
More Definite Results from the PLuTo Scheduling
Algorithm

Athanasios Konstantinidis
Imperial College London
ak807@doc.ic.ac.uk

Paul H. J. Kelly
Imperial College London
p.kelly@doc.ic.ac.uk

ABSTRACT
The PLuTo scheduling algorithm is a well-known algorithm
for automatic scheduling in the polyhedral compilation model.
It seeks linearly independent affine partition mappings for
each statement of a Static Control Program (SCoP), such
that total communication is minimized. In this paper we
show that this algorithm can be sensitive to the layout of
the global constraint matrix thus resulting to varying per-
formances of our target code simply by changing the order
of the constraint coefficients. We propose a simple technique
that automatically determines the right layout for the con-
straints and as a result immunizes the PLuTo scheduling
algorithm from constraint ordering variations.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Metrics—complexity
measures, performance measures

General Terms
Algorithms, Design, Performance

Keywords
Polyhedral Model, Scheduling, Automatic parallelization

1. INTRODUCTION

In the early nineties the polyhedral computation model be-
gan to increasingly gain reputation as an efficient way for
automatic parallelization and loop-nest transformation of
Static Control Programs (SCoP). New techniques for ex-
act array data-flow analysis [8], polyhedra scanning [2] and
automatic scheduling of Z-Polyhedra [9][10] paved the way
for practical polyhedral compilation frameworks [14][12][16].

Early approaches relied on a space-time view of a sched-
ule where two different algorithms were used for calculat-
ing a space mapping (machine independent parallelization

for time minimization) and time mapping (machine depen-
dent placement for communication minimization) respec-
tively [11][5][6]. Griebl [13] refined that model by introduc-
ing an index-set splitting technique and a placement algo-
rithm for distributed memory machines.

Lim et al. [15][1] later presented a holistic perspective of
the problem with a single scheduling algorithm that could
find linearly independent partition mappings that maximize
the degree of parallelism while minimizing synchronization
at the same time. This idea was extended by Uday et al. [4]
[3] with a scheduling algorithm that minimizes communica-
tion for locality optimization. This approach will be detailed
in paragraph 2.1 since it is the main focus of this paper and
will be refered to as the Pluto scheduling algorithm or sim-
ply Pluto. It was shown [4] [3] that the Pluto algorithm is
able to find qualitatively better solutions than both Griebl’s
[13] and Lim et al. [15] algorithms.

Pluto, as well as other widely used polyhedral compilation
frameworks [14][16], rely on a Parametric Integer Program-
ming library (PIP solver) [7] for solving a global constraint
matrix. The solution is a 1-dimensional scheduling function
(affine partition mapping) obtained by finding the lexico-
graphic minimum values for the constraint coefficients. In
this paper we show that the resulting partition mappings
from the Pluto scheduler can sometimes be vulnerable to
variations in the ordering of the variables of the global con-
straint matrix. In other words, by slightly altering the order
of the constraint coefficients we can get a different answer
from the PIP solver.

This weakness is also pointed out by Feautrier [9] who pro-
posed a minimum latency method (already used in Pluto)
and a method based on the affine form of the duality theo-
rem [17] for more definite solutions. We propose a simpler
solution to this problem by taking into account the direc-
tion of each dependence vector. Using this information we
can find the right order for the constraint coefficients in the
global constraint matrix and guarantee qualitatively better
solutions. The key insight behind the proposed solution is
that some dependences extend along multiple dimensions
while the scheduling algorithm is only aware of their cost in
each one separately.



2. BACKGROUND

The polyhedral model is an alternative to abstract syntax
trees (AST) that makes it possible for a compiler to find
optimal compositions of loop transformations in one step
without being subject to phase-ordering limitations [12]. It
is consisted of three main data structures namely the do-
main, the schedule and the dependences for each statement.

The domain of each statement S is a 2-dimensional inte-
ger matrix DS that stores a finite number of affine inequali-
ties (half-spaces/loop bound constraints) representing a con-
vex Z-Polyhedron. For example, if S is surrounded by m
loops then it is represented by an m-dimensional polytope
as shown bellow, with ~xS being its iteration vector and ~n a
vector of structure parameters:

DS ·





~xS

~n

1



 ≥ 0 (1)

Using such a domain we can effectively represent all run-
time instances of a statement, something not possible with
an AST. This representation enables us to find schedules
(i.e. affine transformations) representing compositions of
loop transformations by effectively imposing a new lexico-
graphic ordering to the domain that can optimize various
properties at the same time.

