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ABSTRACT
In polyhedral compilation, various core concepts such as the
set of statement instances, the access relations, the depen-
dences and the schedule are represented or approximated us-
ing sets and binary relations of sequences of integers bounded
by (quasi-)affine constraints. When these sets and relations
are represented in disjunctive normal form, it is important
to keep the number of disjuncts small, both for efficiency
and to improve the computation of transitive closure over-
approximations and AST generation. This paper describes
the set coalescing operation of isl that looks for oppor-
tunities to combine several disjuncts into a single disjunct
without affecting the elements in the set. The main purpose
of the paper is to explain the various heuristics and to prove
their correctness.

1. INTRODUCTION AND MOTIVATION
Polyhedral compilation is a framework for analyzing and

transforming program fragments that are “sufficiently reg-
ular” through a mathematical abstraction that models the
individual statement instances and array elements using a
compact representation. This compact representation may
be the integer points in parametric polyhedra [11], or, more
generally, a Presburger relation [13], i.e., a set of tuples of
integers satisfying a Presburger formula. The constraints
are usually kept in disjunctive normal form (or, more specif-
ically, as a union of polyhedra) and to keep the representa-
tion as compact as possible, it is therefore important to keep
the number of disjuncts as small as possible.

There are several operations that may result in representa-
tions of sets with more disjuncts than strictly necessary. The
most obvious such operation is taking the union of two sets
since the two sets may have disjuncts that can be combined
into one. Two disjuncts in the same set representation that
cannot originally be combined may also become combinable
after a projection onto a lower-dimensional space. Subtract-
ing one set from another is usually performed by negating
each constraint of the subtrahend in turn, which may break
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up the result into smaller pieces than strictly necessary. Fi-
nally, parametric integer programming [6] recursively splits
the parameter domain into two parts along a hyperplane as
long as there are any rows with undetermined sign in the
tableau. These hyperplanes may then split convex parts of
the parameter domain with a single solution into multiple
disjuncts.

For most operations that can be performed on sets of in-
teger tuples, the outcome does not depend on the represen-
tation of the set. In these cases, reducing the number of
disjuncts in the representation only helps to improve effi-
ciency. However, there are also some operations, most no-
tably those where heuristics are used to compute an approx-
imation or where the result is not a Presburger set, that
do depend on the choice of the representation. Prime ex-
amples are the computation of approximations of transitive
closures [10, 18] and the generation of an AST from a poly-
hedral schedule [2,4]. As an illustration of the effect on tran-
sitive closures, repeating the CLooG equivalence experiments
of [20, Table 1], both with and without the coalescing of this
paper, shows that turning off coalescing not only makes 4
out 113 cases time out or run out of memory where the result
was inconclusive, but that it also does the same on 2 cases
where equivalence could be proved. Turning off coalescing
in AST generation generally results in more verbose output,
but the effect on the performance of the generated code is
typically only noticeable on highly optimized code. For ex-
ample, when applying the basic hybrid tiling strategy of [8]
(without some of the extra improvements) on a 2D heat ker-
nel, turning off coalescing makes the performance drop from
11.8 GFLOP/s to 10.6 GFLOP/s on a GK107GLM.

One way of reducing the number of disjuncts is to remove
those disjuncts that are covered by other disjuncts, as is done
automatically by the DomainUnion operation of PolyLib [21]
or the internal rm_redundant_conjs function of Omega [9].1

However, this does not help in case of disjuncts that only
partially overlap or of disjuncts that have been split up into
two or more disjoint disjuncts. For rational sets, i.e., poly-
hedra, partially overlapping disjuncts have been considered,
where the problem is known as convexity recognition [3] or
exact join detection [1].

A pragmatic approach is taken by, e.g., CLooG [2] in its
original PolyLib backend. First the convex hull H of the
input set S is computed. This convex hull may contain ex-
tra integer points H \ S. These are removed again to result
in H \ (H \ S). There are several issues with this approach.

1Note that the Omega project consistently interchanges the
words “conjunct” and “disjunct”.
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First, the convex hull is an operation that is defined on ra-
tional sets and it is not obvious how to define the operation
on integer sets, especially if existentially quantified variables
are involved, without resorting to the even more expensive
integer hull. In fact, the exact meaning of the convex hull on
sets described by constraints involving existentially quanti-
fied variables is left undefined in isl, because there is no
obvious definition in this case and the user should not rely
on the specific result that the current implementation may
happen to produce. The only guarantee provided is that
the result of a convex hull operation will always be a single
disjunct superset of the input.

Another issue with this approach is that if the convex
hull contains additional integer points, then the result of
the subtraction may in principle be composed of more dis-
juncts than the input. The number of constraints of the
convex hull may also be exponential in the number of con-
straints in the input. There is no guarantee that this num-
ber can be reduced through simplification and even if it
can, the convex hull would still need to be computed first.
The constraints of the convex hull are also prone to hav-
ing very large coefficients, which is especially problematic
in case of AST generation. In practice, this approach also
turns out to be significantly slower than the coalescing ap-
proach. For example, using coalescing, isl takes 16s on its
AST generation test cases, while using the convex hull based
approach takes 24min (Fourier-Motzkin based implementa-
tion) or 6min (wrapping based implementation). It should
be noted that the convex hull implementation in isl may not
be the most efficient. On the other hand, double description
based implementations, where a polyhedron is represented
both in terms of constraints and in terms of vertices and
rays [14], can be very costly too.

