3NSROCID: <XP.

2012 IEEE 23rd Intemational Conference on Application-Specific Systems, Architectures and Processors

Enabling Automatic Pipeline Utilization Improvement in
Polyhedral Process Network Implementations

Sven van Haastregt, Bart Kienhuis
Leiden Institute of Advanced Computer Science, Leiden University
Niels Bolirweg 1, 2333 CA Leiden, The Netheriands
{svhaastrkienhuis} @liacs.nl

Abstract—Because of the increasing complexity of modern
embedded systems, High-Level Synthesis (HLS) has gained
momentum. Most HLS tools employ Control Data Flow Graph
(CDFG) based approaches. An alternative route from C to
RTL was presenied in [1], where a CDFG based approach
was avgmented with a polyhedral process network based
approach. This alternative route enables application of high-
level transformations giving a significant increase in utilization
of pipelined components, which positively alTects throughput.
However, Increased pipeline utilization could be obtained only
after manually sclecting a set of transformations to apply,
which is a non-trivial task. The main contribution of this paper
Is a reordering buffer that enables automatic improvement of
pipeline utilization.

I. INTRODUCTION

Today's embedded systems are typicatly implemented
using multiple processing units 1o meet increased computa-
tional demands. Some of these processing units are special-
ized hardware architectures, which offer higher throughput
than microprocessor-based solutions. However, manually
designing such specialized architectures at the Register
Transfer Level (RTL} 1s challenging because of complexity
and tight throughput constraints. To simplify the design of
specialized architectures, High-Level Synthesis (HLS) tools
have gained papularity. Such tools ailow algorithmic specifi-
cation of a design in C code, and then generate synthesizable
RTL [2]. The main operating principle of an HLS tool is to
compute a static schedule for a Control Data Flow Graph
(CDFG) that meets certain constraints [2].

The CDFG based approach has proven effective for
synthesis of fine-grained blocks, such as kernel functions.
However, when interconnecting such fine-grained blocks,
a static schedule may not yield the same performance as
the optimal self-timed schedule {3]. Instead, we employ a
self-scheduling approach 1o interconnect fine-grained blocks.
Our approach 1s based on Polvhedral Process Nerworks
(PPN), which are a subclass of Kahn Process Networks.
An alternative route from sequential C code to RTL im-
plementations employing PPNs was explored in [1]. The
authors showed that by employing the PPN model, high-
level transformations such as skewing become available
that can have a major impact on throughput. By manually
skewing the source code, the authors reported a 4x speedup

1063-6862/12 $26.00 © 2012 {EEE
DOI 10.1109/ASADP.2012.23

324732344 __|_>

173

at the cost of only 27% increase 1n resource usage. However,
such speedups cannot be obtained il the designer is not fully
aware of the most appropriate transformations. This paper
presents a scheduling step and a reordering buffer that enable
avoiding the need for manual selection of transformations.

This paper is organized as follows. [n Secuion IT we
give background information and in Section ITI we present
our problem statement. In Section IV we discuss related
solutions to the problem and in Section V we descnibe our
sotution. In Section VII we show resuits of experiments. We
conclude in Section VIIL

[I. PRELIMINARIES

We use the fow depicted in Figure 1 to obtain RTL
implementations from static affine nested loop programs
specified in C. We employ the the PN compiler [4] to derive
an equivalent PPN from C code. This PPN 1s implemented
i1 RTL using the ESPAM tool [5]. A PPN 1s a directed graph
G = (V, E}) in which V is a set of vertices, or processes, and
E 15 a set of edges, or channels. For each function call in
the C program, PN constructs a process. Each process p e 17
iterates over an /V-dimensional domain D, which 1s defined
by for-loops and if-statements surrounding the function call.
For every #teration point in [, data is read from incoming
channels, that data 15 processed by a function F, and then
the transformed data is written 10 oulgomg channeis.

A C program 1s shown 1n the upper left of Figure 2.
In the bottom left of Figure 2, we show the PPN denved
by the PN tool, consisting of one process and six channels.
Two of these channels are selfloops, because during certain
iterations, elements of x and y are both produced and
consumed by function F. The remaining four channels are
connected to other processes which are omitted for the sake

<]

-

ATL

PN

ESPAM

(R [LAURA processor
schedule Read untt |Exec. unlt
- 8 [IP cors |

The PPN based C-10-RTL synthesis flow.

Figure 1.

1) coi'a&uler
@ pS ociety

of simplicity. The domain Dy € Z° of the process derived
from function F is shown on the right. Each point n the
domain corresponds to an execution of functon F.
Synchromization i & PPN 1s achieved by blocking read
and write operations on the channels. Therefore, no global
schedule expressing the firing order of the different processes
1s required for u PPN. A local schedule expresses the exe-
cution order of different iterations of an individual process.
We focus on such local schedules in this work to improve
throughput of processes. In current PPN implemeniations,
Dy, 1s always traversed n the order specified in the onginal
C program: That is, the eriginal schedule follows the lexi-
cographical order in which the for-loops iterate through Dy,
as depicted by the numbers inside the points in Figure 2.

