth as Function of Frequency.

Sandy Bridge-EP (Xeon E5-2680) Ivy Bridge-EP (Xeon E5-2690 v2) Haswell-EP (Xeon E5-2695 v3)

oo

38 39 41 42 43 46

7 38 39 40 43 50 12
11
8o 10
S 5 o =
3 8 >
o0
e S
) 7 o
< 4 =}
E 6 o
=]
Z 3 5
4
2 3
2
1 50 49 48 47 47 45 45 44 44 44 44 45 44 49 49 49 48 46 46 46 46 45 45 47 !
12131415161.71.81.92.02.12.223242527 T 1213151.61.71.82.02.12.224252.62.72930 T 121314151617 1.8 1920212223 T
CPU Frequency [GHz] CPU Frequency [GHz] CPU Frequency [GHz]
Fig. 5. Energy-to-Solution for Stream Triad (10 GB datase¢)son Selected Microarchitectures.
Sandy Bridge-EP (Xeon E5-2680) Ivy Bridge-EP (Xeon E5-2690 v2) Haswell-EP (Xeon E5-2695 v3)
8 14
13
7 149 149 148 150 152 12
11
%6 148 145 143 142 142 142 144 144 144 147 152 10
s 9 —
8 5 151 144 141 139 137 137 135 136 137 137 139 142 s 2
5 =
— 7 [=%}
24 147 142 139 137 134 134 132 133 132 133 135 147 a
g 6
Z3 151 146 144 140 140 137 139 140 148 5
4
2 3 L7 13 120 20 10 116 13 11
2
1 1
12131415161.71.81.92.02.12.223242527 T 1213151.61.71.82.02.12.224252.6272930 T 121314151617 1.8 1920212223 T
CPU Frequency [GHz] CPU Frequency [GHz] CPU Frequency [GHz]

Fig. 6. EDP for Stream Triad (10 GB dataset size) on Selectenosrchitectures.

core cycles. This is convenient as everything on a processofhe model assumes that (i) core cycles in which loads
happens in units of cycles and thus the model is independang retired do not overlap with any other data transfer in
of a specific variant of the processor. Modern processors halle memory hierarchy, but all other in-core cycles (inahgdi
multiple clock domains, cores, caches and memory might hgegeline bubbles) do, and (ii) the transfer times up to the L1
a different clock speed. For memory transfers the time ¢ache are mutually non-overlapping.
converted to the standard bandwidth unit bytes/cycle. ®hil 5 ¢horthand notation is used to summarize the
different clock domains make it more complicated to set U|ayant information about the cycle times that
the model, the generic formulation of the model supports Eomprise the model for a loop: We write the model as
The granularity of data transfers inside the cache/memo Yor | Twor, | Tuire | Trovs | Tosmem} . Where Thor and
hierarchy is that of cache lines (CL). As a consequence the =56 a5 defined above, and the other quantities are the
ECM model considers instructions equivalent to process ofjgi, transfer times between adjacent memory hierarchy
CL length. Note that a kernel might involve multiple datge e, Cycle predictions for data sets fitting into any
streams and therefore also multiple CLs. iven memory level can be calculated from this by adding
The in-core execution and transfer times must be p b the appropriate contributions fromiy.. and Thor.
together to arrive at a prediction of single-thread executi and applying [[L). For instance, if the ECM model reads
time. 'f_ Taata is the transfc_ar timeJor, is th? part of th_e core {21414|4|9} cycles, the prediction for L2 cache will be
execution that overlaps with the transfer time, ddy, is the max (2,4 +4) eycles = Seyeles. As a shorthand notation

part that does not, then for predictions we use a similar format but with"*as
the delimiter. For the above example this would read as
Teore = max (Thor, Tor,) and Tgom = max(Thor+Tdata, T&rdMm = {418]12721} cycles. Converting from time

(1) (cycles) to performance is done by dividing the wokK

(e.g., flops) by the runtimeP = W/Tgcm. If Teom is given
in clock cycles but the desired unit of performance is F/s, we
have to multiply by the clock speed.

B. Chip-level bottleneck and saturation

We assume that the single-core performance scales linearly
until a bottleneck is hit. On modern Intel processors theyonl
bottleneck is the memory bandwidth, which means that an
upper performance limit is given by the Roofline prediction
memory-bound executio®sw = I-bg, wherel is the compu-
tational intensity of the loop code. The performance scefin
n cores is thus described y(n) = min (nPgSy, I - bs) if
PEELt is the ECM model prediction for data in main memory.