In contrast to the convex hull based approach, the coa-
lescing operation in isl never increases the total number of
constraints. The approach is based on a pairwise combina-
tion of disjuncts that fit one of a number of recognized pat-
terns. The analysis and any modifications of the constraints
are based on solving LP problems of the same dimension as
the input set. Modified constraints are always linear combi-
nations of two original constraints, reducing the risk for the
introduction of extremely large coefficients.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces some background information along with
some building blocks that will be needed to perform the co-
alescing. Section 3 classifies the constraints of one disjunct
in terms of their effect on the other disjunct. This classi-
fication is then used in Section 4 to describe the different
coalescing heuristics on pairs of disjuncts. The handling of
existentially quantified variables and multiple disjuncts is
described in Section 5 and Section 6. After a discussion of
related work in Section 7, the paper concludes in Section 8.

2. BACKGROUND AND COMPONENTS
This section describes some background information and

introduces some operations that are available in the litera-
ture and that will be used to detect and exploit coalescing
opportunities.

2.1 Set representation in isl

In isl, the constraints of a set may be specified by the
user as an arbitrary Presburger formula, i.e., a first order
logic formula that essentially only contains additions and

comparisons. That is, the interpreted function symbols are
the integer constants, plus (+), minus (−), integer division
by an integer constant (b·/dc), one for each positive integer
d, and a set of symbolic constants. The single interpreted
relation symbol is less-than-or-equal (≤). Internally, this
description is converted into disjunctive normal form{

x :
∨
i

(
∃jαi,j :

∧
k

(ti,k(x,αi) ≥ 0)

)}
,

with ti,k(x,αi) a quasi-affine expression, i.e., an affine ex-
pression in the variables, symbolic constants and integer di-
visions of other quasi-affine expressions. That is, a quasi-
affine expression is a term constructed from variables, sym-
bolic constants, integer constants, addition, subtraction and
integer division by an integer constant. Any common factor
among the coefficients of an inequality is removed. That is,
g t(x) ≥ 0 with g an integer greater than one is replaced by
t(x) ≥ 0. Pairs of inequalities t(x) ≥ 0 and −t(x) ≥ 0 are
replaced by an equality constraint t(x) = 0 and used to sim-
plify the other constraints. Some operations on integer sets
require the existentially quantified variables to have been
eliminated first. This elimination is performed by comput-
ing unique representatives of these variables using paramet-
ric integer programming [6], which may introduce additional
integer division expressions.

2.2 Incremental LP solver
An LP solver can be used to find the extremal value of

an affine expression over a polyhedron, i.e., a rational set
bounded by affine constraints. The LP solver that is used in-
ternally in isl is incremental, meaning that constraints can
be added and removed again, and is modeled after the one
in Simplify [5]. The input polyhedron usually represents
the rational superset of one of the disjuncts in an integer set
description, bounded by the same constraints. Each integer
division bt(x)/dc in such a description is replaced by an ad-
ditional variable α and constraints t(x)−(d+1) ≤ dα ≤ t(x)
to ensure that the integer values attained by α correspond
exactly to the integer division.

In the internal representation of the LP solver (the tableau),
each constraints tj(x) ≥ 0 is represented by a constraint
variable yj . If the polyhedron is described by m constraints
in a space of dimension n, then the tableau expresses m row
variables as affine expressions of n column variables, where
the m+ n row and column variables form a permutation of
the n coordinate variables and the m constraint variables.
A pivot step interchanges a column and a row variable. The
sample value of a tableau assigns zero to all column variables
and the constant term of the affine expression of the row vari-
ables in terms of the column variables to those row variables.
When an extra constraint is added, its initial sample value
may be negative, in which case pivots are performed un-
til all constraint variables have a non-negative sample value.
When an equality tj(x) = 0 is added to the tableau, the cor-
responding variable is moved to a column and marked dead,
meaning that it will never be considered for pivoting and
will therefore always have a zero value. As a preparation
for the coalescing, an attempt is made for each inequality
constraint to see if it can be pivoted into having a strictly
positive sample value (or a value greater than or equal to
one in case of integer sets). If not, then the corresponding
variable is similarly moved to a dead column.
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2.3 Wrapping
Wrapping is a technique for taking a constraint that is in-

valid for a given polyhedron and “rotating” it around a valid
constraint for that polyhedron until it becomes valid. That
is, wrapping adds the smallest multiple of the valid con-
straint to the invalid constraint such that the linear combi-
nation becomes valid. The technique was originally designed
to compute a facet of the convex hull of a union of polytopes
given a previously computed facet and their shared ridge [7].
Although the technique applies to a union of polyhedra, we
will only need it for wrapping constraints around a single
polyhedron. Wrapping is therefore described here in this
more restricted context.

After applying an affine transformation to both the poly-
hedron and the two constraints, we may assume that the
valid constraint is x1 ≥ 0, while the invalid constraint is
x2 ≥ 0. The aim is to find the greatest a such that x2 ≥ a x1
is a valid constraint. Note that this may fail if the polyhe-
dron is unbounded in the negative x2 direction. The trick of
finding this a is to determine the corresponding constraint
of the cone generated by the polyhedron, without explic-
itly computing this cone. Note that the cone generated
by a set S is the polyhedron {λx : λ ≥ 0 ∧ x ∈ S } or
{x : ∃λ ≥ 0 : x ∈ λS }. The desired value of a is the small-
est value of the ratio x2/x1, with x1 6= 0, in this cone, or
simply the smallest value of x2 when x1 is fixed to 1. Note
that there is no need to project out λ in order to obtain this
value. Given a polyhedron bounded by the constraints

A

[
1
x

]
≥ 0

the value of a may then be obtained by solving the LP prob-
lem

minx2 s.t. A

[
λ
x

]
≥ 0 ∧ λ ≥ 0 ∧ x1 = 1.

