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ABSTRACT
Polyhedral compilation techniques have proven to be a pow-
erful tool for optimization of dense array codes. In partic-
ular, their ability to tile imperfectly nested loops has pro-
vided dramatic speedups by countering limits of memory
or network bandwidth. Unfortunately, certain codes, in-
cluding RNA secondary-structure prediction codes, cannot
be tiled effectively using the standard tiling algorithm used
with polyhedral techniques.

We have developed a more general variant of polyhedral
tiling. It can be applied to loop nests that we consider
“mostly tileable”. Mostly-tileable loop nests are nests for
which classic tiling is prevented by an asymptotically in-
significant number of iterations. Our tiling algorithm fol-
lows directly from this definition: we peel the problematic
iterations of the loop nest and apply classic tiling only to
the remaining iterations.

We have applied our algorithm by hand to Nussinov’s al-
gorithm for RNA secondary-structure prediction, and more
recently developed a ISCC script that derives the transfor-
mation from the dependence structure of the code and then
performs the transformation. The optimized code is dra-
matically faster than the un-tiled code, or codes in which
only the outer loops are tiled. In future work, we plan to
apply our technique to the more challenging codes such as
Zuker et. al.’s more recent algorithms for RNA secondary-
structure prediction, and seek other important “mostly-
tileable” loop nests.

We have not yet explored the performance impact of these
tilings on multi-core systems.

1. INTRODUCTION
Polyhedral compilation techniques have proven to be a pow-
erful tool for optimization of dense array codes. In particu-
lar, their ability to tile imperfectly nested loops has provided
dramatic speedups by countering limits of memory or net-
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work bandwidth. However, there are significant challenges
to applying tiling to some important loop nests, such as the
dynamic programming core of Nussinov’s algorithm for pre-
diction of the secondary structure of RNA [7]. While a num-
ber of authors have developed approaches to tiling this or
similar codes ([1], [3], [10], [11], [2], [12], [8], [4], [9]), we know
of no formulation that is suitable for automatically produc-
ing the transformation we use from the dependence structure
of the program (as would be used in an automatic optimiz-
ing compiler). In fact, [3] specifically mentions the challenge
of deducing the correct PLS (“piecewise linear schedule”) as
“an open problem, and beyond the scope of this paper”.

1.1 Nussinov’s Algorithm, and the
Dependence Structure Thereof

RNA secondary structure prediction is an important ongo-
ing problem in bioinformatics. RNA is a single-stranded
nucleic acid with four nucleotide base subunits. It serves
as an intermediate in protein synthesis from DNA and can
catalyze various biological reactions. Hydrogen bonding
among its nucleotide bases, namely the classical Watson-
Crick-Franklin A-U and C-G base pairs, causes RNA to
fold on itself, forming a roughly two-dimensional secondary
structure that is crucial to understanding the biological ac-
tivity of the molecule. These patterns of self-complementary
base pairing are often evolutionarily conserved, and thus pre-
diction of secondary structure can be useful when attempt-
ing to identify a particular type of RNA, understand its 3-
dimensional structure, or search a database for homologous
RNA’s with conserved secondary structure.

One of the first attempts at predicting RNA secondary struc-
ture in a computationally efficient way is the base pair
maximization approach, developed by Nussinov in 1978 [7].
Given an RNA sequence x1 . . . xn, the O(n3) Nussinov al-
gorithm finds the secondary structure with the maximum
number of base pairs. This problem definition is a drastic
simplification of the biophysical factors affecting RNA sec-
ondary structure formation but serves as a useful starting
point for more sophisticated algorithms. The forward algo-
rithm works by computing the maximum number of base
pairs for subsequences xi . . . .xj , starting with subsequences
of length 1 and building upwards, storing the result of each
subsequence in a dynamic programming array. The output
of the forward algorithm is the maximum number of base
pairs possible for x1 . . . .xn, i.e. the entire sequence, and
a subsequent trace-back algorithm allows for the output of
the list of base pairs in the optimal secondary structure.
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Figure 1: Dependences of One N(i, j) Computation

Specifically, if δ(i, j) = 1 if(xi, xj) match and i < j − 1, or 0
otherwise, then N(i, j) (the maximum number of base-pair
matches of xi . . . .xj) is defined over the region 1 6 i < j 6 n
as N(i, j) =

max(N(i+ 1, j − 1) + δ(i, j), max
i6k<j

(N(i, k) +N(k + 1, j)))

and zero elsewhere. The equation leads directly to a triply-
nested loop to compute N with the k loop innermost. Each
value of N(i, j) is computed in iteration (i, j) of the outer
loops, before it is used in later iterations of i and j.