Consequently, the objective of a fully automatic polyhedral
compiler framework [4] [14] (as opposed to a semi-automatic
one [12]) is to derive optimal schedules for each statement
– representing compositions of loop transformations – by
solving an affine constraint system built from the depen-
dences E of the source program. These dependences are ex-
act in the sense that they represent directed edges from one
run-time instance to another effectively forming a directed
dependence graph. Each polyhedral dependence e ∈ E con-
sists of a dependence polyhedron Pe (7) with two sections
: the source and destination domains (could be a subset of
their actual execution domains) and an affine transformation
(h transformation) from the destination instances to their
source instances. The reader can refer to [8] [18] for a more
detailed definition of dependence analysis in the polyhedral
model.

2.1 PLuTo Scheduling

A 1-d affine transform of a statement S denoted by Φ( ~xS) =
h· ~xS – where ~xS is the iteration vector of S and h a row vec-
tor – maps each run-time instance of S to a new hyperplane
instance on the transformed iteration space. Two run-time
instances ~xS1

and ~xS2
of S where Φ( ~xS1

) = Φ( ~xS2
) belong to

the same hyperplane instance or in other words to the same
loop iteration of the transformed iteration space. Therefore,
Φ( ~xS) effectively represents a new loop in the transformed
space that can be either parallel, pipeline parallel (carries
dependences with a non-negative distance vector) or sequen-
tial.

Obviously, in order to obtain such transforms we need to

make sure that they do not violate any of the dependences
E of the original program. In other words we need to make
sure that for each dependence e ∈ E the destination run-
time instance ~xdest ∈ Pe is mapped on the same or a greater
hyperplane instance than the source ~xsrc ∈ Pe. In the Pluto
context these are called permutability constraints or legality-
of-tiling-constraints and are formulated as follows:

Φ( ~xdest)−Φ( ~xsrc) ≥ 0, ∀ ~xdest, ~ssrc ∈ Pe, ∀e ∈ E (2)

The Pluto algorithm then constructs a new set of constraints
by introducing a cost function δe(~n) to (2). This is defined
as an affine form on the structure parameters and is used
to bound the communication distance for each dependence
edge :

δe(~n) ≥ Φ( ~xdest)− Φ( ~xsrc), ∀ ~xdest, ~ssrc ∈ Pe, ∀e ∈ E

(3)

Pluto also adds an extra set of constraints to avoid the triv-
ial solution of all transform coefficients being zero. These
are called non-trivial solution constraints and simply enforce
Φ( ~xS) ≥ 1 for each statement S.

The Pluto algorithm iteratively finds linearly independent
and fully permutable affine transforms and stops whenmax(mSi)
– where mSi the dimensionality of statement Si – solutions
have been found and all the dependences are killed. A de-
pendence is killed by a 1-d affine transform if the following
condition holds:

Φ( ~xdest)− Φ( ~xsrc) > 0 (4)

If the algorithm fails to find more solutions, it removes the
dependences killed so far and tries again. If it fails to find
any solution, it cuts the dependence graph into strongly-
connected components by adding a scalar dimension to the
schedule of each statement and then removes any killed de-
pendences and tries again. After obtaining at least one so-
lution the algorithm appends orthogonality constraints to
ensure linear independence of the new solutions with the
previously found ones.

Like all fully automatic polyhedral frameworks, Pluto relies
on the affine form of Farkas lemma [17] and Fourier-Motzkin
elimination in order to eliminate unnecessary columns and
end up with a system of constraints solely on the unknown
schedule coefficients. We can then invoke a PIP solver to ob-
tain a solution (if any) by finding the lexicographic minimum
for each schedule coefficient. In order to minimize commu-
nication the cost coefficients (3) are being put in the leading
minimization positions ensuring that the cost is minimum
for each solution.

In the next chapter we show that sometimes the results we
get from the PIP solver are actually sensitive to the mini-
mization order or in other words to the order in which we
layout our constraint columns (schedule coefficients).



3. ORDERING SENSITIVITY AND
PROPOSED SOLUTION

3.1 Motivating Example

The problem manifests itself when there is a situation in
which we have the same communication cost δe (see (3))
for more than one solution so the minimization algorithm
will pick a solution according to the ordering of the schedule
coefficients. The example of Figure 1 shows two schedules for
statement S0 that even though both have the same degree
of parallelism the second one has a fully parallel loop as
opposed to two pipeline parallel ones (wavefront parallelism)
of the first schedule.

