
Transparent Parallelization of Binary Code

Benoît Pradelle Alain Ketterlin Philippe Clauss

CAMUS group, INRIA Nancy Grand Est and LSIIT, Université de Strasbourg, France.

{pradelle, ketterlin, clauss}@icps.u-strasbg.fr

ABSTRACT
This paper describes a system that applies automatic
parallelization techniques to binary code. The system
works by raising x86-64 raw executable code to an in-
termediate representation that exhibits all memory ac-
cesses and relevant register definitions, but outlines de-
tailed computations that are not relevant for paralleliza-
tion. It then uses an off-the-shelf polyhedral parallelizer,
first applying appropriate enabling transformations if
necessary. The last phase lowers the internal repre-
sentation into a new executable fragment, re-injecting
low-level instructions into the transformed code. The
system is shown to leverage the power of polyhedral
parallelization techniques in the absence of source code,
with performance approaching those of source-to-source
tools.

Keywords
Static parallelization, Binary code, Polytope model

1. INTRODUCTION
Due to the physical limits recently reached, improve-
ments in processors’ clock speed has been stopped. Pro-
cessors manufacturers are now increasing the number of
cores on processors, putting an important pressure on
parallelism extraction. Many automatic parallelization
techniques have been proposed in the past few decades.
A vast majority of those concentrate on parallelism ex-
traction from source code; however in many cases it
is interesting to consider parallelizing applications after
their compilation, at the binary level. This approach al-
lows one to handle any application independently from
its source language, even if the source code has been
lost (legacy code) or if the source code is not distributed
(closed source software). Moreover with this approach,
the whole application can be parallelized, including in-
voked libraries. Thus, the presented solution can be
implemented as an OS service able to automatically
parallelize any binary application, typically during its
installation.

Analyzing a binary application can be a complex task:
it might be difficult to extract even a simple control
flow in some cases. One could propose to wait for the
runtime to benefit from a totally determined execution
context and perform an exact analysis. However we
observed that static analysis is enough in many cases

Original binary
program

Intermediate
form

Parallel
form

Parallel
executable

ra
is
in
g

transform/

optimize

lo
w
e
rin

g

Figure 1: The system’s architecture

and does not suffer from overheads induced by dynamic
techniques.

To perform an efficient parallelization, binary code needs
to be raised to some more suitable representation. Typi-
cally, one could think of some classical compiler interme-
diate representations such as the ones used by LLVM [1]
or GCC. However those representations are usually un-
suited to describe assembly code as is (with non-typed
data, one unique array to represent the memory, ac-
tual register allocation, ...). Moreover using an internal
representation imposes to implement the needed paral-
lelization strategies for this specific representation. We
have chosen to use C code as intermediate representa-
tion and only raise a small subset of the code semantic.
Source to source parallelizers working with C code can
then be used to obtain a parallel intermediate form, into
which the detailed semantic is restored and then com-
piled to obtain a parallel executable.

We concentrate on extracting loop nests fitting the poly-
tope model in order to benefit from the powerful trans-
formations performed in this model.

The basic architecture of our system is shown on Fig-
ure 1. First, the x86-64 binary code of the program is
parsed and transformed into an intermediate represen-
tation whose concrete syntax is C. Second, the resulting
C code is submitted to a parallelizing compiler, whose
role is to detect parallel loops and which is free to apply
any program transformation. Third, the resulting par-
allel code is transformed back into executable code, and
embedded in a lightweight run-time component that is

responsible for replacing original regions of code by new,
optimized ones.

2. EXTRACTING PARALLELIZABLE
REGIONS FROM BINARY CODE

The first phase consists in parsing the binary code of the
program, extracting one routine at a time, and build-
ing a control-flow graph (CFG) for the routine when-
ever possible. Indirect branches are tentatively solved
by scanning jump tables; no optimization will ever be
attempted on routines where the CFG is not fully re-
covered. After the dominator tree is computed, a loop
hierarchy is reconstructed using DJ-graph [10] based
techniques (irreducible loops are “solved” by replicat-
ing parts of their bodies). At the end of this phase,
every loop has a unique entry block, a set of local ba-
sic blocks, and a set of sub-loops. Note that loops are
reconstructed as they appear in the binary, and no refac-
toring takes place. If the compiler has unrolled and/or
peeled some iterations, the original iteration domain of
the loop may not be fully recovered. We have left such
refactoring for future research.