This algorithm is an example of “nonserial polyadic dynamic
programming” (in the terminology of [5], as discussed in
[12]). For large data sets, the performance of such algorithms
is limited by memory bandwidth. A number of authors have
explored the challenges of scheduling these codes (see Sec-
tion 4). Our work lies not in the development of a superior
schedule, or in replication of the performance results that
result from such schedules, but rather in the automation of
the loop tiling that is critical to this scheduling process. The
remainder of this section describes the challenges to tiling
Nussinov’s algorithm and other NPDP codes.

The dependence structure of the recurrence in Nussinov’s
algorithm allows significant freedom in the scheduling of the
iterations of the i and j loops. Figure 1 illustrates the it-
erations of the (i, j) loop nest, with each white circle repre-
senting one iteration (i, j), i.e. all computations needed to
produce N(i, j). Grey and black circles represent the “zero
elsewhere” elements of N(i, j), arranged in the same pattern
as the elements that must actually be computed.

The arrows of Figure 1 illustrate the dependence structure
among the iterations of i and j, with dependence “weather-
vane” arcs pointing into the direction of data flow. With
all dependences pointing left and down in the figure, we
can schedule the iterations of (i, j) with any wavefront that
moves upward and to the right.

Figure 2: Tiling the Computations of N

Note that the number of values used in the computation
of element N(i, j), as well as the length of the dependence
arcs, grows with the number of values of k, i.e., as the point
(i, j) that we are considering moves away from the diagonal.
Thus, for large data sets, the computation of a single value
of N(i, j) can touch many memory cells.

Note also the interesting pattern of accesses for the values
of k needed for N(i, j). This pattern is illustrated in Figure
1, where two arrows of matching line style (solid, dashed,
faint, etc.) point to the two values combined for one given
value of k, i.e., one execution of the equation N(i, k)+N(k+
1, j). Note the heaviest lines reach the N(i, j) values that
are farthest left and closest below, and the lightest lines reach
those that are closest on the left and farthest below. As we
shall see, this pattern creates fundamental challenges for the
classical tiling algorithm, which requires that the iteration
space be divided into tiles that can be serialized.

1.2 Tiling Nussinov’s Algorithm
Thanks to the simple pattern of dependences shown in Fig-
ure 1, standard loop tiling techniques can be used to tile the
(i, j) loop nest. Tiling the k loop as well is another matter.
Consider the 2x2 group of elements of N(i, j) that are high-
lighted in blue in Figure 2. Tiling only the outer two loops
corresponds to computing each of these four N(i, j) values in
turn. For small data sets, this may create significant reuse,
since e.g. the two topmost iterations will each read the same
row of iterations to the left, and similarly the rightmost two
will read from the same column of values, producing reuse in
both directions. However, for large problem sizes, the nec-
essary rows and columns of values may not remain in cache
between different (i, j) iterations, resulting in poor locality.
As others have noted, the solution lies in tiling the k loop
as well.

By tiling the k loop, we collect all uses for similar values of
k (in groups we call k-tiles). In terms of Figure 2, one k-
tile corresponds to performing all updates of the blue-shaded
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iterations using the values surrounded by solid lines; another
k-tile corresponds to updates from the values in the dashed
boxes. Unlike the rows and columns to the left of and below
the blue box, these k-tiles do not grow with the problem
size, and thus locality is preserved for large problem sizes.

