
ar
X

iv
:1

50
9.

03
11

8v
1

 [c
s.

D
C

]
10

 S
ep

 2
01

5

Execution-Cache-Memory Performance Model:
Introduction and Validation

Johannes Hofmann
Chair for Computer Architecture
University Erlangen–Nuremberg

Email: johannes.hofmann@fau.de

Jan Eitzinger
Erlangen Regional Computing Center (RRZE)

University Erlangen–Nuremberg
Email: jan.eitzinger@fau.de

Dietmar Fey
Chair for Computer Architecture
University Erlangen–Nuremberg

Email: dietmar.fey@fau.de

Abstract—This report serves two purposes: To introduce
and validate the Execution-Cache-Memory (ECM) performance
model and to provide a thorough analysis of current Intel proces-
sor architectures with a special emphasis on Intel Xeon Haswell-
EP. The ECM model is a simple analytical performance model
which focuses on basic architectural resources. The architectural
analysis and model predictions are showcased and validatedusing
a set of elementary microbenchmarks.

I. I NTRODUCTION

Today’s processor architectures appear complex and in-
transparent to software developers. While the machine alone
is already complicated the major complexity is introduced
by the interaction between software and hardware. Processor
architectures are in principle still based on the stored-program
computer design. In this design the actions of the computer
are controlled by a sequential stream of instructions. The
instructions are plain numbers and therefore equivalent to
data. Consequently they can be stored in the same memory.
This is a strictly sequential design and the main focus of
a system designer is to increase the instruction throughput
rate. Modern processors nevertheless employ parallelism on
various levels to increase throughput: instruction level,data
processing level, and task level. It is possible to formulate a
very simple performance model which reduces the processor
to its elementary resources: instruction execution and data
transfers. To set up the model one needs to determine the
time it takes to execute a given instruction sequence on a
given processor core and to transfer the data, which is required
to do so. Intimate knowledge about processor architecture,
cache and memory architectures are necessary to do this. It is
still a worthwhile effort as the model gives in-depth insights
about bottlenecks, runtime contributions, and optimization
opportunities of a code on a specific processor. This report
introduces the model and provides a thorough analysis Intel’s
latest Haswell-EP processor architectures.

II. PROCESSORM ICROARCHITECTURE

Intel processors use the Intel 641 Instruction Set Archi-
tecture (ISA) which is a so called Complex Instruction Set

1Intel 64 is Intel’s implementation of x86-64, the 64 bit version of the x86
instruction set. x86-64 was originally developed by AMD under the AMD64
moniker and while Intel 64 and AMD64 are almost identical, there exist minor
differences that warrant differentiation.

Computer (CISC) architecture. It originates from the late
70s and initially was a 16 bit ISA. During its long history
it was extended to 32 bit and finally 64 bit. The ISA con-
tains complex instructions that can have variable number of
operands, have variable opcode length and allow for address
references in almost all instructions. To execute this type
of ISA on a modern processor with aggressive Instruction
Level Parallelism (ILP) the instructions must be converted
on the fly into a Reduced Instruction Set Computer (RISC)
like internal instruction representation. Intel refers tothese
instructions as micro-operations,µops for short. Fortunately
decoding of CISC instructions toµops works so well that
it does not negatively impact instruction throughput. Please
note that when talking about instructions we mean the RISC
like internal instructions calledµops and not Intel 64 ISA
instructions. In the following, we will describe the most
important techniques to increase performance in contemporary
processor architectures.

ILP - As any modern processor, Intel processors aggres-
sively employ parallel instruction execution within the strictly
sequential instruction stream. This parallelism is exploited
dynamically by hardware during execution and requires no
programmer or compiler intervention. ILP comes in two fla-
vors: Pipelining and superscalar execution. Pipelining executes
different stages of multiple instructions simultaneously. In
superscalar designs multiple execution pipelines exist and can
be active and execute instructions at the same time. Where
pipelining enables an instruction throughput of one per cycle
superscalar execution allows to retire multiple instructions per
cycle. Due to dependencies between instructions the degreeof
ILP that can be leveraged heavily depends on the instruction
mix of a particular code and is typically limited. In order to
exploit even more parallelism most modern general purpose
processors support Out-of-Order (OoO) execution. In OoO
execution the processor may change the order in which in-
structions are executed as long as semantic equivalency to
the original ordering is guaranteed. Common codes involve
many conditional branches which severely limit the size of
the instruction window to apply ILP to. Therefore OoO
execution is usually combined with speculative execution.
This technique attempts to predict the outcome of branches
and speculatively executes the forecast code path before the
outcome is known. This may involve executing unnecessary

http://arxiv.org/abs/1509.03118v1

instructions but enables to exploit ILP across branches, which
is crucial for loop bodies of limited size. ILP is still a major
technology for generating high performance, but it is not
a dominating driver of performance improvements anymore.
Implementations already are highly optimized and in all buta
selected special cases work very well.

SIMD - Another level of parallelism are data parallel
instructions which simultaneously perform the same operation
on multiple data items. To make use of this architectural
feature, dedicated so called Single Instruction Multiple Data
(SIMD) instructions have to be used by the software. Those
SIMD instructions are provided by means of instruction set
extensions to the core ISA. Currently SIMD is a major driver
for performance. The reason is that it is relatively simple to
implement in hardware since the overall instruction throughput
is not altered. SIMD is characterized by its register width.The
current width is 256 bit (Advanced Vector Extensions (AVX))
with 512 bit already employed in Intel’s Knights Corner archi-
tecture (Initial Many Core Instructions (IMCI)) and announced
for regular Xeon processors with the advent of Skylake (AVX-
512). Apart from performing multiple operations in a single
instruction another benefit of SIMD is that of loading and
storing data block-wise. The same amount of work can be
done with a factor less instructions. It can be already predicted
that the role of SIMD as a major driver for performance comes
to an end with the introduction of 512 bit SIMD width.

Multicore chips - Moore’s law continues to drive the
number of transistors which can be packed on a single
chip. During the 90s the increase in register count enabled
by the shrinking of manufacturing size was accompanied
by increasing clock speed as a major way to increase the
performance of processors. In the early 2000s a paradigm
shift occurred. The vendors did not manage to further increase
clock speed without running into cooling issues. The answer
to this dilemma was to put multiple (processor) cores on the
same die. Early designs had completely separated caches and
only shared main memory access. Later some of the caches
were private and some shared. For a programmer a multicore
processor feels like a multi-processor SMP system. Parallel
programming is required to leverage the performance. The
core is now a building block and a major engineering effort
is put into how to interconnect cores on the die and how
to route data from main memory controllers to the caches.
At the moment a still moderate number of cores is put on
one die connected by one or more segmented ring buses. The
Last-Level Cache (LLC) is usually also segmented. Multiple
memory controllers with multiple channels are connected to
the bus to inject data. Already now and even more in the future
the system on a chip designs will be the performance defining
feature of a processor. On Intel chips the cores including
caches private to a core are logically separated from shared
entities on the chip. Those shared entities are grouped in the so
called uncore. LLC-segments, ring-bus, on-board interconnects
and memory controllers are all part of the uncore.

System Design- A compute node employs elementary
building blocks on different levels. A core is built of multiple

executions units, multiple cores form a die, there might be
multiple dies on one package (socket), and finally a node might
contain multiple sockets. The trend of the system on a chip
designs transfers more and more components which where
formerly offered in the Northbridge on the motherboard or
by separate chips onto the processor die. This involves not
only the memory controllers but also Peripheral Component
Interconnect Express (PCIe) interfaces, network interfaces, and
GPUs. For a programmer this adds additional complexity. For
memory access data locality becomes an issue as main mem-
ory is distributed in multiple locality domains (ccNUMA). IO
and network access performance might depend on the origin
of the request within the system.

The central part of a microarchitecture are its scheduler
and execution units. With the introduction of the Pentium
Pro in 1995 Intel provided a very accessible abstraction for
the scheduler. The scheduler can issue instructions to so
called ports. There is a maximum number of instructions the
scheduler can issue in a single cycle. Behind every port there
can be one or more execution units. The maximum number of
instructions which can retire may be different from the number
of instructions which can be issued. Because of speculative
execution it makes sense to issue more instruction than can
retire. This layout allows an analytical access to predict
the instruction throughput of a given instruction sequence
assuming that there are no hazards and dependencies among
instructions.