[[I. MOTIVATION & PROBLEM STATEMENT

In high-performance streaming applications, the function
F of a process is typically implemented using a pipehned [P
core [5] 1o satisfy throughput requirements. This pipelining
allows for overlapped execution of multiple points of D,. A
high degree of overlapped execution is desirable, since this
leads 1o higher throughput of the process. Whether over-
lapped execution actually takes place depends on multiple
factors, such as pipeline depth and the chosen local schedute.
In this paper, we assume pipeline depth is a given. Therefore,
we want 10 focus on the local schedute,

The original schedule does not always yield the highest
degree of overlapped execution. For our example of Fig-
ure 2, data dependences require that iteration (1, 1} execules
before iterations (1,2) and (2, 1). Simlarly, (1,2} should
execute before (1,3). When implementing F using a P-stage
pipeline and following the original schedule, execution of the
first four iterations takes 3P + 1 clock cycles, as depicted
in Figure 3. However, if we execute the first four iterations
in the order (1,1), (1,2), (2,1}, (1,3), we sull respect data
dependences but execution takes only 3P cycles. Although
in tms simplified scenario the gain is only one cycle, we
show that more substantial gains are achievable for real
applications m Section VIL

IV. RELATED WORK

A natural way to overlap execution of process iterations is
to perform loop parallelization, using for example Feautrier's

for (L= 1; L <= 4; i+ |
for (3 = 1; J <= 3; j+}
Fx[i), yI3], sxfi]. ey{3)):

Figure 2. Example C program and corresponding PPN and dependence
graph. The domain is traversed according to the original schedule.

BNSDOCID: <XP 324732344 _1_»

174

(l.1)
Original 2y 3B+l
schedule: | T :
R
[a.w
New (.2) | iF
schedule: (2. 1)

Time {clock cvcles) H

Figure 3. Pipeline behaviour for two different schedules. As showa in the
dependence graph of Figure 2. iterations (2,1} and {1, 2} do not depend
on each other. which allows their executions to be overlapped.

algorithm [6]. Feautrier’s algonthm has a high computa-
tional complexity, which motivated Feautrier to apply the
algorithm to sets of communicating regular processes [7].
Unforiunately, Feautrier does not elaborale on the implica-
tions of the new schedule for the communication channels
beiween processes. In Section VI we show that these imph-
cations cannot always be ignored. Another way to address
the computational complexity of Feautrier's algorithm and
control flow overhead of the resulting schedules was pre-
sented in [8]. They limit the possible schedule coefficients
resulting in simpler schedules, This leads to more scheduling
dimensions, which may counteract the benefits of simpler
schedules. Feautrier’s algorithm 15 employed by e.g. the
MMAIpha tool [9] to penerate hardware [rom algorithms
spectfied in the Alpha language.

In [1], [10], the authors apply a skewing transformation
by rewriting the source code. This 15 an effective way to
tncrease overlapped execution, and consequently, improve
pipeline utilization. However, identifying the skewing trans-
formation parameters, such as the loop to skew, requires
thorough studying of the application. This motivated us
to investigate an automated approach to improve pipelne
utilization without requiring designer decisions.

V. SOLUTION APPROACH

Both the PPN model and Feautrier's scheduling algorithm
are based on the polyhedral model. This allows us 1o incor-
porate a scheduling pass in the PPN denvation flow, such
that pipeline utilization is improved without any effort from
the designer. Our solution involves adding a scheduting step
to the C-10-RTL synthesis flow, as depicted by the schedule
block in Figure 1. The precise details of the scheduling
step are beyond the scope of this paper. Changing a local
schedule affects inter-process communication, which is the
topic of the remainder of this paper.

V1. COMMUNICATION

[deally, a producer process produces iokens in the same
order as the consumer process consumes them. Such in-
order communication allows the channel {rom producer ta
consumer lo be realized using a relatively iexpensive FIFO

Figure 4. Example scheduled using its original schedule (left) and a
different schedule introducing out-of-order communication (right).

buffer. However, the schedule computed by Feautrier's algo-
rithm does not necessarily enforce in-order communication
of data between processes. Thus, after applying the schedule,
the order in which tokens are produced by the producer
process may be different from the order in which tokens
are consumed by the consumer process, and vice versa, For
such out-gf-order communication, channels can no longer
be realized using FIFO buffers. Instead, more sophisticated
interconnects in the form of reordering buffers are required.
Such reordering buffers store incoming tokens in order in a
private memory and contain reordering logic which outputs
the stored tokens in the order required by the consumer.