Unfortunately, this tiling violates a premise of standard
tiling algorithms. Any “atomic” ordering of the resulting
tiles will result in a violation of the program’s dependences;
there is no legal serial schedule in which we can execute these
tiles. Consider what happens if we attempt to perform all
updates to the blue region from the solid-boxed iterations
before any from the dashed-box iterations: when we follow
the solid dependence arcs to update the upper-right element,
we read the iteration directly below it, which has not yet been
updated based on the dashed-box iterations. Similarly, if we
perform all updates from the dashed-box iterations before
any solid-box iterations, we read an unfinished value when
we follow the faintest dependence arcs.

For larger problem sizes, there will be some k-tiles that are
not caught up in this problem. Furthermore, the number
of “problematic” iterations of the k loop grows with the tile
size, but not with the problem size, whereas the number
of non-problematic iterations grows with the problem size.
Thus, for a given tiling, and as the problem size grows,
the iteration space is dominated by non-problematic iter-
ations. We call this a mostly-tileable loop nest: without the
asymptotically-small number of problematic iterations, the
(i, j, k) nest could be tiled. However, any tiling algorithm
that requires the entire set of tiles to be serializable must
fail to find this tiling.

2. TILING THE TILEABLE ITERATIONS
At least two approaches have been developed (often indepen-
dently by separate authors) for getting around the limits of
the classical tiling algorithm. One approach (used e.g., by
Gautam [3] and by Rizk [8]) essentially removes the “prob-
lematic” iterations and applies classical tiling to the remain-
der. An alternative is to group non-consecutive values of k
into tiles, executing the “middle” values of k (i.e., those near
i+j
2

) into the first tile, and then working “outward” to reach
k = i and k = j − 1 together in the last tile. Prior work has
demonstrated the performance advantages of these sched-
ules, but not how to automatically derive them from the
dependence structure of the original sequential algorithm.
Gautam et al. [3] specifically mention the derivation of this
split of the iteration space as a remaining open problem.

Our algorithm for splitting the “problematic” iterations
follows immediately from our definition of mostly-tileable
loops. The steps of our algorithm are listed in Figure 3. For
affine-control loops, the steps of the algorithm can be per-
formed by polyhedral tools such as Verdoolaege’s “Integer
Set Library”, a.k.a. “ISL” [13]. We have not integrated the
algorithm into a compiler, but we have used ISL’s ISCC text
interface to execute it on Nussinov’s algorithm. The ISCC
scripts are shown in the appendix, with with parenthesized
references in Figure 3 serving to relate the details in the ap-
pendix (mostly from Figure 7) to the high-level algorithm.

The details of Nussinov’s algorithm and its dependences are
given in Figure 4 of the appendix; Figure 5 illustrates the

1. We perform instance-wise dependence analysis in the
polyhedral model (these are entered by hand, as vari-
ables with names starting DEP, in our example).

2. We define a standard rectangular tiling transforma-
tion, and apply it to the dependences, without yet con-
sidering its legality (see the T_TILE transformation and
dependence relations with names starting DEP6).

3. We identify all “problematic” iterations — those that
read from the tile being updated — by taking the in-
tersection of each dependence relation with a relation
whose source and sink iterations share the same val-
ues of all but the innermost loop (this intersection pro-
duces the iterations in the PEELED set, which we put
back into the original iteration space as PEELED_3);
the remaining iterations are not problematic (the UN-

PEELED_3 set).

4. The full transformation executes the non-problematic
iterations using any legal schedule for these (tileable)
iterations, using standard techniques (in our example,
we simply applied the original code’s (−i, j) schedule
to the tiles by applying the T_CORE transformation to
UNPEELED_3), after which the problematic iterations
are executed without tiling the innermost loop (apply-
ing T_PEEL to PEELED_3).

5. As with any other transformation, the legality can
be tested by testing if any dependence is mapped
back in time (we take the intersection between
the dependences in the transformed space and the
BACK_IN_TIME6 relation; the script that runs ISL will
fail if any of these results is non-empty).

6. If the non-problematic set does not grow more quickly
than the problematic set, the transformation is legal
but probably not worthwhile. We believe that sym-
bolic volume computation could be used to test for
this situation, but have not explored doing so.