The next step is to perform a data-analysis of the pro-
gram, by putting it into static single assignment (SSA)
form. This gives a unique version number for each regis-
ter definition, and provides a direct use-def link for each
register usage. All registers are tracked, and memory
is handled as a weakly updated variable (where each
memory write explicitly refers to the currently visible
version). Starting from every memory access, and “slic-
ing back” through use-def links, it is possible to recon-
struct the computation of the memory access’ address.
The slicing proceeds while the reconstructed function is
linear, and until meeting either a memory access that
cannot be resolved, or an input register (i.e., a routine
parameter), or a φ-function. The result is a linear com-
bination of registers. Whenever a φ-function appears in
a memory access function, an induction-variable resolu-
tion procedure tries to express it as a linear function of a
newly introduced normalized loop counter, and in cases
where this succeeds, the register is replaced by the re-
sulting expression. In many cases, this sequence of steps
is enough to express all memory accesses inside one or
more loops as linear expressions involving loop counters
and loop-invariant registers, all with integer coefficients.

Similarly, branch conditions are tentatively expressed
as linear expressions compared to zero with <, ≤ or
= (and their negations). Combined with control depen-
dence (which can be computed from the CFG) on blocks
that may exit the various loops involved, one can com-
pute loop “trip-counts” or, more precisely, symbolic con-
straints on blocks inside loops. Here again, these con-
straints involve linear combinations of loop counters and
loop-invariant registers: they are used later as guards
when generating C code from the binary, and also by
the parallelizing compiler to decide which polyhedral
transformation to apply. Before that, a final slicing
step starts from all linear expressions involved (in mem-
ory accesses and branch conditions) and selects which

for (t1 = 0; -1023 + t1 <= 0; t1++)
for (t2 = 0; -1023 + t2 <= 0; t2++) {

M[23371872+8536*t1+8*t2] = 0;
xmm1 = 0;
for (t3 = 0; -1023 + t3 <= 0; t3++) {

xmm0 = M[6299744+8296*t1+8*t3];
xmm0 = xmm0 � M[14794848+8*t2+8376*t3];
xmm1 = xmm1 � xmm0;

}
M[23371872+8536*t1+8*t2] = xmm1;

}

Figure 2: Matrix multiply as it is extracted from
the binary code

instructions from the original program are still neces-
sary: these instructions are then“outlined”and replaced
with abstract statements that hide all the architecture-
specific intrinsic computations. What remains is a pro-
gram using and defining scalars registers and one sin-
gle array representing memory accessed through affine
functions. And that is enough for parallelization.

3. PARALLELIZING THE C CODE
After the code extraction described in the previous sec-
tion, we obtain a C code made of all the memory ac-
cesses performed in the binary code but where the se-
mantic is hidden. We do not want to restore the code
semantic here in order to keep the code as simple as pos-
sible for polyhedral tools later transforming this code.
Figure 2 presents the C code as extracted from a binary
matrix multiply. The computation is made in register
xmm1 before being written back to memory, represented
by the M array. Note that the operations on values have
all been replaced by a generic operator �, this opera-
tor can be implemented by any operator in the C code
used by the transforming compiler, + for example. As
is, this code fits the polytope model requirements. How-
ever, most modern polyhedral compilers fail to take such
codes into account, for two main reasons. First, the
large values used as coefficients in linear functions of-
ten lead to internal errors. Those coefficients are actu-
ally due to the linearization of the access functions and
to our representation of the memory as an array whose
base is at address zero. Splitting the memory into arrays
solves this problem. Second, the scalar values xmm0 and
xmm1, which are only temporary variables, add some ex-
tra dependencies which prohibit many transformations
in the polytope model. Those scalar references can be
removed in some specific cases.