Changes in microarchitectures can be grouped in incremen-
tal, capability and functional changes. An incremental change
is e.g. to add more entries to a queue the benefit usually is in
the single digit percentage range. Capability changes are e.g.
increasing SIMD width, adding more execution units or widen
a data path. Benefits range from percentage improvements
to factors. Functional changes are adding new instructions
introducing a new functionality, e.g. gather/scatter of Fused
Multiply-Add (FMA) instructions. In recent years with energy
consumption a new dimension was added in microarchitecture
design. This is driven on one side by the rise of mobile devises
where energy consumption is a primary requirement for pro-
cessors but also in Supercomputing with energy consumption
limiting the economic feasibility of large scale machines.

III. H ASWELL M ICROARCHITECTURE

A. Core Pipeline

Figure 1 illustrates the simplified core layout of the Haswell
microarchitecture. As all modern designs, this microarchitec-
ture uses a Harvard design for the innermost cache level, i.e.
instructions and data are stored in separate caches. Starting
with the L2 cache it is based on a von Neumann design
with unified caches for instructions and data. The core fetches
instructions in chunks of 16 byte from the address provided
by the Branch Prediction Unit (BPU)—typically this address
is just a 16 byte increment of the last address from which data
was fetched; in the case of branches it will be the address
of instructions that are the most likely to be executed. After
instructions have been fetched, a pre-decoder determines the

32 kB L1 Data Cache

128 bit

Complex
Decoder

Simple
Decoder

Port 0

256 bit 2x256 bit

Allocate / Rename / Retire / Move Elimination / Zero Idiom

Instruction Queue

Predecode

32 kB L1 Instruction Cache

256 kB Unified L2 Cache

1536 uop
(L0) CacheMSROM

Simple
Decoder

Simple
Decoder

Scheduler

Memory Control

Line Fill Buffers

512 bit

Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

ALU

AVX Mul

AVX Div

AVX Blend

AVX FMA

2nd Branch

ALU

fast LEA

AVX Add

AVX Cvt

AVX FMA

AVX Mul

ALU

fast LEA

AVX Shuf

AVX Bool

AVX Blend

ALU

1st Branch

Load Data

AGU

Load Data

AGU

Store Data simple AGU

Fig. 1. Core layout for the Haswell Microarchitecture

bounds of the various instructions that were included in a
given 16 byte block. In the next phase, decoding from CISC
instructions toµops occurs. A simple example would be a
single arithmetic operation with memory address as operand
(e.g.vaddpd ymm0, ymm0, [rax+r11*8]) that is split
into two µops: one dedicated load operation and a dedicated
arithmetic operation with register-only operands. This decod-
ing phase is superscalar, with one complex and three simple
complex decoders; also featured is a MSROM decoder which
is responsible for seldom used RISC instructions that decode
to more that 4µops. Decodedµops are stored in theµop cache,
which can hold up to 1536 micro-ops, and enables the reuse of
previously decoded instructions, e.g. in the event of loops. The
motivation for this cache is energy saving: whenever micro-
ops from the cache are used, the legacy decode pipeline can
be powered down.

Beforeµops leave the in-order front-end, the renamer allo-
cates resources from the Physical Register File (PRF) to each
instruction. One of the improvements of Haswell in this phase
is the elimination of register-registers moves through register
renaming without having to issue anyµops. Dependency
breaking idioms such as zero idioms (e.g.vxorpd) and the
ones idiom (cmpeq) can improve instruction parallelism by
eliminating false dependencies: The renamer notices whenever
an architectural registers (e.g.ymm0) is set to zero and will
assign a fresh register from the PRF to it; the OoO scheduler
will thus never see a false dependency. The size of the OoO
window has been increased from 168 to 192 micro-ops in
Haswell.

The width of all three data paths between the L1 cache and

processor registers has been doubled in size from 16 B to 32 B.
This means that AVX loads and stores (32 B in size) can now
retire in a single clock cycle as opposed to two clock cycles
required on the Sandy and Ivy Bridge architectures. The data
path between the L1 and L2 caches has also seen a doubling
in size—at least on for transfers from L2 to the L1 cache; our
measurements indicate that evictions still occur at a bandwidth
of 32 B/c.

While the core is still limited to retiring only fourµops per
cycle, the number of ports has been increased from six to eight
in Haswell (shown in blue in Fig. 1). The newly introduced
port 6 contains the primary branch unit; a secondary unit
has been added to port 0. In previous designs only a single
branch unit was available and located on port 5. By moving
it to a dedicated port in the new design, port 5—which is
the only port that can perform AVX shuffle operations—is
freed up. Adding a secondary branch units benefits branch-
intensive codes. The other new port is port 7, which houses
a so-called simple Address Generation Unit (AGU). This unit
was made necessary by the increase in register-L1 bandwidth.
Using AVX on Sandy Bridge and Ivy Bridge, two AGUs
were sufficient, because each load or store required two cycles
to complete, not making it necessary to compute three new
addresses every cycle, but only every second cycle. With
Haswell this has changed, because potentially a maximum of
three load/store operations can now retire in a single cycle,
making a third AGU necessary. Unfortunately, this simple
AGU can not perform the necessary addressing operations
required for streaming kernels on its own (see Section VII-C
for more details).

Apart from adding additional ports, Intel also extended
existing ports with new functionality. Operations introduced
by the FMA ISA extension are handled by two new, AVX-
capable units on ports 0 and 1. Haswell is also the first
architecture to feature the AVX2 ISA extension. Because AVX
introduced 256 bit SIMD operations only for Single Precision
(SP) and Double Precision (DP) floating-point data types,
AVX2 extends the set of 256 bit SIMD operations to several
integer data types. Haswell also saw the introduction of a
second AVX multiplication unit on port 1.

B. Package Layout

Figure 2 shows the layout of a 14-core Haswell processor
package. Apart from the processor cores, the package consists
of what Intel refers to as the uncore. Attached to each core
and its private L1 and L2 caches, we find a LLC segment, that
can hold 2.5 MB of data. This physical proximity of core and
cache segment does however not imply that data used by a core
is stored exclusively or even preferably in its LLC segment.
Data is placed in all LLC segments according to a proprietary
hash function that is supposed provide uniform distribution
of data and prevent hotspots for a wide range of data access
patterns. An added benefit of this design is that single-threaded
applications can make use of all available LLC.

The cores and LLC segments are connected to a bidi-
rectional ring interconnect that can transfer one Cache Line

Core 0

L1+L2

LLC
Segment

Core 1

L1+L2

LLC
Segment

Core 2

L1+L2

LLC
Segment

Core 3

L1+L2

LLC
Segment

Core 4

L1+L2

LLC
Segment

Core 5

L1+L2

LLC
Segment

Core 6

L1+L2

LLC
Segment

Core 7

L1+L2

LLC
Segment

CBox 3

CBox 2

CBox 0

CBox 1

CBox 4

CBox 5

CBox 6

CBox 7

Core 8

L1+L2

LLC
Segment

Core 9

L1+L2

LLC
Segment

Core 10

L1+L2

LLC
Segment

Core 11

L1+L2

LLC
Segment

Core 12

L1+L2

LLC
Segment

Core 13

L1+L2

LLC
Segment

CBox 11

CBox 10

CBox 8

CBox 9 CBox 12

CBox 13

SBox 0 SBox 2

SBox 1 SBox 3

Home Agent (HA)

Memory Controller (IMC)

two DDR4

channels

two DDR4

channels

Intel QPI

Ring-to-QPI (R3QPI)

two QPI links

Home Agent (HA)

Memory Controller (IMC)

Integrated IO (IIO)

Ring-to-PCIe (R2PCIe)

Fig. 2. Chip layout for the Haswell-EP Microarchitecture

(CL) (64 B in size) every two cycles in each direction. In
order to reduce latency, the cores are arranged to form two
rings, which are connected via two queues. Each ring has
associated to it a Home Agent (HA) which is responsible
for cache snooping operations and reordering of memory
requests to optimize memory performance. Attached to each
HA is a Memory Controller (MC), each featuring two 8 byte-
wide DDR4 memory channels. Also accessible via the ring
interconnect are the one-die PCIe and QuickPath Interconnect
(QPI) facilities.