Note that this problem has the same dimension as the input
polyhedron. The extra variable λ is compensated by the
equality x1 = 1. If a = n/d, with n an integer and d a
positive integer, then the new constraint is −nx1+d x2 ≥ 0,
or, in terms of the original, untransformed, constraints

−n t1(x) + d t2(x) ≥ 0.

If the minimum is unbounded, i.e., a = −∞ (“= −1/0”),
then this means S is unbounded in the negative x2 direc-
tion. In this case, wrapping fails. The “wrapped” constraint
would simply be t1(x) ≥ 0 which would not be suitable for
coalescing since it would not have any contribution from the
t2(x) ≥ 0 constraint.

The wrapping technique will be used by some of the coa-
lescing heuristics in Section 4 to turn an initially invalid con-
straint into a valid constraint. As in the case of computing
a convex hull, there is a risk that the result may have large
coefficients. There is however a major difference. When us-
ing wrapping to compute the convex hull, the wrapping is
applied recursively to the results of other wrappings. The
final constraints may therefore contain contributions from
many constraints in the input. During coalescing, wrapping
is only ever applied to a pair of constraints that appear in
the input. The risk for large coefficients is therefore much
lower. Moreover, if a large coefficient would be introduced,
it can be detected immediately, without having to wait for
the ultimate effect at the end of the recursion. The coalesc-

ing procedure of isl can be instructed to refuse coalescings
with coefficients that are larger than those in the input. This
option is currently turned on by default.

The wrapping LP problems are currently created from
scratch in isl. In principle, it would be possible to start
from a tableau of S, add variables corresponding to the con-
straints x1 ≥ 0 and x2 ≥ 0 (in the original coordinate sys-
tem), move these variables into column positions and then
use the resulting state of the tableau as the coordinate trans-
formation that moves these constraints into their x1 ≥ 0
and x2 ≥ 0 form. Finally, the constant terms can be con-
sidered as the coefficient of a newly introduced λ variable,
after which the constraints λ ≥ 0 and x1 = 0 can be added.

2.4 Variable Compression
Variable compression [12] is a technique for mapping an

integer lattice defined by a set of equalities to the standard
integer lattice (in a lower-dimensional space). Given the
equalities Mx+ c = 0, the first step is to compute the (left)
Hermite normal form

M =
[
H1 0

] [Q1

Q2

]
or M

[
U1 U2

]
=
[
H1 0

]
,

with U and Q = U−1 unimodular matrices and H1 lower
triangular. Setting[

x′1
x′2

]
=

[
Q1

Q2

]
x i.e., x =

[
U1 U2

] [x′1
x′2

]
,

the equalities become H1 x
′
1 + c = 0, i.e., x′1 = −H−1

1 c =:
c′. We may assume that the elements of c′ are integers as
otherwise the set satisfying the given equalities is empty and
can be discarded. The transformation is then defined by

x = −H−1
1 c + U2x

′
2 and x′2 = Q2x.

Since the equalities reduce to −c + c = 0 in terms of the
transformed x′2, we see that we have indeed mapped the lat-
tice for x described by the original equalities to the standard
lattice for x′2.

3. CONSTRAINT TYPING
A crucial step in determining if and how two disjuncts

A and B can be coalesced is to check how the constraints
of A relate to B. Let us first consider the case where the
sets are considered as rational sets. This case serves as an
introduction to the integer case and will also be used directly
in Section 4.1. Let t(x) ≥ 0 be a constraint of A. Its effect
on B may of one of three types

• minx∈B t(x) ≥ 0. The constraint is valid for B.

• maxx∈B t(x) < 0. The constraint separates A from B.

• minx∈B t(x) < 0 and maxx∈B t(x) ≥ 0. The constraint
cuts B into a part where it is valid and a part where
it is not.

Note that determining the type of a constraint only requires
the solution of one LP problem. When the constraint is
added to the tableau, the initial sample value will be either
negative or non-negative. In the first case, the constraint can
only be a separating or a cut constraint, while in the second
case, it can only be a valid or a cut constraint. In both
cases, a single LP problem is sufficient to determine which
of the two applies. In fact, in case of a cut constraint, it is
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not even necessary to find the exact minimum or maximum.
The search can be aborted as soon as the sample value of
the constraint variable changes sign. If A has any equality
constraints t(x) = 0, then the types of both t(x) ≥ 0 and
−t(x) ≥ 0 are determined.

Let us now consider the case of integer sets and let us
assume for now that the two disjuncts have no existentially
quantified variables or integer divisions. A discussion on
how these are handled is postponed until Section 5. We
may assume that the constraint t(x) ≥ 0 has only integer
coefficients. This means that the constraint can only attain
integer values on integer points. The class of valid con-
straints can therefore be slightly extended to the case where
minx∈B t(x) > −1. This allows for some constraints that
only cut off rational points from the rational approximation
of B to be considered valid for B.

We may also consider a couple of special cases of separat-
ing constraints.

• t = −1 in the tableau (ignoring dead columns). This
means that t(x) + 1 = 0 is valid for the entire set B.
The constraint t(x) ≥ 0 is said to be adjacent to an
equality.

• t = −1− u, with u a variable corresponding to a con-
straint of B. This means that every integer point in
the universe satisfies either t(x) ≥ 0 or u(x) ≥ 0. The
constraint t(x) ≥ 0 is said to be adjacent to an inequal-
ity. Note that this case can also be discovered more
efficiently by maintaining a hash table of the linear
parts of the constraints of B.