3.1 Splitting the memory
To help the parallelizer, we simplify memory accesses
by splitting non-intersecting memory areas into differ-
ent arrays and by rebuilding multi-dimensional arrays
whenever it is possible. If the loop bounds are non-
parametric, those dimensions can be built back by check-
ing all the possible array shapes. In the case of paramet-
ric loop bounds, rebuilding the arrays becomes complex
and can be solved for some, hopefully frequent, param-
eter values in association with a runtime check.

for (t1 = 0; -1023 + t1 <= 0; t1++)
for (t2 = 0; -1023 + t2 <= 0; t2++) {

A2[t1][8*t2] = 0;
xmm1 = 0;
for (t3 = 0; -1023 + t3 <= 0; t3++)

xmm1 = xmm1 � (A1[t1][8*t3] � A3[t3][8*t2]);
A2[t1][8*t2] = xmm1;

}

Figure 3: Matrix multiply after forward substi-
tution

3.2 Removing scalar references
A reference to a scalar variable in a polyhedral loop
kernel can have a major impact on data dependencies
but existing parallelization tools are currently poorly
simplifying those scalar references: they actually expect
those simplifications to have already been performed.
However, in some cases, removing scalar references is
not an easy task.

The first technique which can be applied is forward sub-
stitution. One can see on Figure 3 the matrix mul-
tiply code after forward substitution. Even if refer-
ences to xmm0 have been suppressed, some references to
xmm1 remain. Some compilers implement privatization
to solve those remaining cases but privatization seems
difficult to implement in the polytope model and this
support appeared to be suboptimal in PLuTo [2, 6] and
PoCC [8, 9] during our tests. Another commonly sug-
gested transformation is to use results about scalar ex-
pansions, contraction and renaming [4, 11]. However,
no available tool is currently able to perform simulta-
neously transformation and memory space optimization
efficiently. Moreover, guiding the transformations ac-
cording to the memory space used by expanded variables
is also a complex task. To illustrate it, we present in Fig-
ure 4 the matrix multiply code, transformed by PLuTo
after expanding xmm1. One can see that no contraction
is possible anymore with the transformation chosen by
the compiler, leading to memory space and performance
penalties.

Another solution would be to perform some pattern
matching on some specific data flows. In the example
from Figure 3, we could identify that, before and af-
ter the innermost loop, xmm1 and A2[t1][8*t2] contain
the same value. Considering that the array A2 is not ac-
cessed in this innermost loop, references to xmm1 could
be replaced by references to A2[t1][8*t2]. This strat-
egy would be easy to implement and would probably
lead to decent results. However, we could not guaran-
tee that it could remove every scalar reference. Apply-
ing this strategy could lead to a code equivalent to the
classical matrix multiply as presented in Figure 5.

Notice that those scalar variables can be suppressed only
if we can determine which value they hold after the
loop nest. In our example, we may set the scalar vari-
able xmm0 to A1[1023][8*1023] * A3[1023][8*1023]

and xmm1 to A2[1023][8*1023].

#pragma omp parallel for ...
for (t1 = 0; t1 <= 1023; t1++)
for (t2 = 0; t2 <= 1023; t2++)
xmm1[t1][t2] = 0;

#pragma omp parallel for ...
for (t1 = 0; t1 <= 1023; t1++)
for (t2 = 0; t2 <= 1023; t2++)
for (t3 = 0; t3 <= 1023; t3++)
xmm1[t1][t2] = xmm1[t1][t2]

� (A1[t1][8*t3] � A3[t3][8*t2]);

#pragma omp parallel for ...
for (t1 = 0; t1 <= 1023; t1++)
for (t2 = 0; t2 <= 1023; t2++) {
A2[t1][8*t2] = 0;;
A2[t1][8*t2] = xmm1[t1][t2];

}

Figure 4: Matrix multiply after expansion and
transformation

for (t1 = 0; -1023 + t1 <= 0; t1++)
for (t2 = 0; -1023 + t2 <= 0; t2++) {

A2[t1][8*t2] = 0;
for (t3 = 0; -1023 + t3 <= 0; t3++)

A2[t1][8*t2] = A2[t1][8*t2]
� (A1[t1][8*t3] � A3[t3][8*t2]);

}

Figure 5: Matrix multiply after scalar removal.

3.3 Transformations and parallelization
The resulting C code can be parallelized using any source-
to-source parallelizing compiler. There is no theoretic
restriction on the set of transformations which can be
performed by the parallelizer. In our implementation we
only prohibit the compilers to fuse or split statements
in order to ease the next step. Our implementation cur-
rently uses PLuTo [2, 6] as a backend parallelizer.