Haswell also saw the introduction of an on-die Fully Inte-
grated Voltage Regulators (FIVR). This FIVR allows Haswell
to draw significantly less power than the previous Ivy Bridge
microarchitecture, because it allows for faster entering and
exiting power-saving states. It also allows a more fine-grained
control of CPU states: instead of globally setting the CPU
frequencies for all cores on a package, Haswell can now set
cores frequencies and sleep states individually.

C. Uncore Frequency Scaling

When Intel first introduced the shared on-die LLC with
Nehalem, it maintained distinct clock domains for CPU cores
and the uncore, which houses the LLC, because this cache
cache was not considered latency sensitive and could thus
run at a lower frequency thereby saving power. In the next
microarchitecture, Sandy Bridge, Intel changed this design and
made the uncore run at the same clock frequency as the CPU
cores. While this drastically benefited latency, it broughtwith
it the problem of on-die graphics accessing data from the LLC
with low performance when CPU cores were in power saving
mode and clocked the uncore down along with them. Ivy
Bridge tried to solve this problem with a dedicated L3 graphics
cache, but eventually data would have to be brought in from
the regular L3 cache. In the new Haswell microarchitecture,
Intel moved back to the Nehalem design: having two separate
clock domains for core and uncore. Haswell also offers a
feature called Uncore Frequency Scaling (UFS), in which the
uncore frequency is dynamically scaled based on the number
of stall cycles in the CPU cores. Although reintroducing high

0

10

20

30

40

50

60

70

P
ow

er
 [W

]

L1
 C

ac
he

 L
im

it
(3

2k
B

)

L2
 C

ac
he

 L
im

it
(2

56
kB

)

L3
 C

ac
he

 L
im

it
(3

5M
B

)

Power UFS
Power no UFS

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

50

100

150

M
em

or
y

B
an

dw
id

th
 [G

B
/s

]

Bandw. UFS
Bandw. no UFS

Fig. 3. Impact of UFS on Bandwidth and Power Usage.

latencies, the separate clock domain for the uncore offers a
significant potential for power saving, especially for serial
codes.

Figure 3 shows the sustained bandwidth (lefty-axis) mea-
sured for the Schönauer vector triad (cf. Table I) using a
single core along with the power consumption (righty-axis)
for varying dataset sizes. As expected the performance is not
influenced by whether UFS is active or not when data resides
in a core’s private caches (L1+L2). Although we observe a
difference in performance as soon as the LLC is involved,
the performance impact is very limited. While the bandwidth
drops from 24 to 21 GB/s (about 13%) in the LLC, power
usage is reduced from 55 to 40 W (about 27%). In multicore
scenarios that work on data in the LLC or main memory
this effect can no longer be observed because the uncore is
dynamically adjusted to run at the maximum clock speed of
3 GHz in order to satisfy demand from all cores.

D. Memory

Microarchitectures preceding Haswell show a strong corre-
lation between CPU frequency and the achievable sustained
memory bandwidth. This behaviour is demonstrated in Fig-
ure 4, which shows the measured chip bandwidth for the
Stream Triad—adjusted by a factor of 1.3 to account for write-
allocates—on the Sandy Bridge, Ivy Bridge, and Haswell
microarchitectures.

For each system, the bandwidth was measured using the
lowest possible frequency (1.2 GHz in each case) and the
advertised nominal clock speed. While Sandy Bridge can
achieve a sustained bandwidth of 35.5 GB/s when clocked
at 2.7 GHz, the result using 1.2 GHz is only 24.2 GHz—just
2/3 of the best-case chip bandwidth! On Ivy Bridge, the
nominal clock speed of 3.0 GHz delivers a sustained chip
bandwidth of 42.5 GHz; at 1.2 GHz the performance degrades
to 28.1 GB/s—again, just2/3 of the best-case chip band-
width. For Haswell, we observe that the sustained bandwidth
of 52.3 GHz is identical in both cases. Even the saturation
point—the number of cores required to reach the sustained

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Cores

0

10

20

30

40

50

60
B

an
dw

id
th

 [G
B

/s
]

SNB 1.2 GHz
SNB 2.7 GHz
IVB 1.2 GHz
IVB 3.0 GHz
HSW 1.2 GHz
HSW 2.3 GHz

Fig. 4. Stream Triad Bandwidth as Function of Frequency.

socket bandwidth—of 7–8 cores is almost identical. Bearing
in mind that CPU frequency is the most important variable
influencing package power usage, this invariance of memory
bandwidth from frequency has significant ramifications for
energy usage for bandwidth-limited algorithms: absent the
need for a high clock frequency to perform actual processing,
the CPU frequency can be lowered, thereby decreasing power
consumption, while the memory bandwidth stays constant. The
consequences for energy usage are illustrated in the heat maps
shown in Figures 5 and 6. The former illustrates the required
energy-to-solution to compute the Stream triad for a dataset
size of 10 GB on Sandy Bridge, Ivy Bridge, and Haswell
microarchitectures. We observe that the so-called race-to-
idle is not very efficient for all three microarchitectures.In
terms of energy-to-solution adding more CPU speed makes
no sense as soon as main memory bandwidth is saturated.
We find that for the Sandy and Ivy Bridge microarchitectures,
using half the number of available cores at moderate clock
frequencies provides the best energy-to-solution result;for
Haswell, using the lowest possible CPU frequency is viable.
Overall, for the Stream triad Haswell offers an improvement
of 23% respectively 12% over the Sandy and Ivy Bridge
microarchitectures when it comes to energy consumption. The
improvement becomes even more pronounced when taking the
runtime into account: the Energy-Delay Product (EDP) metric
weighs the consumed energy by the total runtime to include
time-constraints that are typically found in HPC scenarios.
For Sandy and Ivy Bridge we observe that the optimum EDP
solution requires high clock frequencies in order to lower the
runtime; however, increasing the clock frequency will result
in higher energy usage, thus increasing the other input factor
of the EDP. As we have shown previously, on Haswell the
sustained bandwidth is independent of CPU frequency, which
is why a very low frequency can be used. As a result, Haswell
outperforms the Sandy and Ivy Bridge microarchitectures by
55% and 35% respectively in terms of EDP.

E. Cluster on Die

As shown previously in Section III-B, the CPU cores are
arranged around two rings with each ring having a dedicated
memory controller. In Cluster on Die (CoD) mode, the cores
get equally separated into two memory domains. This means
that each core will only use a single memory controller.
To keep latencies low, the general approach is to make a
core access main memory through the memory controller
attached to its ring. However, with the number of cores in
the affinity domains being equal, the asymmetric core count
on the two physical rings makes exceptions necessary. In
the design shown in Fig. 2 the 14 cores are divided into
two affinity domains of 7 cores each. Using a simple load-
benchmark together withlikwid-perfctr [?] to access
performance counters and measure the number of memory
accesses for each individual memory channel, we find that
cores 0–6 access main memory through the memory channels
associated with the memory controller on the left ring, and
cores 7–13 those associated with the memory controller on
ring 1. Thus, only a core number 7 has to take a detour across
rings to access data from main memory. With CoD active
the LLC also becomes segmented. As each affinity domain
contains seven LLC segments (2.5 MB each), the total amount
of LLC for each domain is 17.5 MB—exactly half of the total
amount of 35 MB.

The CoD mode is intended for highly optimized Non-
Uniform Memory Access (NUMA) codes and serves two
purposes: The first is to decrease latency by reducing the
amount of endpoints in the affinity domain. Instead of 14
LLC segments, data will be distributed in only 7 segments
inside each affinity domain, thereby decreasing the mean hop
count. Also, the requirement to pass through the two buffers
connecting the rings is eliminated for all but one LLC segment.
The second benefit of CoD is to that bandwidth is increased
by reducing the probability of ring collisions that is implied
by lowering the number of participants from 14 to 7.