First of all, by laying out the constraints from both depen-
dences we realize that at the beginning there is no possible
solution that has zero communication i.e. there is no fully
parallel loop. Therefore, at the first iteration of the algo-
rithm the minimum communication cost is 1 and can be ob-
tained by two solutions, namely Φ( ~xS0

) = i and Φ( ~xS0
) = j

i.e. minimum coefficients for i and j for communication cost
1. By putting the coefficient of i (ai) before that of j (aj)
in the global constraint matrix the PIP solver will minimize
ai first, giving as the answer ai = 0, aj = 1 or Φ( ~xS0

) = j as
the first solution. By adding the orthogonality constraints
we then get the Φ( ~xS0

) = i as our second linearly indepen-
dent solution. If we now reverse the order of ai and aj we
will get Φ( ~xS0

) = i and Φ( ~xS0
) = j. From Figure 1 we see

that the order in which we get these two solutions matters
since Figure 1-(b) presents a sequential loop followed by a
parallel one while Figure 1-(a) presents a pipeline/wavefront
parallel loop nest.

Of course, one cannot be certain about which one of the
two possible solutions will turn out to be better in practice.
It is very likely that fully parallel loops will perform better
in most cases, since pipeline/wavefront parallelism comes
with a startup and drain cost. However, depending on the
problem sizes, a pipeline might end up being equally good
or even better if it has better temporal or spatial locality
along its wavefront. In the next paragraph we show a simple
method to get the right order for the constraint coefficients
that takes pipeline cost and temporal locality into account.

3.2 Proposed Solution

The reason why the scheduling algorithm is unable to dis-
tinguish between these two solutions is because both depen-
dences in Figure 1 have the same communication cost along
each dimension i and j. The difference between them lies
on their direction i.e. one of the dependences extends into
both i and j dimensions as opposed to the other one that
extends along i only (carried by only one of the two loops).
By extracting and using this information we could be able
to determine the right order for the constraint coefficients
and distinguish between pipeline and fully parallel degrees
of parallelism.

Let Sdest be the destination statement of a dependence edge
e ∈ E. We define a bit vector ~Ve with size min(mdest,msrc)

(dimensionalities of Sdest and Ssrc) that would store the di-
rection information for e. We also store a boolean attribute
He which is false if a dependence vector extends along more
than one domension. In particular :

~Ve[i] =

{

1 if e extends along i,

0 if e doesn’t extend along i
, (5)

0 ≤ i < min(mdest,msrc)

He =

{

true if e is horizontal,

false if e is diagonal
(6)

Each dependence edge e ∈ E is represented by a dependence
polyhedron Pe defined as follows :

Pe =

-�
mdest

-� -�
msrc (n+ 1)

6

?

6

?

msrc

L















Ddest

∅ Dsrc

∅

h transformation















·












~xSdest

~xSsrc

~n

1












= 0

≥ 0

(7)

By taking (7) into account we can use Algorithm 1 to pop-
ulate the direction vectors for each e ∈ E.

Algorithm 1 Direction extraction

1: for all dependences e ∈ E do
2: Ve initialized to 0
3: bool He = true

4: int count = 0;
5: for i = 0 to min(mdest,msrc) do
6: if Pe[L+ i][mdest + i] + Pe[L+ i][i] = 0 then
7: if ∃j 6= i, (mdest + i) s.t. Pe[L+ i][j] 6= 0 then
8: Ve[i] = 1;
9: count++;
10: end if
11: else
12: count++;
13: end if
14: end for
15: if count > 1 then
16: He = false

17: end if
18: end for

Upon construction of the global constraint matrix we can
determine the order of the transform coefficients for each
statement using Algorithm 2.

In our example we have two dependence edges e1 and e2
where Ve1 = [1, 1] and Ve2 = [1, 0]. Furthermore, the first
edge e1 is diagonal so He1 = false and He2 = true. There-



Figure 1: Schedule (a) is Φ(xS0
) = (j, i) and results in a pipeline parallel loop nest while schedule (b) is

Φ(xS0
) = (i, j) and results in one fully parallel loop.

Algorithm 2 Coefficient ordering algorithm

1: Let N be the total number of statements in the source
program

2: for all Statements Si, 0 ≤ i < N do
3: Let VSi a bit vector with size mSi initialized to ~0
4: for all e ∈ E s.t. Sdest = Si do
5: if He = true then
6: VSi = VSi OR Ve

7: end if
8: end for
9: for each element j of VSi do
10: if VSi [j] = 0 then
11: Put coefficient aSj in leading minimization posi-

tion
12: end if
13: end for
14: end for

fore, Algorithm 2 will give us VS0
= [1, 0] and as a result we

will put aSj in the leading minimization position.