In Figure 4, we show two different process domain traver-
sals for the running example in which the x[i] accesses
have been removed from function call F. On the left, we fol-
low the oniginal schedule. Channel y_out receives tokens
i the order v [11, y[2], y[3]. On the right, we follow
another valid schedule in which the inner loop is traversed
in the reverse direction. As a result, channel y_out receives
tokens in the order y {31, v[2], y([1], which is different
from the order resulting from the original schedule. If we
assumne that the schedule of y_out's consumer process is
not modified, the tokens would arrive in reverse order if
y_out would be implemented using a FIFQ buffer. To
respect the correct loken order, channel y_out has to be
implemented using a reordering buffer.

In {11), <ifferent realizations of reordering buffers have
been proposed, such as linear, pseudo-pelynomial, and Con-
tent Addressable Memory (CAM) based implementations.
The authors showed that these reordering buffer designs
have a considerable negative impact on performance and
resource usage, For example, read and write operations of a
CAM 1mplementation take four and two clock cycles [12],
respectively, which would counteract improvements gained
from rescheduling.

To avoid counteracting the benefits of a better schedule
because of possible reordering communication, we have
developed a new reordering buffer, The primary difference
with previous work 1s that read and write operations now
take only one clock cycle. This means that replacing a FIFO
buffer with a reordering buffer increases resource usage, but
does not introduce additional delay cycles.

Our reordenng buffer is composed of a Write Address
Generator (WAG), a Read Address Generator (RAG), and
a private memory. The memory is duai-poried, with one

NSDOCID: <XP 32473234A__|_>

175

7
Write Addness
Genarator

-
Read Address | |gmpata
Ganerator

(RAG) —-Exist

1— Read

’,Pansumer:

|
04| . |takant
05). |tokenD

Milg. i =1lg. 2517

Figure 5. Reordering buffer.

port being addressed by the WAG and the other port being
addressed by the RAG. The WAG and RAG both contain
a set of counters which iterate through domains associated
to the channel. These counters are used by the address
generation logic 10 compute the next write and read ad-
dresses. To avoud delay cycles, the counters and address
generation logic are implemented in a pipeline fashion.
To minimize the latency of the address generation logic,
we employ a hnear addressing scheme. This addressing
scheme is based on conventional linearization of an n-
dimensional array mnto a 1-dimensional array. As such, the
resulting address expressions are linear polynomials that can
be realized efficiently in hardware,

The interface of the reordering buffer resembles a point-
to-point FIFO buffer interface. This allows straightforward
integration of reordering buffers in EspaM-generated PPN
implementations. That is, when rescheduling introduces out-
of-order communication, we do not have to modify the
inmerfaces of the processes involved in the out-of-order
communication. The imerface 1s depicted in Figure 5. The
outgoing slave interface exposes an output data bus, an exist
signal 1o indicate if & token is available, and a read signal
to acknowledge a read operation. The incoming master
interface exposes an input data bus, a full signal to block
write operations when the buffer is not ready to accept them,
and a write signal to acknowledge a write cperation.

We illustrate the memory organization of our reordering
buffer at the bottom of Figure 5. In the bottom left, we
show a producer domain consisting of four points (0, 0],
(0,1}, (0,2), and (1, 2). The producer produces four tokens
in the order A, B, C, D. We store these tokens according to
a linear addressing scheme at address

wAddr(ip, j,) = ip + 2 - jp. (1)

The slot for each token is shown in the memory of Figure 5.
For example, token C is produced in iteration (0,2) and
is therefore stored at address 04. Because of the linear
addressing scheme, some addresses may remain unused for
non-rectangular domains. In our example, this occurs for
addresses 01 and 03. The consumer domain shown on the

BNSDOCID: <XP.

bottom right consumes the four tokens n the order C, D,
B, A. To retrieve these tokens in the correct order from the
memory, we compute

rAddrii., j.) = wAddr{M (i, j.)) (2)
for each point in the consumer domain. That is, we first
apply the channel relation A{ as found by the PN compiler.
This gives the point (ip,jp) in the producer domain that
corresponds 10 the point (i.,j.} in the consumer domair,
We then compute wAddr(ip,, j,) to obtain the address from
which the token should be read.

For token C, which is consumed in iteration (0,0), the
rAddr function yields address 04 which is the same address
that was computed by the WAG. However, a token may not
have been wntten by the producer yet. For example, token
C muy not be available yet at address (4. Therefore, we
introduce an additional valid bit for each memory location,
The valid bit is set once a token has been written 1o s
address. To comply with the blocking read semantics of the
PPN model, the RAG blocks until the token corresponding
to the current consumer iteration is written. In the memory
of Figure 5, 1okens A and B have been written, as indicated
by the *v"s, whereas 1okens C and D have not been writien
yet, as indicated by the “."s.