IV. ECM M ODEL

The ECM model [?], [?], [?] is a simple resource oriented
analytical performance model focusing on the elementary
resources instruction throughput and data transfers. It can
predict the runtime for a steady-state execution of a loop
body and can break down different runtime contributions from
execution and data transfers. The ECM model is a lightspeed
model: It puts a optimal throughput assumption on instruction
execution and assumes that all data transfers are bandwidth
limited. Any hazards, dependencies and latency influences are
neglected. Setting up the model requires intimate knowledge
about execution capabilities, data paths and bandwidth values
for the complete memory hierarchy. This involves sometimes
information beyond the vendor specification data sheet.

A. Model input, construction, and assumptions

The total estimated runtime is decomposed into execution
time and data transfer times. There are rules when contribu-
tions can overlap with each other. Times are always in CPU

1

2

3

4

5

6

7

8

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.7 T

N
u

m
b

er
 o

f
C

o
re

s

CPU Frequency [GHz]

Sandy Bridge-EP (Xeon E5-2680)

53 52 50 49 48 47 47 45 45 44 44 44 44 45 44 49

39 37 37 36 36 35 35 34 34 34 34 34 34 34 35 40

33 32 32 31 31 31 31 31 31 31 31 31 32 32 34 39

32 32 31 30 30 30 30 31 31 31 32 32 33 33 35 40

32 32 31 31 31 31 31 32 32 33 33 34 35 36 37 43

33 32 32 32 32 32 33 33 34 34 35 36 37 38 40 48

34 34 33 33 33 34 34 35 36 37 37 38 39 40 43 50

35 35 35 35 35 35 36 37 37 38 39 41 42 43 46 53

1

2

3

4

5

6

7

8

9

10

1.2 1.3 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.4 2.5 2.6 2.7 2.9 3.0 T

CPU Frequency [GHz]

Ivy Bridge-EP (Xeon E5-2690 v2)

65 61 56 54 53 52 49 49 48 46 46 46 46 45 45 47

43 41 38 37 36 36 34 34 34 33 33 33 33 33 33 35

35 34 31 31 30 29 29 28 28 28 28 28 28 28 28 31

31 30 28 27 27 26 26 26 26 26 26 26 27 27 28 30

29 28 27 26 26 26 26 26 26 26 27 27 27 28 29 31

29 28 26 26 26 26 26 26 26 27 27 28 28 29 29 33

29 28 27 27 26 26 26 26 27 28 28 28 29 31 31 34

29 28 27 27 26 26 27 27 27 28 29 30 30 31 32 35

30 29 28 27 27 27 27 28 28 29 30 31 31 32 33 37

30 29 28 28 28 28 28 29 29 30 31 31 32 34 38 47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 T

CPU Frequency [GHz]

Haswell-EP (Xeon E5-2695 v3)

60 58 56 54 53 51 52 51 50 50 49 55 57

34 34 33 33 33 33 33 33 34 34 34 34 35

29 29 29 29 29 29 29 30 29 29 29 29 30

27 26 26 26 26 26 26 26 26 26 26 26 27

25 24 24 24 24 24 24 24 24 25 25 25 26

23 23 23 23 23 23 24 24 25 25 26 25 27

23 23 23 23 23 24 24 24 25 25 26 26 28

23 23 23 23 24 24 25 25 25 25 26 27 29

23 24 24 24 24 24 25 26 26 26 27 27 29

23 24 24 24 25 25 25 26 27 27 28 28 33

24 24 24 25 25 25 26 27 27 27 28 31 38

24 24 25 25 25 26 26 27 28 28 32 36 42

25 25 25 25 26 26 27 31 31 32 36 43 47

25 25 25 26 26 27 30 31 35 36 40 47 55

E
n

er
g

y
 [

J]

Fig. 5. Energy-to-Solution for Stream Triad (10 GB dataset size) on Selected Microarchitectures.

1

2

3

4

5

6

7

8

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.7 T

N
u

m
b

er
 o

f
C

o
re

s

CPU Frequency [GHz]

Sandy Bridge-EP (Xeon E5-2680)

832 753 690 637 592 562 528 492 473 447 433 418 402 397 373 347

366 332 307 283 267 249 235 225 214 205 198 192 188 185 177 175

232 212 197 184 173 163 156 151 146 144 140 140 137 139 140 148

192 179 165 156 147 142 139 137 134 134 132 133 132 133 135 147

183 169 158 151 144 141 139 137 137 135 136 137 137 139 142 158

185 171 162 154 148 145 143 142 142 142 144 144 144 147 152 174

189 177 167 159 154 152 149 149 148 150 152 153 153 156 163 182

194 182 173 166 161 158 156 158 157 159 160 162 165 167 175 195

1

2

3

4

5

6

7

8

9

10

1.2 1.3 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.4 2.5 2.6 2.7 2.9 3.0 T

CPU Frequency [GHz]

Ivy Bridge-EP (Xeon E5-2690 v2)

1009892 735 672 627 587 519 496 466 428 413 397 392 363 363 326

405 365 303 282 261 245 219 210 201 185 181 178 172 165 161 159

246 222 185 172 161 150 136 133 126 119 115 112 111 108 107 111

183 164 138 127 121 115 106 103 101 97 97 96 95 96 96 102

153 140 121 114 108 103 99 96 95 94 94 94 94 96 99 106

146 132 113 107 104 99 93 94 94 96 93 94 95 95 98 108

142 129 112 108 98 100 94 95 95 97 97 96 98 102 102 109

142 131 112 107 100 97 98 94 92 94 98 99 98 103 101 112

144 130 113 107 104 99 96 96 96 98 100 102 103 104 106 117

145 132 114 109 103 101 98 98 98 99 103 102 106 108 131 175

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 T

CPU Frequency [GHz]

Haswell-EP (Xeon E5-2695 v3)

997 925 848 785 731 670 651 609 576 553 516 520 493

256 239 224 210 200 191 189 183 179 177 172 163 158

137 133 127 123 120 116 113 113 107 111 109 106 101

100 95 92 89 86 85 84 83 83 81 82 80 81

79 76 75 73 72 70 71 67 70 71 71 71 74

68 67 66 66 63 64 66 67 68 69 70 70 73

63 64 64 63 63 64 66 64 68 68 69 70 74

60 60 63 62 64 65 66 67 67 66 70 72 75

63 64 62 64 65 65 67 69 69 71 71 70 78

62 63 64 63 65 65 68 69 70 72 73 75 97

64 63 64 65 67 67 68 70 71 70 75 89 120

64 64 65 66 67 68 68 72 73 75 93 113 143

65 66 66 66 68 68 71 89 91 93 111 156 173

64 67 66 68 69 69 87 89 110 113 136 185 224

E
D

P
 [

Js
]

Fig. 6. EDP for Stream Triad (10 GB dataset size) on Selected Microarchitectures.

core cycles. This is convenient as everything on a processor
happens in units of cycles and thus the model is independent
of a specific variant of the processor. Modern processors have
multiple clock domains, cores, caches and memory might have
a different clock speed. For memory transfers the time is
converted to the standard bandwidth unit bytes/cycle. While
different clock domains make it more complicated to set up
the model, the generic formulation of the model supports it.
The granularity of data transfers inside the cache/memory
hierarchy is that of cache lines (CL). As a consequence the
ECM model considers instructions equivalent to process one
CL length. Note that a kernel might involve multiple data
streams and therefore also multiple CLs.

The in-core execution and transfer times must be put
together to arrive at a prediction of single-thread execution
time. If Tdata is the transfer time,TOL is the part of the core
execution that overlaps with the transfer time, andTnOL is the
part that does not, then

Tcore = max (TnOL, TOL) and TECM = max(TnOL+Tdata, TOL) .
(1)

The model assumes that (i) core cycles in which loads
are retired do not overlap with any other data transfer in
the memory hierarchy, but all other in-core cycles (including
pipeline bubbles) do, and (ii) the transfer times up to the L1
cache are mutually non-overlapping.