The performance will saturate ats = [THSh/TL3Mem |
cores. 1% Tmem
- 0g
ng = ’V mem-‘ — ’V ECM -‘) (2)
PECIVI TLSMcm

The ECM model 7], [?], [?] is an analytical performance
model for homogeneous code segments, mostly innermost loop
kernels. It is a light speed model and restricts the processo
architecture to its elementary resources: instructiorcetien
and data transfers. While the model accounts for hazards
and dependencies in instruction execution it assumes qterfe
streaming, neglecting latency or cache affects, on the data
transfer side. In this sense it is very similar to the roofline
model [?]. In contrast to the roofline model the ECM model
takes into account all runtime contributions from datasfars
and uses a much more detailed view on potential overlap
among different runtime contributions. To set up the model
detailed knowledge about the code, the processor aralnigect
and data volumes and paths within the memory hierarchy. This
process forces a developer to learn more about his code and
the processor architecture, which is an important secgndar
benefit of the model compared to e.g. tool only approaches?)
where the outcome is a magic number without any insight
or knowledge gain. As a result the model provides detailed
information about runtime contributions and bottlenecks.

C. Model setup

The model operates on the level of processor work which
are instructions and transfered data volume. For this ihis i
most cases required to look at the assembly level code. Withi
a cache hierarchy the smallest granularity of work is one
cacheline (usually 64b on X86 architectures). Work eqeival
to one cacheline length is also the granularity the ECM model
operates on. The primary time unit used in the model are
processor core cycles. This is the primary unit of time in a
microarchitecture. To account for different clock domains
modern processor designs other clock domains, e.g. DRAM
or Uncore, are converted into core cycles.

To set up the model the following steps must be performed:

1) Determine the core cycles to execute the instructions

which are required to process work equivalent to one
cacheline length.In this context it is useful to look at
work in terms of iterations on different levels. The first
level is the operation level. Assume a memory copy is 3)

implemented in terms of double precision floating point
assignments then the atomic operation is one double
precision floating point copy. This is worth copying
8b of data. To update (or process) one cacheline as
a consequencé4/8 = 8 iterations on the operation
level are required. Note that if we talk about one
cacheline here it means to process work equivalent to
one cacheline length. But of course multiple physical
cachelines might be involved. For copy to process one
cacheline results in reading from a source cacheline and
storing to another destination cacheline. The number
of iterations on the instruction level might be different
though. If for example SIMD SSE instructions are used
16b can be copied with two instructions. Instead of 8b
of one operation one instruction moves 16b. On the
instruction level only 4 iterations are needed to process
one cacheline. The next level of iterations is the loop
level. If a loop is unrolled multiple instruction iteratisn
form one loop iteration. Lets assume the copy loop in
our example is 4-times unrolled to update one cacheline
length only one loop iteration is required. To wrap it
up: To process one cacheline length requires one loop
iteration which is equivalent to four instruction iterat®
which is equivalent to eight operation iterations. To
determine the core cycles to throughput a sequence of
instructions in a steady state a simple model of the
instruction scheduler is required. The model does not
limit the effort put into getting a sensible number for
instruction throughput. For simple loop kernels this can
be done by hand or in more complicated cases a simple
simulator as the Intel IACA tool may be used. At this
point it is assumed that all data is served from the L1
cache.

Setup data paths and volumes to get the data to the
L1 cache.For streaming algorithms this step is rather
simple. One needs to know about the store miss policy
and overall cache architecture of the processor. If the
store miss policy is write allocate additional cacheline
transfers need to be accounted for. Intel processors have
inclusive caches, data is always streamed through all
cache levels. The store miss policy is write allocate
up to the L1 cache. One must be careful as there
exist special non-temporal store instructions for memory
which do not trigger the write allocate. In contrast
many competitors (AMD and IBM) use a write-through
policy for the L1 cache. All data is initially loaded
into L2 cache and the last level L3 cache is a victim
cache. Only cachelines evicted from L2 are placed in
L3. Things get more complex if data access is not
pure streaming. This is the case for stencil codes which
expose data reuse within the cache hierarchy. Sometimes
data volumes are difficult to acquire. One solution is
to validate data volumes with hardware performance
counter measurements which allow to determine data
volumes between different memory hierarchy levels.
Setup the overall single core prediction by accounting

for overlap. for theload benchmarkig2 || 1]1]2|4.5} cycles. The model
4) Determine multicore scaling within a chip. prediction isTrcy = {22141 8.5} cycles.