Constraints that are adjacent to an equality or an inequal-
ity are crucial for the cases considered in Section 4.2 and
Section 4.3. If any equalities are involved that impose stride
constraints, then these special cases may fail to be recog-
nized depending on how the inequality constraints are ex-
pressed with respect to these equalities. In such cases (in
particular, if there is an equality involving more than two
variables or an equality with coefficients different from one,
negative one or zero), the inequality constraints are first sim-
plified in a standard lattice. That is, a variable compression
(Section 2.4) is computed and applied to each constraint. If
the linear coefficients of the resulting constraint have a com-
mon factor g, then it is divided out and the constant term c
is replaced by bc/gc. Afterwards, the constraint is mapped
back to the original space. Since the stride g has been re-
moved from the constraint, it can more easily be recognized
as being adjacent to an equality of inequality.

Example 3.1. Consider the set { (x, y) : 2x = 3y ∧ 0 ≤
x ≤ 6 }∪{ (−3,−2) }. The constraint x ≥ 0 reduces to −2 ≥
0 in the tableau of disjunct { (−3,−2) } and is therefore not
recognized as being adjacent to an equality of this disjunct.
Variable compression yields x = −3x′, y = −2x′ and x′ =
−x+y. In the compressed space, the constraint is of the form
−3x′ ≥ 0, which is simplified to −x′ ≥ 0 and transformed
back to x − y ≥ 0. This simplified constraint reduces to
−3− (−2) ≥ 0 and therefore is recognized as adjacent to an
equality.

4. COALESCING HEURISTICS
Coalescing in isl works by considering a number of tem-

plates. Given two disjuncts, constraint typing is performed

isl pet PPCG

Subset 151 448 645
Overlap 18 33 22
Pair of adjacent inequalities 27 4155 190
Adjacent to an inequality 4 17 0
Two adjacent equalities 28 90 39
Extension 57 386 287
Wrapped extension 12 24 36
Protrusions 16 25 101
All pairs 1448 21250 3420

Table 1: Application incidence in test suite

to determine the effect of the constraints of one disjunct on
the other. Based on these constraint types, one or more cases
may apply and, if needed, further tests and/or computations
are performed. If these are successful, then the two disjuncts
are replaced by a single disjunct. The cases described in Sec-
tion 4.1 do not introduce any additional points and therefore
also apply to rational sets. The other cases introduce extra
rational points, but only if they are known not to attain an
integer value on a given constraint, ensuring that no integer
points are introduced. These cases can be grouped into three
classes, those where the designated constraint is adjacent to
an inequality (Section 4.2), those where it is adjacent to an
equality (Section 4.3) and those where one disjunct sticks
out of the other by at most one (Section 4.4). Figure 1
groups the different cases. Table 1 lists the number of times
each case is applied while running the test suites of isl [16],
pet [19] and PPCG [17]. Note that the subset case does not
include those instances where two disjuncts are described by
exactly the same constraints. These instances are removed
through other means. Although Table 1 is mainly meant to
show the relative occurrence of the different cases, for com-
pleteness it also shows the total number of pairs of disjuncts
considered during coalescing.

4.1 Rational Cases
The simplest case is one where all constraints of disjunct

A are valid for disjunct B. An example is shown in Fig-
ure 1a, where valid constraints are drawn as solid lines and
cut constraints as dashed lines. In this case, disjunct B can
be dropped since it is a subset of A. This case applies to
both rational and integer sets, although in the integer case,
the rational approximation of B is allowed to slightly stick
out of A due to the relaxed definition of valid constraints.

A second case that also applies to rational sets is one
where both disjuncts have cut constraints, but the corre-
sponding facets lie entirely inside the other disjunct. This
means that there is no way to move out of the union of the
two disjuncts through a cut constraint, which in turns means
that the union can be replaced by the valid constraints of the
two disjuncts. Note that this also implies that there are no
separating constraints. An example is shown in Figure 1b.
This case has been described before [3], where it is detected
by setting up LP problems for each pair of cut constraints of
the two disjuncts. Each LP problem is bounded by the valid
constraints of both disjuncts and a constraint ti(x) + εi ≤ 0
for each of the two cut constraints ti(x) ≥ 0. If the maximal
value of the two εi is strictly greater than zero, then it is
possible to move outside of the pair of cut constraints inside
the valid constraints of both disjuncts and the case does not
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(a) Subset (b) Overlap

(c) Pair of adjacent inequalities (d) A constraint adjacent to an inequality

(e) Two adjacent equalities (f) Extension

(g) Wrapped extension (h) Protrusions

Figure 1: Coalescing Patterns

apply.
In isl, a different approach is taken to detect this case.

Instead of checking if it is possible to move outside a pair
of cut constraints, the approach checks if all the cut facets
(i.e., the intersections of the cut constraint with the disjunct)
lie inside the other disjunct. In particular, for each cut con-
straint t(x) ≥ 0 of A, the constraint −t(x) ≥ 0 is (temporar-
ily) added to the tableau of A and marked as an equality.
Then the procedure checks whether all cut constraints of B
are valid in the result, using the (more restrictive) rational
criterion of validity. Note that the valid constraints of B do
not need to be checked since they are definitely valid for a
subset of A. If this is the case for all cut facets of A, then
the union of A and B is replaced by a set C bounded by
the valid constraints of A and B. Note that the number of
LP problems that need to be solved is the same as in the
procedure of [3], but that the tableau of A can be reused and
that the dimension of the LP problem is reduced by one due
to the extra equality. On the other hand, if coalescing can
be applied, then all LP problems in the procedure of [3] are
empty, such that the only cost is in setting up the tableau.