A shorthand notation is used to summarize the
relevant information about the cycle times that
comprise the model for a loop: We write the model as
{TOL ‖TnOL |TL1L2 |TL2L3 |TL3Mem} , where TnOL and
TOL are as defined above, and the other quantities are the
data transfer times between adjacent memory hierarchy
levels. Cycle predictions for data sets fitting into any
given memory level can be calculated from this by adding
up the appropriate contributions fromTdata and TnOL

and applying (1). For instance, if the ECM model reads
{2 ‖ 4 | 4 | 4 | 9} cycles, the prediction for L2 cache will be
max (2, 4 + 4) cycles = 8 cycles. As a shorthand notation
for predictions we use a similar format but with “⌉” as
the delimiter. For the above example this would read as
TECM = {4 ⌉ 8 ⌉ 12 ⌉ 21} cycles. Converting from time
(cycles) to performance is done by dividing the workW

(e.g., flops) by the runtime:P = W/TECM. If TECM is given
in clock cycles but the desired unit of performance is F/s, we
have to multiply by the clock speed.

B. Chip-level bottleneck and saturation

We assume that the single-core performance scales linearly
until a bottleneck is hit. On modern Intel processors the only
bottleneck is the memory bandwidth, which means that an
upper performance limit is given by the Roofline predictionfor
memory-bound execution:PBW = I·bS, whereI is the compu-
tational intensity of the loop code. The performance scaling for
n cores is thus described byP (n) = min (nPmem

ECM
, I · bS) if

Pmem

ECM
is the ECM model prediction for data in main memory.

The performance will saturate atnS = ⌈Tmem

ECM
/TL3Mem⌉

cores.

nS =

⌈

I · bS
Pmem

ECM

⌉

=

⌈

Tmem

ECM

TL3Mem

⌉

. (2)

The ECM model [?], [?], [?] is an analytical performance
model for homogeneous code segments, mostly innermost loop
kernels. It is a light speed model and restricts the processor
architecture to its elementary resources: instruction execution
and data transfers. While the model accounts for hazards
and dependencies in instruction execution it assumes perfect
streaming, neglecting latency or cache affects, on the data
transfer side. In this sense it is very similar to the roofline
model [?]. In contrast to the roofline model the ECM model
takes into account all runtime contributions from data transfers
and uses a much more detailed view on potential overlap
among different runtime contributions. To set up the model
detailed knowledge about the code, the processor architecture
and data volumes and paths within the memory hierarchy. This
process forces a developer to learn more about his code and
the processor architecture, which is an important secondary
benefit of the model compared to e.g. tool only approaches
where the outcome is a magic number without any insight
or knowledge gain. As a result the model provides detailed
information about runtime contributions and bottlenecks.

C. Model setup

The model operates on the level of processor work which
are instructions and transfered data volume. For this it is in
most cases required to look at the assembly level code. Within
a cache hierarchy the smallest granularity of work is one
cacheline (usually 64b on X86 architectures). Work equivalent
to one cacheline length is also the granularity the ECM model
operates on. The primary time unit used in the model are
processor core cycles. This is the primary unit of time in a
microarchitecture. To account for different clock domainsin
modern processor designs other clock domains, e.g. DRAM
or Uncore, are converted into core cycles.

To set up the model the following steps must be performed:

1) Determine the core cycles to execute the instructions
which are required to process work equivalent to one
cacheline length.In this context it is useful to look at
work in terms of iterations on different levels. The first
level is the operation level. Assume a memory copy is

implemented in terms of double precision floating point
assignments then the atomic operation is one double
precision floating point copy. This is worth copying
8b of data. To update (or process) one cacheline as
a consequence64/8 = 8 iterations on the operation
level are required. Note that if we talk about one
cacheline here it means to process work equivalent to
one cacheline length. But of course multiple physical
cachelines might be involved. For copy to process one
cacheline results in reading from a source cacheline and
storing to another destination cacheline. The number
of iterations on the instruction level might be different
though. If for example SIMD SSE instructions are used
16b can be copied with two instructions. Instead of 8b
of one operation one instruction moves 16b. On the
instruction level only 4 iterations are needed to process
one cacheline. The next level of iterations is the loop
level. If a loop is unrolled multiple instruction iterations
form one loop iteration. Lets assume the copy loop in
our example is 4-times unrolled to update one cacheline
length only one loop iteration is required. To wrap it
up: To process one cacheline length requires one loop
iteration which is equivalent to four instruction iterations
which is equivalent to eight operation iterations. To
determine the core cycles to throughput a sequence of
instructions in a steady state a simple model of the
instruction scheduler is required. The model does not
limit the effort put into getting a sensible number for
instruction throughput. For simple loop kernels this can
be done by hand or in more complicated cases a simple
simulator as the Intel IACA tool may be used. At this
point it is assumed that all data is served from the L1
cache.

2) Setup data paths and volumes to get the data to the
L1 cache. For streaming algorithms this step is rather
simple. One needs to know about the store miss policy
and overall cache architecture of the processor. If the
store miss policy is write allocate additional cacheline
transfers need to be accounted for. Intel processors have
inclusive caches, data is always streamed through all
cache levels. The store miss policy is write allocate
up to the L1 cache. One must be careful as there
exist special non-temporal store instructions for memory
which do not trigger the write allocate. In contrast
many competitors (AMD and IBM) use a write-through
policy for the L1 cache. All data is initially loaded
into L2 cache and the last level L3 cache is a victim
cache. Only cachelines evicted from L2 are placed in
L3. Things get more complex if data access is not
pure streaming. This is the case for stencil codes which
expose data reuse within the cache hierarchy. Sometimes
data volumes are difficult to acquire. One solution is
to validate data volumes with hardware performance
counter measurements which allow to determine data
volumes between different memory hierarchy levels.

3) Setup the overall single core prediction by accounting

for overlap.
4) Determine multicore scaling within a chip.

V. M ICROBENCHMARKS

The set of microbenchmarks used to verify the ECM model
on the Haswell microarchitecture is summarized in Table I. In
addition to the loop body, the table lists the number of load
and store streams—the former being divided into explicit and
Read for Ownership (RFO) streams. RFO refers to implicit
loads that occur whenever a store miss in the L1 cache triggers
a write-allocate of the cache line required for the store. Also
included in the table are the predictions of the ECM model
and the actually measured runtimes in cycles per second along
with a quantification of the model’s error.

The set of benchmarks contains a number of different
streaming kernels, each one offering a different combination of
the different stream types to cover different transfer scenarios
in the cache hierarchy. In the following, we will discuss and
formulate the ECM model for each of the benchmarks. Note
that the sustained bandwidths used to derive the L3-memory
cycles per CL inputs are that of a single memory domain—
i.e. the seven cores comprising one memory domain in CoD
mode—and not the sustained chip bandwidth. We use the CoD
mode, because it offers better performance than the non-CoD
mode.

A. Dot Product and Load

The dot product benchmarkddot is a load-only benchmark
that makes use of the new FMA instructions introduced in
the FMA3 ISA extension. For this benchmarkTnOL is two
clock cycles, because the core has to load two cache lines
(A andB) from L1 to registers using four AVX loads (which
can be processed in two clock cycles, because each individual
AVX load can be retired in a single clock cycle and there
are two load ports). Processing the data from the cache lines
using two AVX fused multiply-add instructions only takes one
clock cycle, because both issue ports 0 and 1 feature AVX
FMA units. A total of two cache lines has to be transfered
between the adjacent cache levels. At 64 B/c this means 2 cy
to transfer the CLs from L2 to L1. Transferring the CLs from
L3 to L2 takes 4 cy at 32 B/c. The empirically determined
sustained (memory domain) bandwidth for the dot product
was 32.4 GB/s. At 2.3 GHz, this corresponds to a bandwidth
of about 4.5 cy/CL or 9.1 cy for two CLs. The ECM model
input is thus{1 ‖ 2 | 2 | 4 | 9.1} cycles and the corresponding
prediction isTECM = {2 ⌉ 4 ⌉ 8 ⌉ 17.1} cycles.

As the name suggest, theload benchmark is a load-only
benchmark as well. However, hereTnOL and TOL are inter-
changed: while a single clock cycle suffices to load the ele-
ments from cache lineA into AVX registers, two cycles are re-
quired to process the data, because there is only a single AVX
add unit. Because only a single cache line has to be transferred
between adjacent cache levels, the time required is exactlyhalf
of that needed for theddotbenchmark.2 The ECM model input

2The sustained chip bandwidth is identical to that of the dot product
microbenchmark, resulting in the same memory bandwidth of 4.5 c/CL.

for the load benchmark is{2 ‖ 1 | 1 | 2 | 4.5} cycles. The model
prediction isTECM = {2 ⌉ 2 ⌉ 4 ⌉ 8.5} cycles.