Figure 3: Algorithm — Tiling Mostly-Tileable Nests

use of ISCC’s “codegen” feature to generate a simple un-
tiled version of Nussinov’s Algorithm. Figure 6 illustrates
the tiling of only the i and j loops, which requires only
standard tiling techniques. Note that, before applying ISCC
to this file, the symbolic constant TS must be replaced with
a known integer (our Makefile uses a sed script to do this
automatically).

Figure 7 gives our algorithm for tiling a mostly-tileable loop
nest. Note that the important definitions (e.g., of PEELED,
i.e., the set of problematic iterations, and the transformation
itself) require information about the dependences, but are
not otherwise specific to Nussinov’s algorithm or even to the
domain of nonserial polyadic dynamic programming.

As we have noted, the code produced by our algorithm is
not novel. However, we believe we are the first to have
demonstrated its derivation from the program dependence
structure, and are optimistic that other codes may benefit
from this algorithm for tiling “mostly-tileable” loop nests.
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3. EXPERIMENTAL EVALUATION
We have performed a simple confirmation that the code pro-
duced by our algorithm does, in fact, run more quickly than
the original code and the code produced by tiling only the
i and j loops of Nussinov’s algorithm. For extensive ex-
ploration of the performance impact of various schedules of
the resulting tiles, on a variety of sequential and parallel
systems, see the works cited in Section 4.

In our experiments, we executed three versions of the Nussi-
nov algorithms: “untiled”, i.e. the original code, “tiled-ij”,
the code in which only the two outer loops were tiled, and
“tiled”, the fully-tiled code resulting from our algorithm of
Figure 3. We executed each on three different classes of ma-
chine, in all cases using only a single core, and executing
tiles, and iterations of tiles, in the same fashion as the origi-
nal schedule (of (−i, j, k)). We experimented with randomly
generated RNA strands of lengths 500, 2200 and 5000. Prob-
lem size 500 was chosen because it reflects the scenario where
dramatic speed-up is not to be expected, since the entire up-
per triangle of the N matrix requires about 1 Megabyte of
storage and will thus fit in the outermost cache level on each
processor. Problem size 2200 was chosen as it is the average
length of RNA strand in human body. Problem size 5000
(roughly the size of the longest human mRNA) was chosen
to illustrate any additional advantages for larger instances.
Tile size was chosen to be 40, 50 and 60 empirically as sug-
gested by experimenting the tile size on the completely tiled
version of Nussinov.

The results are shown in Tables 1, 2, and 3. Each entry in the
tiled ij and tiled columns has three performance results, for
tile sizes from 40, 50, and 60. The speed up factor is shown
in parenthesis next to each set of performance results. To
fit margins, the CPU’s are abbreviated I7-0 (for Intel Core
i7-860), A10 (for AMD A10-5800K), and I7-3 (for Intel Core
i7-3770K).

CPU Untiled Tiled-ij Tiled
I7-0 310 310/310/314 (1x) 63/63/63 (5x)
A10 190 190/190/200 (0.9x) 65/64/64 (3x)
I7-3 220 230/230/230 (0.9x) 47/47/46 (4x)

Table 1: Run Time (in seconds) of Three Versions
of Nussinov’s Algorithm, on Problem Size 5000

CPU Untiled Tiled-ij Tiled
I7-0 19 19/19/19 (1x) 5.4/5.3/5.3 (4x)
A10 15 15/15/15 (1x) 5.5/5.5/5.5 (3x)
I7-3 14 14/14/14 (1x) 3.9/3.9/3.9 (4x)

Table 2: Run Time (in seconds) of Three Versions
of Nussinov’s Algorithm, on Problem Size 2200

CPU Untiled Tiled-ij Tiled
I7-0 0.075 0.077/0.080/0.078 0.070/0.074/0.070
A10 0.093 0.098/0.085/0.099 0.069/0.070/0.081
I7-3 0.052 0.054/0.052/0.054 0.056/0.056/0.055