This genericity allows our method to benefit from any
future developments in code optimization techniques.
Since any source-to-source compiler can be used, it is
also useless to re-implement existing techniques specifi-
cally in our system.

4. MERGING THE PARALLEL CODE
4.1 Recovering the semantic
The code used as input for the parallelizing backend is
made of the actual memory accesses but is semantically
wrong. The correct semantics is actually defined by the
binary code statements. We identify which statements
in the binary code map to the statements in the parallel
C code. To achieve this, we use a PLuTo specific be-
havior: this compiler numbers the statements in order
of appearance in the input sequential code. With other
compilers, other information can be used like line num-
bers in the input code, usually maintained for debugging
purposes.

Once the mapping between instructions in the binary
code and instructions in the transformed parallel code

#pragma omp parallel for private(t2,t3,t4,t5)
for (t2=0; t2<=1023/32; t2++)
for (t3=0; t3<=1023/32; t3++)
for (t4=32*t2; t4<=min(1023,32*t2+31); t4++)
for (t5=32*t3; t5<=min(1023,32*t3+31); t5++) {
void *tmp0 = (void*)(23371872+8536*t4+8*t5);
asm volatile("movq $0, (%0)":: "r"(tmp0));

}

#pragma omp parallel for \
private(t2,t3,t4,t5,xmm0,xmm1)

for (t2=0; t2<=1023/32; t2++)
for (t3=0; t3<=1023/32; t3++)
for (t4=32*t2; t4<=min(1023,32*t2+31);t4++)
for (t5=32*t3;t5<=min(1023,32*t3+31);t5++) {
double tmp1 = 0.;
xmm1 = _mm_load_sd(&tmp1);
for (t7=0; t7<=1023; t7++) {
xmm0 = _mm_load_sd((double*)
(6299744+8296*t4+8*t7));

__m128d tmp2 = _mm_load_sd((double*)
(14794848+8*t5+8376*t7));

xmm0 = _mm_mul_sd(xmm0, tmp2);
xmm1 = _mm_add_sd(xmm1, xmm0);

}
_mm_store_sd((double*)
(23371872+8536*t4+8*t5), xmm1);

}

Figure 6: Matrix multiply after transformation
by PLuTo and semantic restoration.

is found, we can replace statements by inline assembly
made of the original statements’ code. The original as-
sembly code is not directly injected: some registers or
memory accesses have been replaced by linear expres-
sions when extracting the code. Those expressions are
evaluated in pure C code before being used in assem-
bly instructions. We also replace SIMD instructions by
SIMD intrinsics. Another specificity is that the hard-
ware registers are mapped to C variables in the gen-
erated code. Thus, inlined assembly never refers to a
specific hardware register but to C variables only. This
reduces the constraints on the register allocator of the
final C compiler and simplifies code generation.

Figure 6 presents the final code after transformation,
parallelization, and semantics restoration. In the pre-
sented resulting code, we have used PLuTo to perform
the polyhedral transformations, while handling scalar
values through privatization, and manually ensuring that
the result is correct. Notice that SIMD registers used
as variables, inline assembly, and SIMD intrinsics have
been generated. The parallelization is achieved using
simple OpenMP pragmas.

4.2 Re-injecting the new code in the appli-
cation

To finalize the code generation, those transformed loop
nests must now replace their sequential counterparts in
the application. The transformed loop nests are com-
piled as different functions of a dynamic library, which is
loaded using OS facilities when the application starts.
Just before the main function call, a runtime compo-

Benchmark Parallelized In source Rate

2mm 7 7 100%
3mm 10 10 100%
atax 2 2 100%
bicg 2 2 100%

correlation 3 5 60%
doitgen 3 3 100%

gemm 4 4 100%
gemver 3 4 75%

gramschmidt 1 2 50%
lu 1 2 50%

Average 3.6 4.1 83.5%

Figure 7: Number of loop nests parallelized by
our system compared to the number actually
present in the source code.

nent, automatically generated by our tool-chain, inserts
breakpoints at loop entries in the sequential application.
When those breakpoints are met, the runtime compo-
nent redirects the execution flow to the corresponding
transformed loop nest. This runtime component also
communicates the value of the hardware registers to the
new loop nest in order to link the variable representing
those hardware registers to their actual values. After
the transformed loop nest execution, the runtime com-
ponent writes the value of hardware registers variables
back to the actual registers before redirecting the exe-
cution flow to the end of the original loop nest. This
mechanism ensures the smooth transition between the
original code and the transformed loop nests.