V. MICROBENCHMARKS B. Store, Update, and Copy

The set of microbenchmarks used to verify the ECM model Using AVX instructions storing one cache line worth of
on the Haswell microarchitecture is summarized in Table |. tonstants for thestore benchmark takes two clock cycles,
addition to the loop body, the table lists the number of loasecause only one store unit is available, resultind@ipr, =
and store streams—the former being divided into explicit ar2cy. As there are no other instructions such as arithmetic
Read for Ownership (RFO) streams. RFO refers to impliaiperationsT},or, is zero. When counting cache line transfers
loads that occur whenever a store miss in the L1 cache tsggalong the cache hierarchy, we have to bear in mind that
a write-allocate of the cache line required for the storesoAl a store-miss will trigger a write-allocate, thus resultiimg
included in the table are the predictions of the ECM modelo cache line transfers for each cache line update: one
and the actually measured runtimes in cycles per second aleo write-allocate the cache line which data gets written to
with a quantification of the model’s error. and one to evict the modified cache line once the cache

The set of benchmarks contains a number of differebecomes full. Because evictions between from L1 to L2 cache
streaming kernels, each one offering a different combameadi take place at a bandwidth of only 32B/c, this results in a
the different stream types to cover different transfer ades transfer time of three cycles to move cache lines between
in the cache hierarchy. In the following, we will discuss anthe L1 and L2 cache and a transfer time of 4 cycles for L2
formulate the ECM model for each of the benchmarks. Notnd L3. The sustained bandwidth for a benchmark involving
that the sustained bandwidths used to derive the L3-memaeaictions is slightly worse than that of load-only kernels.
cycles per CL inputs are that of a single memory domain+a CPU cycles the measured bandwidth of about 23.6 GB/s
i.e. the seven cores comprising one memory domain in Cadrresponds to approximately 6.2 cy/CL. The resulting ECM
mode—and not the sustained chip bandwidth. We use the Ciriput and prediction ar€0 || 2| 3 |4 | 12.5} cycles respectively
mode, because it offers better performance than the non-C@D)] 519 | 21.5} cycles.
mode. As far as the ECM model is concerned, tpdateandstore
A Dot Product and Load kernels be_have very s_imilar. The time requireq Fo perform

a cache line update 9,0, = 2cy as well, limited by

The dot product benchmaddotis a load-only benchmark store throughput. The two AVX loads required to load the
that makeS use Of the new FMA inStI’UCtiOI’IS introduced %'ues to be updated can be performed in para"el to the two
the FMA3 ISA extension. For this benchmalkor is tWo store instructions. In addition, the stores are paired with
clock cycles, because the core has to load two cache lingg Avx multiplications required to update the values in the
(A andB) from L1 to registers using four AVX loads (wWhichcache line, resulting ifor, = 2cyE The number of cache
can be processed in two clock cycles, because each individgige transfers is identical to that of tretore kernel, the only
AVX load can be retired in a single clock cycle and thergjference being that the cache line load is caused by akplic
are two load ports). Processing the data from the cache linggds and not a write-allocate. With a memory bandwidth
using two AVX fused multiply-add instructions only takeseon gjmost identical to that of thstorekernel, the time to transfer
clock cycle, because both issue ports 0 and 1 feature AQcache line between L3 and memory again is approximately
FMA units. A total of two cache lines has to be transfereg 2 c/cL, yielding an ECM input of2]2]3]4|12.5} cycles
between the adjacent cache levels. At 64 B/c this means 26yq a prediction that is identical to that of th®re kernel.
to transfer the CLs from L2 to L1. Transferring the CLs from The copy kernel has to perform two AVX loads and two
L3 to L2 takes 4cy at 32B/c. The empirically determinedy/x stores to copy one cache line. In this scenario, agai, th
sustained (memory domain) bandwidth for the dot produgingle store port is the bottleneck, yieldifig o = 2 cycles.
was 32.4GB/s. At 2.3GHz, this corresponds to a bandwidistead of transferring two cache lines, as was the case in
of about 4.5¢y/CL or 9.1cy for two CLs. The ECM modetne store and updatekernels, thecopy kernel has to transfer
input is thus{1/2[2|4]9.1} cycles and the correspondingthree cache lines between adjacent cache levels:Boadite-
prediction isTgcm = {21418]17.1} cycles. allocate and evicA. Loading two cache lines at 64 B/c and