It is clear that A∪B is a subset of C because all constraints
of C are valid for both disjuncts. To see that C is also a
subset of A ∪ B, take any point x1 ∈ C \ (A ∪ B). A line
connecting x1 with an element of A ∪B meets a facet F of
either A or B. Assume it is a facet of B and let t1(x) ≥ 0
be the corresponding facet constraint. We have t1(x1) < 0
and so t1(x) ≥ 0 is a cut constraint. This means that there
is some (rational) point x2 satisfying the constraints of A as
well as the constraint t1(x) < 0 as otherwise the constraint
t1(x) ≥ 0 would have been marked valid for A. The line

connecting x1 and x2 meets a facet of A in a (rational) point
also violating t1(x) ≥ 0, but this is impossible since all cut
constraints of B are valid for all cut facets of A. To motivate
the assumption that the facet F is a facet of B, assume now
that it is a facet of A instead. The above reasoning can then
be followed to find a facet of B separating x1 from A ∪ B.
This completes the proof.

4.2 Constraints adjacent to inequalities
This section describes cases where the input disjuncts can

be seen as the result of cutting the single output disjunct
along a hyperplane. Since we are dealing with integer sets,
this means that one disjunct has an inequality t(x) ≥ 0,
while the other has an inequality −t(x) − 1 ≥ 0. That is,
they have adjacent inequalities.

In the purest case, both disjuncts have only valid con-
straints except for one constraint that is adjacent to an in-
equality of the other disjunct. An example is shown in Fig-
ure 1c, where the separating constraints are drawn as zigzag
lines. Let t(x) ≥ 0 be the constraint of A that is adjacent to
an inequality of B and let C be the set bounded by the valid
constraints of A and B. We have C ∩ {x : t(x) ≥ 0 } = A
since t(x) ≥ 0 is the only constraint of A that does not
appear among the constraints of C and since the other con-
straints of C are valid for A. Similarly, C∩{x : −t(x)−1 ≥
0 } = B. There can be no integer points where t(x) attains
a value strictly between 0 and −1 because it has integer co-
efficients. As a result, C = A∪B and the two disjuncts can
be replaced by C.

There are also cases where cutting a set along a hyper-
plane results in one part satisfying an additional equality in
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another direction. An example is shown in Figure 1d. The
dotted line is a continuation of a constraint from the left
(blue) disjunct that has been simplified away in the right
(green) disjunct because the integer points in this right part
satisfy an additional equality. The test for this case starts by
checking that disjunct A has only valid constraints, except
for one constraint t(x) ≥ 0 that is adjacent to an inequality
of B. No such restrictions are imposed on the constraints
of B. Instead, the constraint t(x) ≥ 0 is (temporarily) re-
moved from the tableau for A and replaced by the constraint
−t(x) − 1 ≥ 0. Furthermore, all valid constraints of B are
also added to the tableau. This results in a tableau for a set
A′. If all constraints of B that are not valid for A check out
to be valid for A′, then the two disjuncts are again replaced
by a set C bounded by the valid constraints of A and B.
Clearly C ∩ {x : t(x) ≥ 0 } = A since t(x) ≥ 0 is again the
only constraint of A that does not appear among the con-
straints of C and since the other constraints of C are valid
for A. On the other hand C ∩ {x : −t(x) − 1 ≥ 0 } = A′

by construction and we already know that A′ ⊆ B since
the procedure explicitly checks for this condition. We also
have A′ ⊇ B since all constraints of C are valid for B by
construction while the constraint −t(x)− 1 ≥ 0 is valid for
B because the constraint t(x) ≥ 0 separates A from B, i.e.,
B ∩ {x : t(x) ≥ 0 } = ∅.

4.3 Constraints adjacent to equalities
The cases in this section are similar to those of the previ-

ous section, in the sense that again the inputs can be seen as
the result of cutting the output along a hyperplane, except
that now one or both of the disjuncts satisfy the hyperplane
or its opposite as an equality.

Let us first consider the case where both disjuncts satisfy
such an equality. This case can be recognized as a con-
straint t(x) ≥ 0 that forms half of an equality constraint
of A having been typed as being adjacent to B. The other
constraints of A and B may be represented in different ways
since adding t(x) to the constraints of A or adding t(x) + 1
to the constraints of B does not have any effect. Some of
these constraints may therefore happen to be valid for the
other disjunct whereas others may not. The invalid con-
straints of A (except t(x) ≥ 0) are then wrapped around the
constraint −t(x) ≥ 0 to include B, while the invalid con-
straints of B (except −t(x) − 1 ≥ 0) are wrapped around
the constraint t(x)+1 ≥ 0 to include A. Figure 1e shows two
such disjuncts (in zigzag lines) as well as a (red) constraint
of the right (green) disjunct that has been wrapped to in-
clude the left (blue) disjunct. If this case is discovered and
all wrappings are successful, i.e., there are no unbounded-
ness issues, then the union is replaced by a set C bounded by
the valid constraints of A and B along with all wrapped con-
straints and the constraint t(x)+1 ≥ 0. The total number of
constraints does not increase since each wrapped constraint
that is added is obtained from an invalid constraint (which
is removed), while the removal of −t(x) ≥ 0 (for which not
wrapped constraint is added) compensates the addition of
t(x) + 1 ≥ 0.

It should be clear that C contains both A and B since
all its constraints are valid for both A and B. Furthermore,
−t(x) ≥ 0 (a constraint of A valid for B) and t(x) + 1 ≥ 0
(an explicitly added constraint) are valid for C, meaning
that t(x) can only attain the values 0 and −1 over C. In
particular C ∩ {x : t(x) = 0 } = A since each constraint

q(x) ≥ 0 of A is either

• t(x) or −t(x) (which are covered by t(x) = 0),

• valid for B, or,

• replaced by a wrapping constraint of the form−n t(x)+
d q(x) ≥ 0 with d > 0. Plugging in t = 0 in these
wrapping constraints yields the original q(x) ≥ 0 con-
straints.