Table 3: Run Time (in seconds) of Three Versions
of Nussinov’s Algorithm, on Problem Size 500

Problem sizes 2200 and 5000 illustrate cases where the effi-
ciency of cache reuse becomes a dominant factor in the per-

formance of the algorithm. They clearly illustrate the value
of tiling all three loops: a slight decrease in performance oc-
curs for tiled ij, in comparison with untiled version. We can
attribute this inefficiency to the fact that in tiled ij version
of Nussinov algorithm, there is no significant improvement
on cache reusing because k value of most of the iterations
is non-trivial and exceeds the cache capacity which means
moving forward to the next element in the same i-j tile will
result in cold misses in virtually all the elements with dif-
ferent k values. In contrast, we see a dramatic increase of
performance for the fully tiled version because, by limiting
the size of the tile to a reasonable value in terms of the cache
size, iterating along the k-dimension, the tiled-version pro-
gram essentially reads from almost the same elements within
a tile.

For problem size 500, the data move only among the different
levels of cache, not to RAM, and neither approach to tiling
produces significant speedup.

We also applied our transformation in a hand-written C
code, and in the AlphaZ program transformation system
[14]. Table 4 shows the performance of our C and AlphaZ
codes, on the Intel Core i7-3770K system, for the problem
sizes used above. We explored only one tile size for each
problem, using 40 for the larger problem sizes and 50 for
n = 500, since our AlphaZ implementation requires that
the problem size be an integer multiple of tile size. Un-
tiled performance numbers and speedup factors are shown in
parenthesis after each value in the table. With the increased
performance of the codes in this table comes an increase in
the importance of tiling; tiling is even relevant for n = 500.

We were initially surprised to see that the AlphaZ system
produced code that was significantly faster than the ISL code
or our hand-written C code. Further exploration revealed
that this was, at least in part, due to the fact that our
AlphaZ code transformed not only the iteration space of the
computation, but also the storage map — instead of a two-
dimensional array like the one shown in Figure 1, it uses a
four-dimensional array (a two-dimensional set of tiles). This
alignment of storage with iterations should ensure that cache
bandwidth is not wasted on partial cache lines that cross tile
boundaries. We tested this hypothesis with a second hand-
tuned C code, in which we used a four-dimensional array,
and got tiled execution times comparable to AlphaZ (0.026,
2.1, and 20 seconds, respectively). We would also expect the
choice of optimal storage mapping to be an important factor
in preventing false sharing in multi-core implementations,
though we have not (yet) tested this hypothesis.

Access To Experimental Data:. The codes used in the ex-
periments described herein, and transcripts of the command-
line sessions that produced the results, are available from the
Haverford College Computer Science Technical Report web
site, http://cs.haverford.edu/TechReports.

4. RELATED WORK
The problem of tiling nonserial polyadic dynamic program-
ming (NPDP) has been approached in a number of ways.
Prior work generally focuses on development of a tiled algo-
rithm for NPDP, rather than automatic deduction of such
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Tiled Run Time (vs. Untiled) for Codes in AlphaZ and C
Version n=500, TS=50 n=2200, TS=40 n=5000, TS=40

Hand-Tiled C 0.030 (vs. 0.041) 2.1 (vs. 13., ˜6x) 25 (vs. 210, ˜8x)
AlphaZ 0.028 (vs. 0.046) 1.6 (vs. 20., ˜12x) 19 (vs. 320, ˜17x)

Table 4: Run Time (in seconds) of Tiled Codes in C and AlphaZ, on Intel i3770K

an algorithm from the dependence pattern. It frequently fo-
cuses on parallel, rather than single-core, performance, and
includes a wider variety of example codes. Much of it in-
cludes detailed modeling or analysis of factors such as tile
size selection. Note that, by identifying the set of iterations
for which standard polyhedral tiling can be applied, we hope
to leverage the vast body of work that addresses these mod-
eling and tuning issues, and focus primarily on novel issues
such as the importance of storage mapping.