As the name suggest, tHead benchmark is a load-only eyicting at 32B/c from and to L2 takes a total of 4 cycles;
benchmark as well. However, hef@or andToL are inter- transferring three cache lines at 32B/c between L2 and L3
changed: while a single clock cycle suffices to load the elgsquires 6cycles. With a slightly higher sustained memory
ments from cache liné into AVX registers, two cycles are re- handwidth of 26.3 GB/s than those of tistore and update
quired to process the data, because there is only a single A¥grnels due to the higher load-to-store ratio of opykernel
add unit. Because only a single cache line has to be traesferjhe time to transfer one cache line between main memory and
between adjacent cache levels, the time required is exa@lly the |ast-level cache is approximately 5.6 cy. This resultthe
of that needed for thédotbenchmarld The ECM model input

3Note that another pairing, such as e.g. one store with twdiplichtions
2The sustained chip bandwidth is identical to that of the daidpct and one store with two loads is not possible due to the limiteghber of full
microbenchmark, resulting in the same memory bandwidth.9tACL. AGUs.

TABLE |
OVERVIEW OF MICROBENCHMARKS LOOPBODY, MEMORY STREAMS, ECM PREDICTION ANDMEASUREMENT IN JCL, AND MODEL ERROR.

Load Streams Write ECM Prediction Measurement Error
Benchmark Description Explicit / RFO Streams L1/L2/L3/Mem L1/L2/L3/Mem L1/L2/L3/Mem
ddot s+=A[i]*B[i] 210 0 {21478 17.1} {2.114.779.6] 19.4} {5%117%120%] 13%}
load s+=Ali] 1/0 0 {2727418.5} {272.3]15710.5} {0%115% 125% | 23%}
store Ali]=s 0/1 1 {21579]21.5} {21618.2]17.7} {0%120%19% 1 19%}
update Alil=s*Ali] 1/0 1 {21579]21.5} {2.116.518.3]17.6} {5%130%]8%118%}
copy Ali]=B[i] 1/1 1 {216712728.8} {2.178713727} {5%133%18% 1 6%}
STREAM triad A[i]=B[i]+s*(i] 2/1 1 {318116137.7} {3.1710717.5737} {3%125%19%1 2%}
Schonauer triad Ali]=B[i]+i]*D[i] 3/1 1 {4110720746.5} {4.1711.9721.9746.8} {3%119%19%1 1%}

following input for the ECM mode{0]|2|4|6|16.8} cycles, TESTMACHT@EE%,\I,IHGURAT,ONI

which in turn yields a prediction of2 16] 121 28.8} cycles.
Microarchitecture Haswell-EP

C. Stream and Sémauer Triads Model Xeon E5-2695 v3

. _ Release Date Q3 2014
F_or theStream Triadl the.AGUs prove to pe the bottleneck— o inamurbo Clock Speed (Single-Core 2 3GHZ/3.3GHz

While the core can potentially retire four micro-ops perleyc cores/Threads 14/28

it is impossible to schedule two AVX loads (each correspon Major ISA Extensions SSE, AVX, AVX2, FMA3

ing to one micro-op) and an AVX store (correspondingwo L1/L2/L3 Cache 14 32 kB/14x 256 kB/35 MB

micro-ops) which uses indexed addressing, because there Memory Configuration 4 channels DDR4-2166
Theoretical Memory Bandwidth 69.3 GB/s

only two AGUs available supporting this addressing mod
The resultingT, 01, thus is not 2 but 3cycles to issue four

AVX loads (two each for cache liné8 and C) and two AVX . i
stores (two for cache lind). The required arithmetic of two machine uses two-way SMT and has fourteen moderately

FMAs can be performed in a single cycle, because two A\/roked (2.3GHz base frequency) cores per socket. Sixteen

; X)) {ector registers are available for use with Streaming SIMD
FMA units are available. Data traffic between adjacent cacEe g g

levels is four cache lines: load cache lines contairingnd xtensions (SSE), AVX, and AVX2. Using floating-point arith