B. Store, Update, and Copy

Using AVX instructions storing one cache line worth of
constants for thestore benchmark takes two clock cycles,
because only one store unit is available, resulting inTnOL =
2 cy. As there are no other instructions such as arithmetic
operations,TnOL is zero. When counting cache line transfers
along the cache hierarchy, we have to bear in mind that
a store-miss will trigger a write-allocate, thus resultingin
two cache line transfers for each cache line update: one
to write-allocate the cache line which data gets written to
and one to evict the modified cache line once the cache
becomes full. Because evictions between from L1 to L2 cache
take place at a bandwidth of only 32 B/c, this results in a
transfer time of three cycles to move cache lines between
the L1 and L2 cache and a transfer time of 4 cycles for L2
and L3. The sustained bandwidth for a benchmark involving
evictions is slightly worse than that of load-only kernels.
In CPU cycles the measured bandwidth of about 23.6 GB/s
corresponds to approximately 6.2 cy/CL. The resulting ECM
input and prediction are{0 ‖ 2 | 3 | 4 | 12.5} cycles respectively
{2 ⌉ 5 ⌉ 9 ⌉ 21.5} cycles.

As far as the ECM model is concerned, theupdateandstore
kernels behave very similar. The time required to perform
a cache line update isTnOL = 2 cy as well, limited by
store throughput. The two AVX loads required to load the
values to be updated can be performed in parallel to the two
store instructions. In addition, the stores are paired withthe
two AVX multiplications required to update the values in the
cache line, resulting inTOL = 2 cy.3 The number of cache
line transfers is identical to that of thestore kernel, the only
difference being that the cache line load is caused by explicit
loads and not a write-allocate. With a memory bandwidth
almost identical to that of thestorekernel, the time to transfer
a cache line between L3 and memory again is approximately
6.2 c/CL, yielding an ECM input of{2 ‖ 2 | 3 | 4 | 12.5} cycles
and a prediction that is identical to that of thestorekernel.

The copy kernel has to perform two AVX loads and two
AVX stores to copy one cache line. In this scenario, again, the
single store port is the bottleneck, yieldingTnOL = 2 cycles.
Instead of transferring two cache lines, as was the case in
the store and updatekernels, thecopy kernel has to transfer
three cache lines between adjacent cache levels: loadB, write-
allocate and evictA. Loading two cache lines at 64 B/c and
evicting at 32 B/c from and to L2 takes a total of 4 cycles;
transferring three cache lines at 32 B/c between L2 and L3
requires 6 cycles. With a slightly higher sustained memory
bandwidth of 26.3 GB/s than those of thestore and update
kernels due to the higher load-to-store ratio of thecopykernel
the time to transfer one cache line between main memory and
the last-level cache is approximately 5.6 cy. This results in the

3Note that another pairing, such as e.g. one store with two multiplications
and one store with two loads is not possible due to the limitednumber of full
AGUs.

TABLE I
OVERVIEW OF MICROBENCHMARKS: LOOPBODY, MEMORY STREAMS, ECM PREDICTION AND MEASUREMENT IN C/CL, AND MODEL ERROR.

Load Streams Write ECM Prediction Measurement Error
Benchmark Description Explicit / RFO Streams L1/L2/L3/Mem L1/L2/L3/Mem L1/L2/L3/Mem

ddot s+=A[i]*B[i] 2 / 0 0 {2 ⌉ 4 ⌉ 8 ⌉ 17.1} {2.1 ⌉ 4.7 ⌉ 9.6 ⌉ 19.4} {5% ⌉ 17% ⌉ 20% ⌉ 13%}

load s+=A[i] 1 / 0 0 {2 ⌉ 2 ⌉ 4 ⌉ 8.5} {2 ⌉ 2.3 ⌉ 5 ⌉ 10.5} {0% ⌉ 15% ⌉ 25% ⌉ 23%}

store A[i]=s 0 / 1 1 {2 ⌉ 5 ⌉ 9 ⌉ 21.5} {2 ⌉ 6 ⌉ 8.2 ⌉ 17.7} {0% ⌉ 20% ⌉ 9% ⌉ 19%}

update A[i]=s*A[i] 1 / 0 1 {2 ⌉ 5 ⌉ 9 ⌉ 21.5} {2.1 ⌉ 6.5 ⌉ 8.3 ⌉ 17.6} {5% ⌉ 30% ⌉ 8% ⌉ 18%}

copy A[i]=B[i] 1 / 1 1 {2 ⌉ 6 ⌉ 12 ⌉ 28.8} {2.1 ⌉ 8 ⌉ 13 ⌉ 27} {5% ⌉ 33% ⌉ 8% ⌉ 6%}

STREAM triad A[i]=B[i]+s*C[i] 2 / 1 1 {3 ⌉ 8 ⌉ 16 ⌉ 37.7} {3.1 ⌉ 10 ⌉ 17.5 ⌉ 37} {3% ⌉ 25% ⌉ 9% ⌉ 2%}

Schönauer triad A[i]=B[i]+C[i]*D[i] 3 / 1 1 {4 ⌉ 10 ⌉ 20 ⌉ 46.5} {4.1 ⌉ 11.9 ⌉ 21.9 ⌉ 46.8} {3% ⌉ 19% ⌉ 9% ⌉ 1%}

following input for the ECM model{0 ‖ 2 | 4 | 6 | 16.8} cycles,
which in turn yields a prediction of{2 ⌉ 6 ⌉ 12 ⌉ 28.8} cycles.

C. Stream and Schönauer Triads

For theStream Triad, the AGUs prove to be the bottleneck:
While the core can potentially retire four micro-ops per cycle,
it is impossible to schedule two AVX loads (each correspond-
ing to one micro-op) and an AVX store (corresponding totwo
micro-ops) which uses indexed addressing, because there are
only two AGUs available supporting this addressing mode.
The resultingTnOL thus is not 2 but 3 cycles to issue four
AVX loads (two each for cache linesB andC) and two AVX
stores (two for cache lineA). The required arithmetic of two
FMAs can be performed in a single cycle, because two AVX
FMA units are available. Data traffic between adjacent cache
levels is four cache lines: load cache lines containingB and
C, write-allocate and evict the cache line containingA. The
measured sustained bandwidth of 27.1 GB/s corresponds to
approximately 5.4 cy/CL—or about 21.7 cy for all four cache
lines. The input parameters for the ECM model are thus
{1 ‖ 3 | 5 | 8 | 21.7} cycles leading to the follow prediction:
{3 ⌉ 8 ⌉ 16 ⌉ 37.7} cycles.

The Schönauer Triad involves the same arithmetic as the
Stream Triad with an additional operand having to be loaded
into registers. Again the address-generation units prove to be
bottleneck. Now, six AVX loads (corresponding to cache lines
B, C, andD) and two AVX stores (cache lineA) have to be
performed; the total of these eight instructions have to share
two AGUs, resulting in aTnOL of 4 cycles. The two AVX
fused multiply-add instructions can be performed in a single
cycle. Data transfers between adjacent caches correspond to
five cache liens:B, C, andD require loading while cache line
A needs to write-allocated and evicted. For the L1 cache, this
results in a transfer time of 6 cycles (four to load four cache
lines, two to evict one cache line). The L2 cache transfer
time is 10 cycles. The measured sustained memory bandwidth
of 27.8 GB/s corresponds to about 5.3 cy/CL or 26.5 cy for
all five cache lines. The resulting ECM input parameters are
thus{1 ‖ 4 | 6 | 10 | 26.5} cycles and the resulting prediction is
{4 ⌉ 10 ⌉ 20 ⌉ 46.5} cycles.

VI. EXPERIMENTAL TESTBED

A standard two-socket server based on the Haswell-EP
microarchitecture was chosen for evaluating the kernels. The

TABLE II
TEST MACHINE CONFIGURATION.