By applying this technique we can choose fully parallel de-
grees of parallelism instead of pipeline ones. However, as
we already mentioned this might not be the best strategy
depending on problem sizes and locality along a wavefront.
A wavefront for statement S on an m-dimensional loop nest
can be represented by the following hyperplane :

ΦwaveS ( ~xS) =

m
︷ ︸︸ ︷
[
1 1 . . . 1

]
· ~xS (8)

We can measure the volume of temporal locality within a
wavefront by counting the Read-after-Read (input) depen-
dences that satisfy the following condition :

ΦwaveSdest
( ~xSdest

) = ΦwaveSsrc
( ~xSsrc) (9)

We can then define empirical thresholds for the structure pa-
rameters and the temporal reuse along a wavefront to decide
whether pipeline parallelism would be better for a particu-

lar hardware architecture or not. Deriving these empirical
thresholds for different architectures requires experimental
investigation that could be subject for future research.

4. CONCLUSIONS

In this paper we showed that a widely used polyhedral schedul-
ing algorithm for automatic parallelization [4] [3] can some-
times be sensitive to the layout of the global constraint ma-
trix that we use to obtain our solutions. To overcome this
ambiguity we propose an empirical methodology based on
the direction of each dependence vector that tries to find
the right order for the unknown transformation coefficients.
The right order assumes that a fully parallel degree of paral-
lelism is usually better than a pipeline/wavefront one. How-
ever, we showed that the volume of temporal reuse along
a wavefront can be calculated enabling us to derive empir-
ical machine-dependent thresholds to make a more precise
decision.

5. ACKNOWLEDGEMENTS

The authors would like to thank EPSRC and Codeplay for
funding this research. We would also like to thank Alas-
tair Donaldson, Uday Bondhugula and Armin Größlinger
for their valuable comments and advice.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

principles, techniques, and tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques, pages 7–16, 2004.

[3] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic transformations for
communication-minimized parallelization and locality
optimization in the polyhedral model. In Compiler
Construction, volume 4959 of Lecture Notes in



Computer Science, pages 132–146. Springer Berlin /
Heidelberg, 2008.

[4] U. Bondhugula and J. Ramanujam. Pluto: A practical
and fully automatic polyhedral parallelizer and
locality optimizer. Technical report, 2007.

[5] A. Darte and F. Vivien. Automatic parallelization
based on multi-dimensional scheduling, 1994.

[6] M. Dion and Y. Robert. Mapping affine loop nests.
Parallel Computing, 22(10):1373 – 1397, 1996.

[7] P. Feautrier. Parametric integer programming. RAIRO
Recherche Op’erationnelle, 22, 1988.

[8] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20:23–53, 1991.

[9] P. Feautrier. Some efficient solutions to the affine
scheduling problem. i. one-dimensional time.
International Journal of Parallel Programming,
21:313–347, 1992.

[10] P. Feautrier. Some efficient solutions to the affine
scheduling problem. part ii. multidimensional time.
International Journal of Parallel Programming,
21:389–420, 1992.

[11] P. Feautrier. Toward automatic distribution. Parallel
Processing Letters, 4, 1994.

[12] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations for deep
parallelism and memory hierarchies. International
Journal of Parallel Programming, 34:261–317, 2006.

[13] M. Griebl. Automatic Parallelization of Loop
Programs for Distributed Memory Architectures.
University of Passau, 2004. habilitation thesis.

[14] C. Lengauer. Loop parallelization in the polytope
model. In CONCUR’93, volume 715 of Lecture Notes
in Computer Science, pages 398–416. Springer Berlin /
Heidelberg, 1993.

[15] A. W. Lim and M. S. Lam. Maximizing parallelism
and minimizing synchronization with affine
transforms. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’97, pages 201–214,
New York, NY, USA, 1997. ACM.

[16] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, and P. Sadayappan. Combined
iterative and model-driven optimization in an
automatic parallelization framework. In Conference on
Supercomputing (SC’10), New Orleans, LA, Nov. 2010.

[17] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, Inc., New York,
NY, USA, 1986.

[18] N. Vasilache, C. Bastoul, A. Cohen, and S. Girbal.
Violated dependence analysis. In Proceedings of the
20th annual international conference on
Supercomputing, ICS ’06, pages 335–344. ACM, 2006.