. ; . . metic, each core can execute two FMA instructions per cycle
C, write-allocate and evict the cache line containiigThe per cy

measured sustained bandwidth of 27.1 GB/s corresponds::,et%dmg to a peak performance of 16 DP or 32 SP Floating-

approximately 5.4 cy/CL—or about 21.7 cy for all four cach%r(:)lc;[dgdpi;atrlggzn(slzﬁpz) cgilruaglerﬁel\rﬂneor?;gul?:;s(xvrft\?vi;r?
lines. The input parameters for the ECM model are th

: are NY3ur bbr4-2166 memory channels per socket. In order to
g%‘g’ﬁé% 2271‘77}}:?13228 leading to the follow prediction: achieve best performance during benchmarking CoD was
The Schbn.aueryTria'd involves the same arithmetic as t givated and UFS was disabled. A summary of the machine

. . ” ; fi ti be found in T I.
Stream Triad with an additional operand having to be Ioade§n lgurations can be found in Tatifé
into registers. Again the address-generation units proveet VIl. RESULTS

bottleneck. Now, six AVX loads (corresponding to cachesdine The results presented in this section were obtained us-
B, C, andD) and two AVX stores (cache ling) have to be ing hand-written assembly code that was benchmarked us-
performed; the total of these eight instructions have taeshang | i kwi d- perfctr [?] to guarantee reproducibility as
two AGUs, resulting in alyor, of 4cycles. The two AVX compilers tend to perform well-meant optimizations (sush a
fused multiply-add instructions can be performed in a €ngproducing SSE instead of of AVX loads in order to lower the
cycle. Data transfers between adjacent caches correspongrbbability for split cache line loads) that can end up being

five cache liensB, C, andD require loading while cache line counter-productive thus resulting in non-optimal codeniee
A needs to write-allocated and evicted. For the L1 cache, thife most simple of kernels.

results in a transfer time of 6 cycles (four to load four cache

lines, two to evict one cache line). The L2 cache transfé}’ Load, Dot Product

time is 10 cycles. The measured sustained memory bandwidttin Figure[T we illustrate ECM predictions and measure-
of 27.8GB/s corresponds to about 5.3 cy/CL or 26.5cy fdRent results for both thépad and dot productbenchmarks.
all five cache lines. The resulting ECM input parameters a¥éhile the core execution time for both benchmarks is two
thus{1]/4|6]10|26.5} cycles and the resulting prediction is clock cycles just as predicted by the model, thet product

{4710720746.5} cycles. performance is slightly lower than predicted with data aogni
from the L2 cache. We found this slightly worse than expected
VI. EXPERIMENTAL TESTBED L2 cache performance to be a general problem with Hadvell.

.A Stand_ard two-socket server based .on the |_|aSW('3”'EFaIn contrast to Haswell, both Sandy and Ivy Bridge's L2 baruttviof
microarchitecture was chosen for evaluating the kerndi® T32B/c could be achieved in every benchmapk |

25 T T T T T T T T T T T T T T T o P~ B LR T g T T
T Ce g NN -] =]
I 3! 8! =] - o & S .
F = =1 [o— 2 1 L E! E! |o—o Store =! i
o 20[- gi %i — E%a'& Load Ei 1 £ | 2 é: =—a Update f i
J 2 2! o= EgtMPrDoduS 2 1 2 S 51| — ECM st/Upd %: |
@ T o gL — OtPI S [1 < .0l Ol 31 Copy S/ — |
S 15 5 ! 1 3% o 8| — ECMCopy |31]
o I ' '] © I I P
— = F 1 | -
& o] 5 o]
810 ! ! 18 7 ! ! :
S0 ! ' 1 3 : : 7
O L I I i r ' ks ' b
5__: :C :P‘,od' 1 —_ r : : i
[} 1 - -
L —: | i %‘! i |
A [I i] I [i | 1
0 | ool Lol Ll NIRRT B TR AR T | 0 IO L """'Il T | 'I"""'|3 L ""'“|4|| ""lll|5
10’ 10" 10° 10° 10" 10° 10 10 10° 10 10 10
Dataset Size [kB] Dataset Size [kB]

Fig. 7. ECM predictions and measurement results for loaddacproduct l'(:ig- 8|- ECM predictions and measurement results for stqréate, and copy
kernels. ernels.