Microarchitecture Haswell-EP
Model Xeon E5-2695 v3
Release Date Q3 2014
Nominal/Turbo Clock Speed (Single-Core) 2.3 GHz/3.3 GHz
Cores/Threads 14/28
Major ISA Extensions SSE, AVX, AVX2, FMA3

L1/L2/L3 Cache 14×32 kB/14×256 kB/35 MB
Memory Configuration 4 channels DDR4-2166
Theoretical Memory Bandwidth 69.3 GB/s

machine uses two-way SMT and has fourteen moderately
clocked (2.3 GHz base frequency) cores per socket. Sixteen
vector registers are available for use with Streaming SIMD
Extensions (SSE), AVX, and AVX2. Using floating-point arith-
metic, each core can execute two FMA instructions per cycle
leading to a peak performance of 16 DP or 32 SP Floating-
Point Operations (Flops) per cycle. Memory bandwidth is
provided by means of a ccNUMA memory subsystem with
four DDR4-2166 memory channels per socket. In order to
achieve best performance during benchmarking CoD was
activated and UFS was disabled. A summary of the machine
configurations can be found in Table II.

VII. R ESULTS

The results presented in this section were obtained us-
ing hand-written assembly code that was benchmarked us-
ing likwid-perfctr [?] to guarantee reproducibility as
compilers tend to perform well-meant optimizations (such as
producing SSE instead of of AVX loads in order to lower the
probability for split cache line loads) that can end up being
counter-productive thus resulting in non-optimal code even for
the most simple of kernels.

A. Load, Dot Product

In Figure 7 we illustrate ECM predictions and measure-
ment results for both theload and dot productbenchmarks.
While the core execution time for both benchmarks is two
clock cycles just as predicted by the model, thedot product
performance is slightly lower than predicted with data coming
from the L2 cache. We found this slightly worse than expected
L2 cache performance to be a general problem with Haswell.4

4In contrast to Haswell, both Sandy and Ivy Bridge’s L2 bandwidth of
32 B/c could be achieved in every benchmark [?].

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

5

10

15

20

25
C

yc
le

s
pe

r
C

ac
he

 L
in

e

L1
 C

ac
he

 L
im

it
(3

2k
B

)

L2
 C

ac
he

 L
im

it
(2

56
kB

)

L3
 C

ac
he

 L
im

it
(1

7.
5M

B
)

Load
ECM Load
Dot Product
ECM Dot P.

Fig. 7. ECM predictions and measurement results for load anddot product
kernels.

In none of the cases the measured L2 performance could
live up to the advertised specs of 64 B/c. However, the L2
performance is slightly better for theload benchmark. Here the
performance in L2 is almost identical to that with data residing
in the L1 cache: this is because the cache line can theoretically
be transfered from L2 to L1 a single cycle at 64 B/c, which
is exactly the amount of slack that is the difference between
TOL = 2 cy andTnOL = 1 cy. In practise, however, we observe
a small penalty of 0.3 cy/CL.

As soon as the working set becomes too large for the core-
local L2 cache, we find that the ECM prediction becomes
slightly off. An empirically determined penalty for transferring
data from off-core locations for kernels with a low number
of cycles per cache line was found to be one clock cycle
per load stream and cache-level, e.g. 2 cy for thedot product
benchmark with data residing in L3 and 4 cy with data from
main memory. This is most likely to be attributed to additional
latencies introduced when data is passing between different
clock domains (e.g. core, cbox, mbox) that can not entirely
hidden for kernels with a very low core cycle count.

B. Store, Update, Copy

In Figure 8 the ECM predictions and measurements for the
Store, Update, andCopykernels are shown. With data coming
from the L1 cache, the measurements for all three benchmarks
matches the model’s prediction. As was the case previously,
the measured performance is off about one cycle per cache line
loaded from L2 to L1 when data resides in the L2 cache: one
cycle for thestore and updatebenchmarks, and two cycles
for the copy benchmark. As before, we attribute this to the
sustained L2 load bandwidth being lower than advertised.

Interestingly, the measured performance for theStoreand
Update kernels in L2 isbetter than the model prediction.
We can rule out an undocumented optimization that avoids
write-allocates when rapidly overwriting cache lines in the L3,
because theStorekernel has exactly the same performance as

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

10

20

30

C
yc

le
s

pe
r

C
ac

he
 L

in
e

L1
 C

ac
he

 L
im

it
(3

2k
B

)

L2
 C

ac
he

 L
im

it
(2

56
kB

)

L3
 C

ac
he

 L
im

it
(1

7.
5M

B
)

Store
Update
ECM St/Upd
Copy
ECM Copy

Fig. 8. ECM predictions and measurement results for store, update, and copy
kernels.

10
1

10
2

Dataset Size [kB]

L
1

 L
im

it
 (

3
2

k
B

)

Regular

Optimized

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

10

20

30

40

50

C
y

cl
es

 p
er

 C
ac

h
e

L
in

e

L
1

 C
ac

h
e

L
im

it
 (

3
2

k
B

)

L
2

 C
ac

h
e

L
im

it
 (

2
5

6
k

B
)

L
3

 C
ac

h
e

L
im

it
 (

1
7

.5
M

B
)

Stream Triad
ECM Stream
Schönauer Triad
ECM Schönauer

Fig. 9. ECM predictions and measurement results for Stream and Schönauer
Triads (left) and comparison of naive and optimized Schönauer Triad (right).

the Updatekernel, which has to load the cache line in order
to update the values contained in it. TheCopykernel is about
1 cycle slower per cache line than predicted by the model.

For main memory, the measured result is significantly better
than the model prediction. This is caused by caches and several
store buffers still holding data to be evicted to main memory
when the benchmark has completed. Although there exists a
means to write-back all modified cache lines from caches to
main memory using thewbinvd instruction, the eviction will
occur asynchronously in the background, thereby making it
impossible to measure the exact time it takes to complete the
benchmark.

C. Stream Triad and Schönauer Triad

In Figure 9 we show the model predictions and actual
measurements for both the Stream and Schönauer Triads. The
measurement fits the model’s prediction with data in the L1
cache. As before, we observe the one cycle penalty for each
cache line that is loaded from the L2 cache, which trickles
down to the L3 cache as well. The measurement with data

coming from and going to main memory almost perfectly fits
the model prediction.

In addition, Figure 9 shows the measurement results for the
naive Schönauer Triad as it is currently generated by compilers
(e.g. the Intel C Compiler 15.0.1) and an optimized version
that makes use of all three AGUs, i.e. one that uses the
newly introduced simple AGU on port 7. Typically, address
calculations in loop-unrolled streaming kernels requirestwo
steps: scaling and offset computation. The scaling part involves
multiplying the loop counter with the size of the data type
and adding it to a base address (typically a pointer to the
first element of the array) to compute the correct byte address
of ith array element; the offset part adds a fixed offset, e.g.
32 B, to skip ahead the size of one vector register. Both AGUs
on ports 2 and 3 support this addressing mode called “base
plus index plus offset.” The problem with the simple AGU
is that it can not perform the indexing operation but only
offset computation. However, it is possible to make use of
this AGU by using one of the “fast LEA” units (which can
performonly indexed and no offset addressing) to pre-compute
an intermediary address. This pre-computed address is fed to
the simple AGU, which can then perform the still outstanding
offset addition. Using all three AGUs, it is possible to complete
the eight addressing operations required for the load/store
operations in three instead of four cycles. The assembly code
for this optimized version is shown in Listing 1. Note that due
to lack of space we present only a two-way unrolled version
of the kernel instead of the eighy-way unrolled variant that
was used for benchmarking.

1 lea rbx, [r8+rax*8]
2 vmovapd ymm0, [rsi+rax*8]
3 vmovapd ymm1, [rsi+rax*8+0x20]
4 vmovapd ymm8, [rdx+rax*8]
5 vmovapd ymm9, [rdx+rax*8+0x20]
6 vfmadd231pd ymm0, ymm8, [rcx+rax*8]
7 vfmadd231pd ymm1, ymm9, [rcx+rax*8+0x20]
8 vmovapd [rbx], ymm0
9 vmovapd [rbx+0x20], ymm1

Listing 1. Two-way unrolled, hand-optimized code for Schönauer Triad.