5. FIRST RESULTS
We have implemented most of the framework described
in this paper and present in this section some prelim-
inary results that we measured. The scalar replace-
ment step, occurring after the code extraction from the
binary code and before its transformation by a poly-
hedral compiler, has not yet been implemented. In
the presented results, it has been performed by hand.
The benchmarks used have been taken from the Poly-
Bench [7] benchmark suite. Codes have been compiled
with GCC 4.4.5 using the -O2 optimization flag on a
Linux 2.6.35 system. Those codes have been executed
on an Intel Xeon W3520 with four processor cores and
two threads per core.

5.1 Code coverage
Our system was able to detect all the loops in the test
programs, and to transform a vast majority of them.
Some loop nests have not been parallelized by our sys-
tem because of function calls present in the loop body:
we conservatively ignore the loop nest in that case. We
plan to implement a mechanism such as inlining or in-
terprocedural analysis to handle those loop nests. Since
the called functions are often mathematical functions
which do not perform any write operations on memory,
we expect good results from such mechanisms. In Fig-
ure 7, we present the number of parallelized loop nests

 0

 1

 2

 3

 4

 5

 6

 7

 8

2m
m

3m
m

atax
bicg

correlation

doitgen

gem
m

gem
ver

gram
schm

idt

lu

source
binary

Figure 8: Speedup of each code when parallelized from the source code or by our system.

compared to the number of loop nests in the source code.
We can see a current average coverage of 83.5% of the
loops actually present in the source code.

5.2 Runtime overhead
Our current implementation uses the Linux ptrace mech-
anism to redirect the execution flow from the original
code to the parallel loops. This has obviously an im-
pact on performance, linearly depending on the number
of redirections. We measured this overhead to be around
a tenth of milliseconds per loop nest execution on our
test platform. It means that, in order to obtain speedup,
the parallelization must lead to an execution time gain
greater than a tenth of milliseconds, which seems quite
reasonable.

5.3 Raw performance evaluation
In Figure 8, we present an overview of our system per-
formance. One can see the speedup over the sequential
version of each code when parallelized from the source
code using PLuTo (denoted source in the figure) or
when using our system (denoted binary in the figure).

We can see that our system can reach speedups com-
parable with the ones resulting from a source code par-
allelization. Note that most of the benchmarks in this
suite have sequential execution times around a second.
This causes the runtime overhead to become quite sig-
nificant when measuring our system performance. The
slight difference between the source code and the ex-
tracted code is the cause of the performance gaps as it
yields to important differences between the generated
parallel schedules.

The atax program illustrates the source code sensitiv-
ity of PLuTo. Some differences appear in the extracted

code compared to the original source code. For example,
some parameters in the source code become constant
values in the binary codes. Such differences lead to dif-
ferent transformations, and different execution times.
In the case of atax, this performance gap is favorable to
the source code version.

With 2mm, one can notice that our system significantly
outperform the source code parallelization. This is due
to an error induced by the source code parallelization: if
the tiling is activated in PLuTo, the program does not
terminate normally. We then deactivated tiling when
parallelizing the source code of this particular program,
leading to a poor performance of the source code paral-
lelization.

One can also observe that our system fails to generate an
efficient parallelization of gramschmidt. In this partic-
ular program, the main computation loop nest contains
a call to the mathematical library, currently prohibiting
the transformation of this loop.

6. RELATED WORKS
Polyhedral loop transformation is now a well established
theory and many tools exist to perform parallelization
and transformations in this model such as PLuTo [2, 6]
or PoCC/LetSee [8, 9]. Those tools provide paralleliza-
tion from source to source, usually C or FORTRAN
programs can be handled.

Many tools like PIN [5] or DIABLO [12] provide some
facilities to analyze, transform, and, for some of them,
create a new transformed application. Our work can be
considered as a specific usage of such frameworks and
could have been implemented using anyone of them.

To our knowledge, only two recent papers present a solu-
tion to binary code parallelization. First Yardımcı and
Franz have proposed a dynamic system to vectorize and
parallelize binary codes [13]. They are focused on loops
or recursive functions with no dependence, which limits
the scope of their system. They do not perform any
loop transformation and the dynamic approach is not
well suited to heavy transformations as polyhedral ones
which require long compilation times.