LU/ B) B R U R R LLL B R R L B R R T T T T T T
I I ~ =) r

L

Tor = 2c¢cy andT, o1, = 1cy. In practise, however, we observel i
a small penalty of 0.3cy/CL. 10,
As soon as the working set becomes too large for the core-
local L2 cache, we find that the ECM prediction becomes ot
slightly off. An empirically determined penalty for tramsfing 10
data from off-core locations for kernels with a low number
of cycles per cache line was found to be one clock cycky. 9. ECM predictions and measurement results for StrezirSazhonauer
per load stream and cache-level, e.g. 2 cy fordbe product Triads (left) and comparison of naive and optimized Schéndriad (right).
benchmark with data residing in L3 and 4 cy with data from

main memory. This is most likely to be attributed to addn;bn gﬁe Updatekemel, which has to load the cache line in order

update the values contained in it. TBepykernel is about
cycle slower per cache line than predicted by the model.
For main memory, the measured result is significantly better
than the model prediction. This is caused by caches andaever
_ o store buffers still holding data to be evicted to main memory
In Figure[8 the ECM predictions and measurements for thghen the benchmark has completed. Although there exists a
Store Update andCopykernels are shown. With data comingmeans to write-back all modified cache lines from caches to
from the L1 cache, the measurements for all three benchmagksin memory using thebi nvd instruction, the eviction will
matches the model's prediction. As was the case previoushscur asynchronously in the background, thereby making it

the measured performance is off about one cycle per caate ligypossible to measure the exact time it takes to complete the
loaded from L2 to L1 when data resides in the L2 cache: oBgnchmark.

cycle for the store and updatebenchmarks, and two cycles

for the copy benchmark. As before, we attribute this to th&. Stream Triad and Sémauer Triad

sustained L2 load bandwidth being lower than advertised. In Figure[® we show the model predictions and actual
Interestingly, the measured performance for 8tereand measurements for both the Stream and Schonauer Triads. The

Update kernels in L2 isbetter than the model prediction. measurement fits the model's prediction with data in the L1

We can rule out an undocumented optimization that avoidache. As before, we observe the one cycle penalty for each

write-allocates when rapidly overwriting cache lines i tf8, cache line that is loaded from the L2 cache, which trickles

because th&torekernel has exactly the same performance akown to the L3 cache as well. The measurement with data

50F 2 = 2
In none of the cases the measured L2 performance could §i §i]
live up to the advertised specs of 64 B/c. However, the L2 4 Ei L :i]
performance is slightly better for thead benchmark. Here the -5 [z]
performance in L2 is almost identical to that with data regid =2 30i zi [|=—=Regular i]
in the L1 cache: this is because the cache line can thedtgtica® ™ | .= oo i [e Optimizedf; -
be transfered from L2 to L1 a single cycle at 64 B/c, whicle | T e Stream .
is exactly the amount of slack that is the difference betweeh’[| — ECM Schonauer C b

I

I

I

I

1 i
1 1 02

MR R
L
—_ F
(=)
TR

1 1
Dataset Size [kB] Dataset Size [kB]

clock domains (e.g. core, cbox, mbox) that can not entirel?
hidden for kernels with a very low core cycle count.

B. Store, Update, Copy

© ©® N o g A~ W N P

coming from and going to main memory almost perfectly fit | e—e Dot Product =—a Stream Triad o— Schonauer Triad

the model prediction. —- ECM Dot Product —- ECM Stream Triad —- ECM Schonauer Triad
In addition, Figuré B shows the measurement results for t T

naive Schonauer Triad as it is currently generated by clemspi 49001

(e.g. the Intel C Compiler 15.0.1) and an optimized versic

that makes use of all three AGUs, i.e. one that uses t—

newly introduced simple AGU on port 7. Typically, addres§*3000

calculations in loop-unrolled streaming kernels requings

steps: scaling and offset computation. The scaling pacives

multiplying the loop counter with the size of the data typ

and adding it to a base address (typically a pointer to tlwg

first element of the array) to compute the correct byte addre~

of ith array element; the offset part adds a fixed offset, e.