Almeida et al. [1] give an algorithm for tiling triangular re-
ductions, including Nussinov’s. They include performance
models for PRAM and BSP, and give an algorithm for de-
ducing tile size. Their algorithm focuses on two specific
traversals of the tiled space (horizontal and vertical).

Gupta et al. [3] explore techniques for scheduling reductions,
including for string parenthesization (which has dependences
similar to Nussinov’s algorithm). They explore the use of
piecewise linear schedules (such as the one we produce), but
list the automatic selection of such schedules as a remaining
open problem outside the scope of their work.

Tan et al. ([10], [11], [12]) give techniques for parallel tiled
execution of NPDP codes via a transform of the equations
to shift the iteration space. We believe the algorithm pro-
duced by our transformation is essentially the same as their
algorithm. They include a detailed performance model.

Chowdhury et al. [2] also investigate cache optimization of
dynamic programming codes. We believe their algorithm is
similar, though perhaps not identical, to those given above.
Their presentation is somewhat different, focusing on ap-
plying the results of each updated tile across the iterations
to the right and above that tile, and this makes a direct
comparison somewhat challenging.

Rizk et al. [8] apply the same piecewise-linear schedule used
above (and in our work), to produce efficient GPU code for
RNA folding. Like earlier work, they do not show how to
derive the schedule from the program’s dependence struc-
ture.

Jacob et al. [4] tile the iteration space of the RNA folding
algorithm of Zuker et al., to allow them to realize the algo-
rithm on FPGA chips and produce dramatic speedups. Like
Tan et al., they simplify the dependence structure by trans-
forming the recurrence equation. To fit the FPGA model,
they apply their technique to the entire dynamic program-
ming matrix, rather than just the triangular part of the n3

iteration space that contains useful computation, a situa-
tion they describe as “suboptimal” (though it still produces
an impressively fast result).

Stivala et al. [9] provide a lock-free algorithm for parallel dy-
namic programming for “multicore processor architectures
with shared memory”. However, they do not focus on anal-
ysis of cache performance.

Mullapudi and Bondhugula [6] have also explored automatic
techniques for tiling codes that lie outside the domain of
standard tiling techniques. Their approach involves dynamic
scheduling of tiles, rather than the generation of a static
schedule; it can be applied to Nussinov’s algorithm. At this
time, we do not have a precise characterization of the relative
domains of the two techniques.

5. CONCLUSIONS
Achieving peak ‘performance for Nussinov’s RNA
secondary-structure prediction algorithm requires tiling of
all loops, if the full dynamic programming matrix is signifi-
cantly larger than the cache size. A number of techniques
have been developed for tiling this and other instances of
nonserial polyadic dynamic programming, but previous
work has focused on development of an efficient algorithm
for this problem domain, rather than a transformation
to deduce the efficient algorithm from the dependence
structure of the program.

We have provided a definition of“mostly-tileable” loop nests;
an algorithm for tiling such nests follows directly from this
definition, and is readily implemented with polyhedral tools,
as illustrated by our example implementation with ISCC.

Our ISCC implementation is significantly slower than our
hand-written C codes, though the ISCC codes exhibit an
overall pattern of speedups that is similar to those of the
tiled vs. untiled hand-written C codes. We plan to ex-
plore this difference in performance, and also to explore the
performance of these codes when running small problems
simultaneously on a multi-core system, when bandwidth be-
tween the (shared) L3 cache and the cores may become a
more significant problem.

In the longer-term, we plan to apply our algorithm to other
examples of nonserial polyadic dynamic programming, in-
cluding the more biologically accurate RNA folding algo-
rithms of Zuker et al.. We also plan to investigate whether
our techniques can be applied to important examples out-
side of the NPDP domain. We plan to continue to investi-
gate storage remapping in combination with iteration space
transformation, and hope to explore the possibility of in-
tegrating our algorithm more fully into the AlphaZ tiling
system.
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Appendix: ISCC Implementation of Our Algorithm
Figures 4, 5, 6, and 7, give the ISCC programs used in our experiments. These files, and the hand-written C codes, can be
downloaded from the Haverford College Computer Science Tech Report web site (http://cs.haverford.edu/TechReports).