Similarly, C∩{x : t(x) = −1 } = B proving that C = A∪B.
Let us now consider the case where only one of the dis-

juncts satisfies an equality along the hyperplane that sep-
arates the two disjuncts. In particular, let A have an in-
equality t(x) ≥ 0 that is adjacent to an equality of B and
no other separating constraints. Two subcases can be con-
sidered. In the first subcase, A is further assumed not to
have any cut constraints. Let A′ be the result of relaxing
constraint t(x) + 1 ≥ 0 and A′′ the result of enforcing the
constraint t(x) + 1 = 0 on A′. If A′′ is a subset of B, i.e.,
if all constraints of B are valid for A′′, then A ∪ B can be
replaced by A′. In particular, A′′ contains B since A has no
cut constraints and B satisfies t(x) + 1 = 0. In other words
A′′ = B and so A′ = A ∪ A′′ = A ∪ B. An example of this
subcase is shown in Figure 1f.

Example 4.1. Continued from Example 3.1. After sim-
plification, the constraints of the first disjunct are of the form
{ (x, y) : 2x = 3y ∧ 0 ≤ x − y ≤ 2 }. We have already seen
that the constraint x−y ≥ 0 is adjacent to an equality of the
other disjunct. Relaxing this constraint yields A′ = { (x, y) :
2x = 3y ∧ −1 ≤ x − y ≤ 2 }. Enforcing x − y = −1 yields
A′′ = { (x, y) : 2x = 3y ∧ −1 = x− y } = { (−3,−2) }. This
is a subset of the second disjunct and so the two disjuncts
can be replaced by A′.

In the second subcase, B is not a pure extension of A, but
can still be included through wrapping. In particular, the
constraints of B that are not valid for A (except −t(x)−1 ≥
0) are wrapped around the constraint t(x) + 1 ≥ 0 to in-
clude A. Figure 1g shows an example where wrapping is
successful, including the two (red) wrapped constraints. In
this second subcase, A is allowed to have cut constraints,
which are then wrapped around −t(x) ≥ 0 to include B.
These wrapped constraints may however not be valid for
A, so this property needs to be verified explicitly. In fact,
these wrapped necessarily cut off some rational points, but
they may leave all the integer points unharmed. Figure 2
illustrates this phenomenon. The left (blue) disjunct has a
constraint adjacent to an equality of the right (green) dis-
junct as well as a constraint that cuts the right disjunct.
Wrapping this cut constraint to include the right disjunct
results in the dotted (red) line. This wrapped constraint
cuts off rational points from the left disjunct, but no integer
points. In particular, the minimum value of the constraint
expression is strictly greater than −1, so the constraint is
still recognized as a valid constraint for the left disjunct.

If all the wrappings are successful and the wrapped cut
constraints of A are all valid for A, then the two disjuncts
are replaced by a set C bounded by the valid constraints
of A and B, the constraint t(x) + 1 ≥ 0 and all wrapped
constraints. We have C ∩ {x : t(x) ≥ 0 } = A since all
constraints that are not valid for B (except t(x) ≥ 0) are
replaced by stricter constraints that still include the integer
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Figure 2: Wrapped extension with cuts

points of A while all constraints that are valid for B are
included in the constraints of C. We also have C ∩ {x :
−t(x)− 1 ≥ 0 } = C ∩ {x : −t(x)− 1 = 0 } = B for reasons
similar to the case of two adjacent equalities. The fact that
the number of constraints does not increase also follows from
a similar reasoning.

4.4 Protrusions
The final case is one where one of the disjuncts sticks

out of the other disjunct by less than two. An example is
shown in Figure 1h, along with the wrapping constraints
that are used to construct a single disjunct representation
of the union. If the other disjunct were subtracted from
the disjunct that is sticking out, then the resulting pieces
would lie on equalities adjacent to the other disjunct and the
corresponding heuristics could be used to try and coalesce
in the pieces. Of course, it is better to try and coalesce the
input disjuncts directly, which is what this section describes.

Let A be a disjunct with only valid constraints and cut
constraints for B such that the minimum of each constraint
expression over B is strictly greater than −2. For each cut
constraint t(x) ≥ 0 of A, construct B′ = B∩{x : t(x) + 1 =
0 }. If B′ is empty, then reclassify t(x) ≥ 0 as a valid con-
straint. Otherwise, consider the constraints ofB that are not
valid for A and that are not redundant for B′. Wrap each of
these constraints around t(x)+1 ≥ 0 to include A. If all the
wrappings succeed, then the two disjuncts can be replaced
by a single disjunct set C bounded by all valid constraints,
the wrapped constraints and the constraints t(x) + 1 ≥ 0
for each remaining cut constraint t(x) ≥ 0 of A. Note that
wrapping can only fail if A extends beyond the constraint
without bound. This means in particular that if both dis-
juncts stick out of the other by less than two, then coalescing
will succeed whichever disjunct we take as disjunct A. The
resulting wrapped constraints may however depend on this
choice if the amount by which one disjunct sticks out of the
other is not exactly 1.

To see that A∪B ⊆ C, note that the constraints t(x) ≥ 0
that were reclassified as valid constraints are indeed valid
for B since t(x) > −2 and t(x) 6= −1 over B. The wrapped
constraints are valid for A by construction. They are also
valid for B since they are derived from constraints that were
valid for B but not for A and are therefore more relaxed (on
the t(x) + 1 ≥ 0 side) than the original constraints. To see
that also A ∪ B ⊇ C, take any x∗ ∈ C \ A. There must
be at least one cut constraint of A, say t(x) ≥ 0, violated
by x∗. Since the constraints of C include the constraint
t(x) + 1 ≥ 0, we necessarily have t(x∗) = −1. This means
that the corresponding B′ was not empty as otherwise the
constraint t(x) ≥ 0 would have been reclassified as a valid

constraint and included in the constraints of C. Using the
same reasoning of Section 4.3 applied to A and B′ we find
that C ∩ {x : t(x) + 1 } ⊆ B′. In other words x∗ ∈ B′ ⊆ B,
establishing the result.