32 B, to skip ahead the size of one vector register. Both AGl

on ports 2 and 3 support this addressing mode called “be 0

plus index plus offset.” The problem with the simple AGL

is that it can not perform the indexing operation but only

offset computation. However, it is possible to make use dfig. 10. Core-Scaling using CoD mode (left) and non-CoD midgt).

this AGU by using one of the “fast LEA" units (which can

performonlyindexed and no offset addressing) to pre-compute

an intermediary address. This pre-computed address iofed t The measurements indicate that peak performance for both

the simple AGU, which can then perform the still outstandingiodes is nearly identical, e.g. for thlet productperformance

offset addition. Using all three AGUs, it is possible to cdetp ~ saturates slightly below 4000 MUp/s for non-CoD mode while

the eight addressing operations required for the load/sté¢OD saturates slightly above the 4000 mark. Although the

operations in three instead of four cycles. The assemblyg cd@fots indicate the bandwidth saturation point is reachelieea

for this optimized version is shown in Listifig 1. Note thateduin CoD mode, this conclusion is deceiving. While it only take

to lack of space we present only a two-way unrolled versidaur cores to saturate the memory bandwidth of an memory

of the kernel instead of the eighy-way unrolled variant th&tomain, a single domain is only using two memory controjlers

2000

rmance [M

1000

! L1 ! L1 !
2 4 6 8 10 12 14
Number of Cores

was used for benchmarking. thus, saturating chip bandwidth requirésx 4 threads to
saturateboth memory domains, the same amount of cores it

lea rbx, [r8+rax+8] takes to achieve the sustained bandwidth in non-CoD mode.

viovapd ymr0, [rsi+raxx*8]

vimovapd ynmmil, [rsi+rax*8+0x20] E. Non-Temporal Stores

vmovapd ym8, - [rdx+rax«8] For streaming kernels and dataset sizes that do not fit into

vmovapd ynmm®, [rdx+rax*8+0x20] o . .

v madd231pd yrmD, ym8, [rcx+r axx8] the LL_C it is imperative to use non—tempor_al stores in order

vfmadd231pd ynml, ymm®, [rcx+r ax*8+0x20] to achieve the best performance. Not only is the total amount

viovapd [rbx], ynm0 of data to be transfered from memory reduced by getting rid

viovapd [rbx+0x20], ymm of RFO stream(s), but in addition, non-temporal stores do no

have to travel through the whole cache hierarchy and thus do
not consume valuable bandwidth. On Haswell, non-temporal
stores are written from the L1 cache into core-private Line
Fill Buffer (LFB)s, from which data goes directly into main
memory.

As discussed previously, when using the ECM to estimateFigure [11 shows the performance gain offered by non-
multi-core performance, single-core is scaled performantemporal stores. The left part shows the Stream Triad, which
until a bottleneck is hit—which on Haswell and other moderosing regular stores features two explicit load streams for
Intel CPUs is main memory bandwidth. Figure] 10 showsrraysB and C plus a store and an implicit RFO stream for
ECM predictions along with actual measurements fordbe array A. Using the naive roofline model, we would expect
product Stream Triad andSctonauer Triadbenchmarks using an increase of performance by a factor 083 x, because
both CoD and non-CoD modes. employing non-temporal stores gets rid of the RFO stream,

The L3-memory transfer times for CoD and non-CoD modéereby reducing the number of streams from four to three.
have to be based on the respective bandwidths of the modewever, the measured improvementin performance is higher
Transferring a cache line using only one memory controiter (1181 MUp/s vs. 831 MUp/sl(42 x faster) using a single affin-
CoD mode) takes more cycles than when using both (non-Cdl domain respectively 2298 MUp/s vs 1636 MUp/s4(x
mode). In addition to scaling within the memory domain, chifaster) when using a full chip. This improvement can not ex-
performance (fourteen cores) is also shown in CoD mode. plained using a bandwidth-only model and requires accognti

Listing 1. Two-way unrolled, hand-optimized code for Sehter Triad.

D. Multi-Core Scaling

00— T T T 1 T T T T T F. Sustained Memory Bandwidth

| |o—o Stream Triad (reg.) g + Schonauer Triad (reg.)
— - ECM (regular) ECM (regular)
2000 | o Stream Triad (nt.) 7

1500

1000

Performance [MUp/s]

500

1 ‘2 3 4 % é ‘7 14 1 ‘2 3 4 % é 9 14 Bridge and DDR3-1866 in the Ivy Bridge node).

Number of Cores Number of Cores We observe that Haswell offers a higher bandwidth for
all kernels, especially when employing non-temporal store
and Schonauer Triads (right). Also worth noting is that Haswell offers improved bandwidth
when using the CoD mode for all but the store benchmarks
employing non-temporal stores.