#

# Iteration space and dependence info. for Nussinov’s RNA algorithm

# (maximize the number of matching base pairs)

#

# visualized as i counting down the page, j counting from left to right

# (we’ll need to execute coming back _up_ the page, to preserve dependences)

#

# ’join’= use two sub-folds at k, i.e. N(i, k) and N(k+1, j) to N(i, j)

IS_JOIN := [size] -> { join[i,j,k] : 0<=i<size && i<j<size && i<=k<j };

# ’add’ = add a new base to each end of a group, i.e. i to i+1 and j to j-1

IS_ADD := [size] -> { add[i,j,size] : 0<=i<size && i<j<size };

IS_ALL := IS_JOIN + IS_ADD;

# some "weathervane" dependences, i.e., pointing from use back to definition

DEP_ADD := (unwrap (IS_ADD cross IS_ADD)) *

([size] -> { add[i,j,size] -> add[i’,j’,size] : i’=i+1 && j’=j-1 });

# two "join" dependences, first from i,k, then from k+1,j:

DEP_JOIN_i := (unwrap (IS_JOIN cross IS_ADD)) *

([size] -> { join[i,j,k] -> add[i’,j’,size] : i’=i && j’=k });

DEP_JOIN_j := (unwrap (IS_JOIN cross IS_ADD)) *

([size] -> { join[i,j,k] -> add[i’,j’,size] : i’=k+1 && j’=j });

# Some things to check for bad dependences (assuming size>0):

BACK_IN_TIME3 := [size] -> { [a, b, c] -> [a’, b’, c’] : size > 0 &&

((a < a’) || (a=a’ && b<b’) || (a=a’ && b=b’ && c<c’)) };

BACK_IN_TIME5 := [size] -> ...

BACK_IN_TIME6 := [size] -> ...

Figure 4: Description of Iteration Space and Dependence Structure using ISCC
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# Re-generate the untiled Nussinov algorithm, as a check:

# Execute the "i" loop "upwards" on the diagram,

# from max i (at the bottom) to min i (at the top),

# i.e., to obey dependeces

T_UP3 := [size] -> {

join[i,j,k]->[size-1-i,j,k];

add[i,j,k]->[size-1-i,j,k];

};

codegen (T_UP3 * IS_ALL);

Figure 5: Re-generation of Untiled Version of Nussinov’s Algorithm using ISCC

# execute the "i" loop "upwards" on the diagram,

# from max i (at the bottom) to min i (at the top),

# i.e., to obey dependeces

T_UP3 := [size] -> {

join[i,j,k]->join[size-1-i,j,k];

add[i,j,k]->add[size-1-i,j,k];

};

# Tiling, DEFINED IN TERMS OF ORIGINAL i/j

# note this puts in tile boundaries but do not reorder

T_TILE_ij := [size] -> { join[i,j,k] -> join[ib,id,jb,jd,k] :

0<=id<TS && i=TS*ib+id &&

0<=jd<TS && j=TS*jb+jd;

add[i,j,size] -> add[ib,id,jb,jd,size] :

0<=id<TS && i=TS*ib+id &&

0<=jd<TS && j=TS*jb+jd;

};

ISCC_dename := [size] -> { join[ib,id,jb,jd,k] -> [ib,id,jb,jd,k];

add[ib,id,jb,jd,k] -> [ib,id,jb,jd,k] };

# to check some stuff, for the whole transformation

TRANS := (T_UP3 . T_TILE_ij . ISCC_dename);

# See if any dependence gets mapped back-in-time by our transformation:

# if any of the following are non-null, our Makefile will stop compiling:

DEP_ADD5 := (TRANS^-1) . DEP_ADD . TRANS;

DEP_ADD5 * BACK_IN_TIME5;

DEP_JOIN_i5 := (TRANS^-1) . DEP_JOIN_i . TRANS;

DEP_JOIN_i5 * BACK_IN_TIME5;

DEP_JOIN_j5 := (TRANS^-1) . DEP_JOIN_j . TRANS;

DEP_JOIN_j5 * BACK_IN_TIME5;