Unlike all the other coalescing cases, the number of con-
straints may grow here since the same invalid constraint of B
may stick out of several cut constraints of A, as in Figure 1h.
In practice, though, the number of constraints effectively
increases only in very rare cases since several wrapped con-
straints may coincide and since the t(x) + 1 ≥ 0 constraints
are redundant in practically all cases. Still, the implemen-
tation checks that the final number of constraints does not
increase and opts out of the coalescing if it does. So far, this
has never happened in practice.

Example 4.2. Consider the set { (x, y) : (x ≥ 0 ∧ y ≥
2 ∧ y ≥ x+ 1) ∨ (x ≥ 1 ∧ y ≥ x) }. Taking the first disjunct
as A, we see that the other disjunct (B) sticks out of the
constraints y ≥ 2 and y ≥ x+1 by 1, while x ≥ 1 is the only
constraint of B that is invalid for A. Wrapping x ≥ 1 around
y ≥ 1 yields x+ y ≥ 2, while wrapping it around y ≥ x also
yields x + y ≥ 2. Furthermore, the added constraints y ≥ 1
and y ≥ x are redundant. The final result is { (x, y) : x ≥
0∧y ≥ x∧x+y ≥ 2 }. Note that in this particular example,
we could also take the second disjunct as the A disjunct.
In this case, the corresponding B only sticks out a single
constraint of A (x ≥ 1). The final result is the same.

5. QUANTIFIED VARIABLES
So far, we have assumed that the two disjuncts that need

to be checked for coalescing have the same number of vari-
ables. This makes sense since we would only want to co-
alesce sets that live in the same space, while the symbolic
constants that the constraints may refer to can be aligned
over all disjuncts of the sets and then treated as variables
for the purpose of coalescing.

If there are any existentially quantified variables or in-
teger divisions, however, then their total number may be
different over the two disjuncts. Even if their numbers are
the same, coalescing may only be possible for some match-
ings of those variables across the two disjuncts. The isl

implementation takes a pragmatic approach. First of all,
the integer divisions in both disjuncts are sorted. Moreover,
they are “harmonized” across the two disjuncts in the sense
that if one disjunct has an integer division bf(x)/dc, while
the other has an integer division b(f(x) + nd)/dc, then the
second is replaced by bf(x)/dc+ n.

Example 5.1. As a simple example, take the set { (x) :
(∃α : x − 1 ≤ 3α ≤ x) ∨ (∃α : x − 2 = 3α) }. Internally,
this representation is automatically converted into { (x) :
(x−1 ≤ 3 b(x+ 1)/3c ≤ x)∨(x−2 = 3 b(x− 2)/3c) }. Since
b(x+ 1)/3c is equal to b((x− 2) + 3)/3c, it is replaced by
b(x− 2)/3c+ 1, resulting in { (x) : (x− 4 ≤ 3 b(x− 2)/3c ≤
x − 3) ∨ (x − 2 = 3 b(x− 2)/3c) }. This input matches the
extension pattern, yielding { (x) : x − 4 ≤ 3 b(x− 2)/3c ≤
x− 2 }. The standard simplification mechanism in isl then
notices that all constraints that involve the integer division
b(x− 2)/3c are implied by the meaning of this integer divi-
sion, resulting in these constraints and the integer division
being removed. The final result is { (x) }.

If both disjuncts only have integer divisions (and no une-
liminated existentially quantified variables) and if these in-
teger divisions are the same for both disjuncts, then all cases
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of Section 4 are considered. Otherwise, the following four
options are considered until one of them succeeds.

• If the total number of integer divisions and existen-
tially quantified variables is the same for both dis-
juncts, then all cases are considered on the given order
of these expressions and variables. Note that this is
unlikely to succeed unless the expressions and vari-
ables in the same positions are the same or sufficiently
similar. However, failure should be discovered fairly
quickly. Sufficiently similar integer divisions are for
example bx/2c and b(x+ 1)/2c. Sufficiently similar ex-
istentially quantified variables are those that roughly
attain the same values.

Example 5.2. Consider the set { (x) : (∃j : i =
4j ∧ 0 ≤ i ≤ 100) ∨ (∃j : 4j + 1 ≤ i ≤ 4j + 2 ∧ 0 ≤ i ≤
100) }. Identifying the two existentially quantified vari-
ables in the two disjuncts, we see that the first disjunct
is an extension of the second disjunct, yielding the co-
alesced result { (∃j : 4j ≤ i ≤ 4j + 2 ∧ 0 ≤ i ≤ 100) }.
Note that before this input can even reach the coalesc-
ing stage, isl would have automatically eliminated the
existentially quantified variables, but it would have re-
placed them by two distinct integer divisions (bi/4c and
b(i+ 1)/4c), so the same case applies.

• If one of the disjuncts has only integer divisions, which
moreover form a subset of the integer divisions of the
other disjunct, then this other disjunct is checked for
being a subset of the first disjunct. This test only re-
quires typing of constraints of the first disjunct, which
have zeros inserted at the positions of the other inte-
ger divisions and existentially quantified variables of
the other disjunct.

Example 5.3. As a simple example, consider the
set { (x) : (0 ≤ x ≤ 100)∨(∃α : 5 ≤ x ≤ 40∧x = 5α) }.
The total number of integer divisions and existentially
quantified variables is not the same in the two dis-
juncts. However, the first has no uneliminated exis-
tentially quantified variables. Moreover, inserting an
extra variable in the first disjunct corresponding to the
existentially quantified variable α in the second yields
two constraints that are valid for the second disjunct.
This second disjunct is therefore a subset of the first
and can be removed.