VII. EXPERIMENTAL RESULTS

To assess the impact of rescheduling on resource usage
and performance, we have experimented with the follow-
ing applications: QR decomposition, which is used in e.g.
wireless receivers and radar, grid, taken from [10]; and
matrix-matrix muluplication (mmm). We target a Xilinx
Vinex-5 XCIVLX110T-2 FPGA and uvse Xilinx ISE 13.1
for synthesis. We instruct the synthesis tcols to report the
maximum achievable clock frequency.

In the second and third columns of Table I, we show
the number of out-of-order channels and the total number
of channels for the original and rescheduled implementa-
tions, respectively. For example, the rescheduled PPN of
QR contains iwelve channels, of which three require a
reordering buffer. We found that the linear realization of
our reordering buffers provides a good balance between
control overhead and memory usage. In each experiment, the
reordering buffers are not pan of the critical path limiting
clock frequency and each reordening buffer requires only a
single 2KB block memory primitive.

Table [
IMFACT OF APPLYING FEAUTRIER'S ALGORITHM ON PPNS.

Apolication #00 / #Chanaels ALUTs Speedup

PP Orig. | Resched. Resched, Resched.
grid 0/6 0/6 | +106 (+27%) 27
mimm 0/6 4/6 | 4292 (+15%) 28
QR 0/12 3712 | +871 (+68%) 27

3247323481 _>

VIII. CONCLUSIONS

In this paper, we have presented an approach that enables
obtaining improved pipeline utilization in polyhedral process
networks in an awomated way. Qur approach consists of
leveraging Feautrier’s optimal multi-dimensional scheduling
algorithm to improve overlapped execution in a pipelined
design by altering local schedules of processes. We take
into account the impact of a new schedule on inter-process
comsmunication using a new reordering buffer design that has
a lower access latency than existing solutions. This enables
automatic generation of improved RTL implementations
from applications written in C. In experiments with three
applications we have obtained speedups of 2.7x without
requiring additional effort from the designer.

REFERENCES

[1]1 S. van Haasiregt and B. Kicnhuis. “Automated Synthesis of
Streaming C Applications to Process Networks in Hardwace,”
in Design, Autom. and Test in Europe (DATE'09), April 2009.

P. Coussy, 1. Gajski, M. Meredith, and A. Takach. “An In-
troduction to High-Level Synthesis,” JEEE Des. Tesi. vol. 26,
pp. 8-17, July 2009.

E. Lee and S. Ha, “Scheduling Strategies for Multiprocessor
Real-Time DSP. in Global Telecommunications Conference.
1989. pp. 1279-1183.

S. Verdoolaege, H. Nikolov, and T. Stefanov, “PN: a Tool for
Improved Derivation of Process Networks.” EURASIP J. on
Embedded Svys., 2007,

H. Nikolov, T. Stefanov, and E. Deprettere, “Automated
Integration of Dedicated Hardwired TP Cores in Heteroge-
neous MPSoCs Designed with ESPAM.” EURASIP Journal
on Embedded Systems, vol. 2008,

P. Feaulricr, “Some Efficient Solutions to the Affine Schedul-
ing Problem. Part II: Multi-Dimensional Time,” Intl. [of
Parallel Programming, vol, 21, no. 6, pp. 389420, Dee 1992,

. “Scalable and Structured Scheduling.” fatl. 7. of Paral-
lel Programming, vol. 34, no. 5, pp. 459487, Octaber 2006.

L.-N. Pouchet. C. Bastoul, A. Cohen, and J. Cavazos, “lter-
ative Oplimization in the Polyhedral Model: part il. Muli-
dimensional Time." in Programming Language Design and
Implementation, 2008, pp. 90-100.

A.-C. Guillou. P Quinton, and T. Risset, “Hardware Syn-
thesis for Muli-Dimensional Time.” in Application-Specific
Systems, Arch. and Processors (ASAP), 2003, pp. 40-50.

T. Stefanov. B. Kicnhvis, and E. Depretiere, “Algorithmic
Transformation Techniques for Efficient Exploration of Alter-
native Application Instances.” in Hardware/softvare codesign
{CODES), 2002, pp. 7-12.

A. Turjan, B. Kienhuis. and E. Depretiere. “Realizations
of the extended lincarization model” in Domain-Specific
Embedded Multiprocessors. Marcel Dekker, Inc., 2003, <h. 9,
pp. 171-191.

C. Zissulescu. A. Turjan, B. Kicnhuis, and E. Deprettere,
“Solving Owtl of Order Communication using CAM Memory:
an Implementation.” in Circuits, Systeins and Signal Process-
ing (ProRISC), 2002.

[3

{41

]

[6]

[7]

(8]

19

{10]

[

(121