0 |

Fig. 11. Performance using regular vs. non-temporal stimeStream (left)

for in-cache data transfers. Using non-temporal storesirth
core execution time stays the same. Instead of a L1-L2 eansf
time of 5 cycles to load cache lines containiBgand C (2
cycles), write-allocating (1 cycle), and evicting (2 cy®)lehe
cache line containing\ the L1-L2 transfer time is now one
just 4 cycles, because we don’t have to write-allodat& he
L2-L3 transfer time goes down from 8 cycles (lo&and

C, write-allocate and evicf) to just 4 cycles (loadB and
C). Also, cache line transfers to and from main memory go
down from four (loadB and C, write-allocate and evich) to
three. At a sustained bandwidth of 28.3 GB/s this correspond
to 5.2¢/CL or 15.6c/CL for three cache lines. The ECM
input is thus{1]3|4|4]15.6} cycles leading to the follow
prediction:{3]7]11726.6} cycles. Comparing the 26.6 ¢c/CL
with that of the estimate of 37.7 cy/CL when using regular
stores (cf. Tabl€ll) we infer a speedup of exadtl§y2x using
the ECM model.

We observe a similar behaviour for the Schonauer Triad.
Here, the roofline model predicts an increase of performance
by a factor of1.25x (four streams instead of five). How-
ever, the measured performance using non-temporal steres i
905 GUp/s vs. 681 GUp/s (factdr33x) using a single affin-
ity domain respectively 1770 MUp/s vs. 1339 MUp/s (factor
1.32x) using a full chip. The ECM using non-temporal stores
is constructed analogous to the Stream Triad in the parhgrap
above. Three cache lineB,(C, andD) have to be transfered
from L2 to L1; one cache linéA has to evicted from L1
to the LFBs. Three cache line8,(C, and D) have to be
transfered from L3 to L2. Three cache lineB, (C, and D)
have to be transfered from memory to L3 and one cache line
(A) has to be evicted from the LFBs to main memory. At
a bandwidth of 29.0 GB/s this corresponds to approximately
5.1c per cache line or 20.3 ¢ for all four cache lines. The rhode
inputis thus{1 || 4 |5]6]20.3} cycles, yielding a prediction of
{479115]35.3} cycles. Comparing 35.3c/CL to the estimate
of 46.5cy/CL when using regular stores (cf. Tallle 1) we infer
a speedup of exactly.32x using the ECM model.

Apart from upgrading the memory from DDR 3 used in the
| ~—a Schonauer Triad (nt.) | | previous Sandy and Ivy Bridge microarchitectures to DDR 4
L [~ - ECM (mon-temporal)| /1 | | —- ECM (mon-temporal) | » I to increase the peak bandwidth, the efficiency of the memory
interface has been improved as well—especially with regard
to non-temporal stores. Figute]12 shows a comparison of
the sustained memory bandwidth achieved by the Haswell
machine (cf. Tablg]l) and the predecessor microarchitestu
Sandy and Ivy Bridge. The Sandy and Ivy Bridge systems
4 used for comparison are standard, two-socket servergiiegtu
Xeon E5-2680 (SNB) and Xeon E5-2690 v2 (IVY) chips, with
four memory channels per socket (DDR3-1600 in the Sandy

SNB © IVB [l HSW E HSW (CoD) |

triad triad (mem)

Stream Schonauer Schonauer

triad (mem)

Eg
0.8
g€
[}

I
o o o
A OF &

[s/gD]

|
=
S

wpLspueg

Fig. 12. Sustained Socket Bandwidth of Sandy Bridge (SNB),Bridge (IVB), and Haswell both non-CoD (HSW) and CoD mothSWW CoD)

	I Introduction
	II Processor Microarchitecture
	III Haswell Microarchitecture
	III-A Core Pipeline
	III-B Package Layout
	III-C Uncore Frequency Scaling
	III-D Memory
	III-E Cluster on Die

	IV ECM Model
	IV-A Model input, construction, and assumptions
	IV-B Chip-level bottleneck and saturation
	IV-C Model setup

	V Microbenchmarks
	V-A Dot Product and Load
	V-B Store, Update, and Copy
	V-C Stream and Schönauer Triads

	VI Experimental Testbed
	VII Results
	VII-A Load, Dot Product
	VII-B Store, Update, Copy
	VII-C Stream Triad and Schönauer Triad
	VII-D Multi-Core Scaling
	VII-E Non-Temporal Stores
	VII-F Sustained Memory Bandwidth