D. Multi-Core Scaling

As discussed previously, when using the ECM to estimate
multi-core performance, single-core is scaled performance
until a bottleneck is hit—which on Haswell and other modern
Intel CPUs is main memory bandwidth. Figure 10 shows
ECM predictions along with actual measurements for thedot
product, Stream Triad, andScḧonauer Triadbenchmarks using
both CoD and non-CoD modes.

The L3-memory transfer times for CoD and non-CoD mode
have to be based on the respective bandwidths of the mode.
Transferring a cache line using only one memory controller (in
CoD mode) takes more cycles than when using both (non-CoD
mode). In addition to scaling within the memory domain, chip
performance (fourteen cores) is also shown in CoD mode.

Dot Product
ECM Dot Product

Stream Triad
ECM Stream Triad

Schönauer Triad
ECM Schönauer Triad

2 4 6 8 10 12 14
Number of Cores

1 2 3 4 5 6 7 14
0

1000

2000

3000

4000

P
er

fo
rm

an
ce

 [
M

U
p

/s
]

0

1000

2000

3000

4000

P
er

fo
rm

an
ce

 [
M

U
p

/s
]

Number of Cores

Fig. 10. Core-Scaling using CoD mode (left) and non-CoD mode(right).

The measurements indicate that peak performance for both
modes is nearly identical, e.g. for thedot productperformance
saturates slightly below 4000MUp/s for non-CoD mode while
CoD saturates slightly above the 4000 mark. Although the
plots indicate the bandwidth saturation point is reached earlier
in CoD mode, this conclusion is deceiving. While it only takes
four cores to saturate the memory bandwidth of an memory
domain, a single domain is only using two memory controllers;
thus, saturating chip bandwidth requires2 × 4 threads to
saturateboth memory domains, the same amount of cores it
takes to achieve the sustained bandwidth in non-CoD mode.

E. Non-Temporal Stores

For streaming kernels and dataset sizes that do not fit into
the LLC it is imperative to use non-temporal stores in order
to achieve the best performance. Not only is the total amount
of data to be transfered from memory reduced by getting rid
of RFO stream(s), but in addition, non-temporal stores do not
have to travel through the whole cache hierarchy and thus do
not consume valuable bandwidth. On Haswell, non-temporal
stores are written from the L1 cache into core-private Line
Fill Buffer (LFB)s, from which data goes directly into main
memory.

Figure 11 shows the performance gain offered by non-
temporal stores. The left part shows the Stream Triad, which
using regular stores features two explicit load streams for
arraysB and C plus a store and an implicit RFO stream for
array A. Using the naive roofline model, we would expect
an increase of performance by a factor of1.33×, because
employing non-temporal stores gets rid of the RFO stream,
thereby reducing the number of streams from four to three.
However, the measured improvement in performance is higher:
1181 MUp/s vs. 831 MUp/s (1.42× faster) using a single affin-
ity domain respectively 2298 MUp/s vs 1636 MUp/s (1.40×
faster) when using a full chip. This improvement can not ex-
plained using a bandwidth-only model and requires accounting

1 2 3 4 5 6 7 14
Number of Cores

0

500

1000

1500

2000

2500
P

er
fo

rm
an

ce
 [

M
U

p
/s

]

Stream Triad (reg.)

ECM (regular)

Stream Triad (nt.)

ECM (non-temporal)

Schönauer Triad (reg.)

ECM (regular)

Schönauer Triad (nt.)

ECM (non-temporal)

1 2 3 4 5 6 7 14
Number of Cores

Fig. 11. Performance using regular vs. non-temporal storesfor Stream (left)
and Schönauer Triads (right).

for in-cache data transfers. Using non-temporal stores, the in-
core execution time stays the same. Instead of a L1-L2 transfer
time of 5 cycles to load cache lines containingB and C (2
cycles), write-allocating (1 cycle), and evicting (2 cycles) the
cache line containingA the L1-L2 transfer time is now one
just 4 cycles, because we don’t have to write-allocateA. The
L2-L3 transfer time goes down from 8 cycles (loadB and
C, write-allocate and evictA) to just 4 cycles (loadB and
C). Also, cache line transfers to and from main memory go
down from four (loadB andC, write-allocate and evictA) to
three. At a sustained bandwidth of 28.3 GB/s this corresponds
to 5.2 c/CL or 15.6 c/CL for three cache lines. The ECM
input is thus{1 ‖ 3 | 4 | 4 | 15.6} cycles leading to the follow
prediction:{3 ⌉ 7 ⌉ 11 ⌉ 26.6} cycles. Comparing the 26.6 c/CL
with that of the estimate of 37.7 cy/CL when using regular
stores (cf. Table I) we infer a speedup of exactly1.42× using
the ECM model.

We observe a similar behaviour for the Schönauer Triad.
Here, the roofline model predicts an increase of performance
by a factor of 1.25× (four streams instead of five). How-
ever, the measured performance using non-temporal stores is
905 GUp/s vs. 681 GUp/s (factor1.33×) using a single affin-
ity domain respectively 1770 MUp/s vs. 1339 MUp/s (factor
1.32×) using a full chip. The ECM using non-temporal stores
is constructed analogous to the Stream Triad in the paragraph
above. Three cache lines (B, C, andD) have to be transfered
from L2 to L1; one cache lineA has to evicted from L1
to the LFBs. Three cache lines (B, C, and D) have to be
transfered from L3 to L2. Three cache lines (B, C, and D)
have to be transfered from memory to L3 and one cache line
(A) has to be evicted from the LFBs to main memory. At
a bandwidth of 29.0 GB/s this corresponds to approximately
5.1 c per cache line or 20.3 c for all four cache lines. The model
input is thus{1 ‖ 4 | 5 | 6 | 20.3} cycles, yielding a prediction of
{4 ⌉ 9 ⌉ 15 ⌉ 35.3} cycles. Comparing 35.3 c/CL to the estimate
of 46.5 cy/CL when using regular stores (cf. Table I) we infer
a speedup of exactly1.32× using the ECM model.

F. Sustained Memory Bandwidth

Apart from upgrading the memory from DDR 3 used in the
previous Sandy and Ivy Bridge microarchitectures to DDR 4
to increase the peak bandwidth, the efficiency of the memory
interface has been improved as well—especially with regard
to non-temporal stores. Figure 12 shows a comparison of
the sustained memory bandwidth achieved by the Haswell
machine (cf. Table II) and the predecessor microarchitectures
Sandy and Ivy Bridge. The Sandy and Ivy Bridge systems
used for comparison are standard, two-socket servers featuring
Xeon E5-2680 (SNB) and Xeon E5-2690 v2 (IVY) chips, with
four memory channels per socket (DDR3-1600 in the Sandy
Bridge and DDR3-1866 in the Ivy Bridge node).

We observe that Haswell offers a higher bandwidth for
all kernels, especially when employing non-temporal stores.
Also worth noting is that Haswell offers improved bandwidth
when using the CoD mode for all but the store benchmarks
employing non-temporal stores.

ddot load store store
(mem)

update copy copy
(mem)

Stream
 triad

 Stream
triad (mem)

Schönauer
 triad

Schönauer
triad (mem)

0

10

20

30

40

50

60

70

B
an

d
w

id
th

 [
G

B
/s

]

SNB IVB HSW HSW (CoD)

Fig. 12. Sustained Socket Bandwidth of Sandy Bridge (SNB), Ivy Bridge (IVB), and Haswell both non-CoD (HSW) and CoD mode (HSW CoD)

	I Introduction
	II Processor Microarchitecture
	III Haswell Microarchitecture
	III-A Core Pipeline
	III-B Package Layout
	III-C Uncore Frequency Scaling
	III-D Memory
	III-E Cluster on Die

	IV ECM Model
	IV-A Model input, construction, and assumptions
	IV-B Chip-level bottleneck and saturation
	IV-C Model setup

	V Microbenchmarks
	V-A Dot Product and Load
	V-B Store, Update, and Copy
	V-C Stream and Schönauer Triads

	VI Experimental Testbed
	VII Results
	VII-A Load, Dot Product
	VII-B Store, Update, Copy
	VII-C Stream Triad and Schönauer Triad
	VII-D Multi-Core Scaling
	VII-E Non-Temporal Stores
	VII-F Sustained Memory Bandwidth