• If one of the disjuncts has only integer divisions, which
do not initially form a subset of the integer divisions
of the other disjunct, but where the additional integer
divisions can be simplified away using the equalities of
the other disjunct, then this other disjunct is checked
for being a subset of the first disjunct restricted to the
subset that satisfies these equalities. If this is the case,
then the second disjunct is necessarily also a subset of
the first disjunct. As in the previous case, this test
only requires typing of constraints of the first disjunct,
which have zeros inserted at the positions of the other
integer divisions and existentially quantified variables
of the other disjunct.

Example 5.4. Consider the following set: { (x, y) :
(x = 2 bx/2c ∧ y = 2 by/2c) ∨ (x = 2 bx/2c ∧ y = x) }.
The first disjunct involves two integer divisions, while

the second has only one. However, the second dis-
junct satisfies an additional equality (y = x), which
can be used to simplify the integer division by/2c to
bx/2c, which is equal to the other integer division. Af-
ter adding the equality, the first disjunct therefore has
the same integer divisions as the second. Moreover,
the constraints of the first disjunct are satisfied by the
second disjunct, which can then be removed.

• If both disjuncts have only integer divisions that do not
themselves refer to any nested integer divisions, and if,
moreover, those of disjunct B form a subset of those
of disjunct A while the additional integer divisions of
A can be simplified away using the equalities of B,
then those additional integer divisions are added to B
and all cases are considered. Note that the absence of
nested integer divisions requirement is only imposed
to ease the comparison of the integer divisions in the
two disjuncts.

Example 5.5. Consider the following set: { (x) :
(x = 2 bx/2c ∧ 0 ≤ x ≤ 10) ∨ x = 12 }. The integer di-
vision bx/2c can be introduced into the second disjunct
with value 6 which is then coalesced into the first as an
extension.

6. MULTIPLE DISJUNCTS
If there are more than two disjuncts then each pair of dis-

juncts is compared in turn. In particular, each disjunct is
considered in turn and compared to all the previously con-
sidered disjuncts. If any pair of disjuncts can be replaced
by a single disjunct then this single disjunct is compared
again against all previously considered disjuncts. There is
one twist to this scheme and that is that disjuncts that live
in the same affine space are first compared against each other
before being compared to disjuncts living in other affine
spaces. In particular, disjuncts that live in two adjacent
hyperplanes are first combined within the hyperplanes be-
fore they are combined across the hyperplanes. The reason
is that in principle any two disjuncts that live in adjacent
hyperplanes can be coalesced together. First combining dis-
juncts inside a hyperplane therefore does not affect the po-
tential for coalescing across the hyperplanes. On the other
hand, first coalescing across hyperplanes results in a disjunct
that no longer lives entirely within one of the hyperplanes.
Although it may still be possible to combine this disjunct
with other disjuncts inside the two hyperplanes, this is no
longer guaranteed. Note that both the fact that only pairs
of disjuncts are ever compared and the order in which the
disjuncts are treated may result in missed coalescing oppor-
tunities.

7. HISTORY AND RELATED WORK
The coalesce operation in isl was initially introduced to

allow isl to be used as a replacement for PolyLib as a CLooG

backend, where it was used as an alternative for the convex
hull based approach of the introduction. It was subsequently
used in an equivalence checker [20] and by the time of the
first release of isl, the subset, overlap, pair of adjacent in-
equalities and extension cases were supported. This version
was presented informally (without proofs) at the AMS 2009
Spring Western Section Meeting [15]. Version 0.02 gained
support for wrapped extensions and protrusions, i.e., cases
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that require wrapping, version 0.05 for pairs of adjacent
equalities and 0.12 for a constraint adjacent to an inequal-
ity. Version 0.15 will include the use of variable compression
and the more advanced support for existentially quantified
variables and integer divisions described in this paper.

Convexity recognition [3] for rational sets considers the
same cases as those in Section 4.1, but uses a somewhat dif-
ferent algorithm. Exact join detection [1] appears to have
been developed in parallel with isl coalescing. Like con-
vexity recognition, it also only deals with rational sets and
is based on the double description of polyhedra, which isl

tries to avoid. As explained in the introduction, Omega [9]
checks for each disjunct whether it is a subset of any other
disjunct and it does so in a way that is more general, but
possibly also more expensive, than the subset case of coalesc-
ing. The CLooG paper [2] mentions an “unisolate” operation,
which may be a special case of coalescing, but no details are
provided on how this operation works and no implementa-
tion was ever made publicly available.

8. CONCLUSIONS AND FUTURE WORK
When representing integer sets in disjunctive normal form,

it is important to keep the number of disjuncts low, both for
efficiency of the computations and for the quality of the fi-
nal result. However, the reduction of disjuncts should not
be performed at all cost. In particular, the reduction itself
should not take too much time and should not introduce
too many extra constraints or constraints with large coef-
ficients. The integer set coalescing operation of isl uses
LP techniques to detect and exploit a number of patterns,
without increasing the number of constraints and (by de-
fault) without introducing large coefficients. It may not be
able to discover all coalescing opportunities, but the discov-
ery is performed in a reasonably efficient way and the results
are proven to be correct.

It may be interesting to consider automatically performing
coalescing more frequently. It is currently only used during
the computation of transitive closures, during AST genera-
tion and to simplify the input of the scheduler. It could be
useful to also apply it after every projection operation. It
may also be interesting to try and coalesce more than two
disjuncts at once, assuming such cases occur in practice.
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