Second, Kotha et al. proposed a framework [3] similar
to the one described in this paper with a few significant
differences. First, the analysis of the binary application
they perform can only find loops and memory accesses
that follow a restrictive pattern, reducing the scope of
loops that can be parallelized. They decide whether to
parallelize or not using non-exact dependence testing
and do not perform any loop transformation. Our anal-
ysis does not have those restrictions: we perform a state
of the art dependence analysis, we are able to perform
loop transformations, and our use of C code as interme-
diate representation allows us to avoid re-implementing
existing compilation techniques.

7. PERSPECTIVES
Using a polyhedral parallelizer in our system has re-
vealed some weaknesses of polyhedral tools in support-
ing scalar variables. Currently, those tools expect codes
where the temporary scalars have been deleted. How-
ever this removal is not always straightforward. We plan
to implement an automatic scalar removal pass in our
tool in order to help the parallelizing compilers.

As our intermediate representation is a valid C program,
any source-to-source optimizer can be used, making it
possible to extend advances in compiler construction to
binary applications with nearly no implementation cost.
Among all the possible backends, one could imagine to
apply vectorization or speculative parallelism for exam-
ple.

In the current implementation, the extracted C code is
focused on memory accesses for data dependence anal-
ysis. Nothing prohibits the construction of C code fo-
cused on other features like control flow for example, al-
lowing backends to target other kinds of optimizations.

8. CONCLUSION
We propose a framework able to transform and par-
allelize binary codes using polyhedral transformations.
Partially raising the binary code to C code provides the
opportunity of using any source-to-source tool to trans-
form or parallelize code with nearly no implementation
cost. First results show that speedups similar to those
obtained with source parallelization can be expected.
Its efficient analysis process enables to detect and han-
dle most of the loops present in binary codes, despite
the optimizations performed by the original compiler.

9. REFERENCES
[1] The LLVM compiler infrastructure.

http://llvm.org.

[2] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
program optimization system. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 2008.

[3] A. Kotha, K. Anand, M. Smithson, G. Yellareddy,
and R. Barua. Automatic parallelization in a
binary rewriter. In Microarchitecture (MICRO),
2010 43rd Annual IEEE/ACM International
Symposium on, pages 547 –557, 2010.

[4] V. Lefebvre and P. Feautrier. Automatic storage
management for parallel programs. Parallel
Comput., 24:649–671, 1998.

[5] C.-K. Luk, R. Cohn, R. Muth, H. Patil,
A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: building customized
program analysis tools with dynamic
instrumentation. In PLDI ’05, pages 190–200,
2005.

[6] PLuTo website.
http://pluto-compiler.sourceforge.net/.

[7] PolyBench website. http://www-
roc.inria.fr/˜pouchet/software/polybench.

[8] L.-N. Pouchet, C. Bastoul, A. Cohen, and
J. Cavazos. Iterative optimization in the
polyhedral model: Part II, multidimensional time.
In PLDI’08, pages 90–100. ACM Press, 2008.

[9] L.-N. Pouchet, C. Bastoul, A. Cohen, and
N. Vasilache. Iterative optimization in the
polyhedral model: Part I, one-dimensional time.
In CGO’07, pages 144–156. IEEE Computer
Society press, 2007.

[10] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee.
Identifying loops using dj graphs. ACM Trans.
Program. Lang. Syst., 18:649–658, 1996.

[11] W. Thies, F. Vivien, and S. P. Amarasinghe. A
step towards unifying schedule and storage
optimization. ACM Trans. Program. Lang. Syst.,
29(6), 2007.

[12] L. Van Put, D. Chanet, B. De Bus, B. De Sutter,
and K. De Bosschere. Diablo: a reliable,
retargetable and extensible link-time rewriting
framework. In Proceedings of the 2005 IEEE
International Symposium On Signal Processing
And Information Technology, pages 7–12. IEEE,
2005.

[13] E. Yardımcı and M. Franz. Dynamic
parallelization and mapping of binary executables
on hierarchical platforms. In Proceedings of the
3rd conference on Computing frontiers, CF ’06,
pages 127–138. ACM, 2006.