# if we didn’t get stopped by non-null relations above, we’ll use this code:

codegen( TRANS * IS_ALL );

Figure 6: Tiling Only The (i, j) Loops of Nussinov’s Algorithm using ISCC
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# (Note: No T_UP3 here because that’s part of our final transformation)

# Tiling, DEFINED IN TERMS OF ORIGINAL i/j/k (with i counting "down the page")

# once again, we define tile boundaries but do not reorder yet

T_TILE := [size] -> { join[i,j,k] -> join[ib,id,jb,jd,kb,kd] :

0<=id<TS && i=TS*ib+id && 0<=jd<TS && j=TS*jb+jd && 0<=kd<TS && k=TS*kb+kd;

add[i,j,size] -> add[ib,id,jb,jd,size,0] :

0<=id<TS && i=TS*ib+id && 0<=jd<TS && j=TS*jb+jd;

};

# convert dependences into 6-dimensional desired tile space

DEP6_ADD := T_TILE^-1 . DEP_ADD . T_TILE;

DEP6_JOIN_i := T_TILE^-1 . DEP_JOIN_i . T_TILE;

DEP6_JOIN_j := T_TILE^-1 . DEP_JOIN_j . T_TILE;

# define the problem with reordering,

# i.e. iterations that read and write to same (i,j) tile

PEELME := [size] -> {

join[ib,id,jb,jd,kb,kd]->add[ib’,id’,jb’,jd’,kb’,kd’]: ib=ib’ && jb=jb’;

add[ib,id,jb,jd,kb,kd]->add[ib’,id’,jb’,jd’,kb’,kd’]: ib=ib’ && jb=jb’;

};

# Find the "problematic" set to be peeled off and executed later,

# i.e. those where a dependence matches the "PEELME" conditions

PEELED := (dom (DEP6_JOIN_i * PEELME)) +

(dom (DEP6_JOIN_j * PEELME)) +

(dom (DEP6_ADD * PEELME));

# For easier thinking, put that set back into the original 3-D space:

PEELED_3 := domain ((T_TILE^-1 * PEELED)^-1);

UNPEELED_3 := IS_ALL - PEELED_3;

# Transform the "core" iterations and the "peeled" iterations,

# putting all "core" first, and tiling i, j, and k there:

T_CORE := ([size] -> { join[ib,id,jb,jd,kb,kd] ->[-ib,jb,1,kb,-id,jd,kd];

add[ib,id,jb,jd,size,0]->[-ib,jb,1,size,-id,jd,0]; });

# and all "peeled" iterations after the core, tiling only i and j there:

T_PEEL := ([size] -> { join[ib,id,jb,jd,kb,kd] ->[-ib,jb,2,-id,jd,kb,kd];

add[ib,id,jb,jd,size,0] ->[-ib,jb,2,-id,jd,size,0]; });

# Check for any dependences getting sent back in time:

T_PEEL_THE_RIGHT_ONES := (T_TILE . T_PEEL) * PEELED_3;

T_CORE_THE_RIGHT_ONES := (T_TILE . T_PEEL) * UNPEELED_3;

T_SHAZAM := T_PEEL_THE_RIGHT_ONES + T_CORE_THE_RIGHT_ONES;

DEP_ADD6 := (T_SHAZAM^-1) . DEP_ADD . T_SHAZAM;

DEP_JOIN_i6 := (T_SHAZAM^-1) . DEP_JOIN_i . T_SHAZAM;

DEP_JOIN_j6 := (T_SHAZAM^-1) . DEP_JOIN_j . T_SHAZAM;

DEP_ADD6 * BACK_IN_TIME6;

DEP_JOIN_i6 * BACK_IN_TIME6;

DEP_JOIN_j6 * BACK_IN_TIME6;

# And generate the code:

codegen( ((T_TILE . T_CORE)*UNPEELED_3) + ((T_TILE . T_PEEL)*PEELED_3) );

Figure 7: Tiling All Loops of Nussinov’s Algorithm, After Peeling Problematic Ones, using ISCC
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