
Counting Affine Calculator and Applications

Sven Verdoolaege
INRIA Saclay — Île-de-France

Parc Club Orsay Universite, ZAC des vignes
4 rue Jacques Monod, 91893 Orsay, France

sven.verdoolaege@inria.fr

ABSTRACT
We present an interactive tool, called iscc, for manipulating
sets and relations of integer tuples bounded by affine con-
straints over the set variables, parameters and existentially
quantified variables. A distinguishing feature of iscc is that
it provides a cardinality operation on sets and relations that
computes a symbolic expression in terms of the parameters
and domain variables for the number of elements in the set
or the image of the relation. In particular, these expres-
sions are piecewise quasipolynomials, which can be further
manipulated in iscc. Besides basic operations on sets and
piecewise quasipolynomials, iscc also provides an interface
to code generation, lexicographic optimization, dependence
analysis, transitive closures and the symbolic computation of
upper bounds and sums of piecewise quasipolynomials over
their domains.

1. INTRODUCTION
The polyhedral model [8] is a powerful formalism for an-

alyzing and transforming program fragments that meet cer-
tain requirements. In particular, all loop bounds and all
conditions should be (approximated by) affine expressions
in the loop iterators and symbolic constants called param-
eters. Depending on the type of analysis performed, the
array index expressions may also have to be affine. Several
libraries have been developed for operating on representa-
tions in this polyhedral model, including PolyLib [14, 18],
PipLib [9], Omega [6,12], PPL [2], CLooG [3], barvinok [16,17]
and isl [15], and these libraries have been used in numer-
ous applications. During experimentation and prototyping
of new polyhedral techniques, however, there is a need for
an interactive tool such as iscc, providing a uniform, high-
level interface to some of these polyhedral libraries. The
main contributions of iscc and this paper are

• a uniform interface to isl (for representation and ma-
nipulation of sets and relations), CLooG (for code gen-
eration) and barvinok (for counting).

• support for sets and relations containing elements from
more than one space

• support for structured and named spaces

• compositions of relations on the one hand and counting
or bounding functions on the other hand

The tool is distributed as part of the barvinok distribution,
available from http://freshmeat.net/projects/barvinok/.
The tool itself is a very thin layer on top of the underlying

for (i = 0; i < N; ++i)

S1: t[i] = f(a[i]);

for (i = 0; i < N; ++i)

S2: b[i] = g(t[N-i-1]);

Figure 1: Simple program with temporary array t

libraries. Support for the above contributions has therefore
also been made available in these libraries themselves. Al-
though iscc is primarily designed for use in the context of
the polyhedral model, most of the supported operations take
abstract integer sets or related objects as input and should
therefore also be useful outside this context.

2. SYNTAX
The language used by iscc is extremely simple. It sup-

ports operations on constants and dynamically typed vari-
ables and assignments to those variables. If the result of an
expression is not used inside another expression and is not
assigned to a variable, then it is printed on the screen. The
operators are overloaded based on the types of the argu-
ments, which may be sets, relations, piecewise quasipolyno-
mials, piecewise quasipolynomial folds, lists, integers, strings
or booleans.

A set contains integer tuples that satisfy some Presburger
formula built from affine constraints, conjunctions (and),
disjunctions (or), projections (exists) and negations (not).
Note that the formula is immediately converted into disjunc-
tive normal form, so it may sometimes be more efficient to
construct a set from smaller sets by applying basic opera-
tions such as intersection (*), union (+) and difference (-).
The description may involve (free) parameters and existen-
tially quantified variables. We will call set descriptions in-
volving existentially quantified variables quasi-affine. A set
may also contain elements from different spaces, i.e., spaces
with different dimensionalities, names or internal structures.
For example, the set

[N] -> { S1[i] : 0 <= i < N; S2[i] : 0 <= i < N }

represents the iteration domains of the statements in the
program in Figure 1. The optional parameters should be
declared by placing them in a comma delimited list inside
[] (followed by an ->) in front of the main set description.
The parameters are global and are identified by their names,
so the order inside the list is arbitrary. The main set descrip-
tion consists of a {}-pair containing a semicolon delimited

1

http://freshmeat.net/projects/barvinok/


list of subsets from a given space. A space is identified by its
optional name (S1 and S2 in the example) and its dimension
(the number of coordinates in the [] enclosed tuple follow-
ing the optional name). The names of the coordinates are
purely local within the set description. The space specifi-
cation is separated by a colon from the actual constraints
describing the elements from that space. The disjuncts are
delimited by or, while the conjuncts are delimited by and.
Each disjunct may be preceded by exists followed by a list
of existentially quantified variables and a colon.

Relations are binary relations on pairs of spaces and are
defined in a similar way, except that the single space is re-
placed by a pair of spaces separated by ->. Relations need
not be (single-valued) functions. As an example of a rela-
tion, the read access relations of the program in Figure 1
can be represented as

[N] -> { S1[i] -> a[i]; S2[i] -> t[N-i-1] }

while the write access relations can be represented as

{ S1[i] -> t[i]; S2[i] -> b[i] }

Note that for reasons of brevity we did not include the con-
straints on the iterators. Assuming we assigned the set of
iteration domains to the variable D, we do not need to spec-
ify them explicitly in the description of the access relations,
but we can instead intersect the domain of the relation with
D, as in

W := { S1[i] -> t[i]; S2[i] -> b[i] } * D;

Finally, relations can be embedded in a set, by placing
the pair of spaces of the relation inside an extra []-pair.
The resulting structured space can then in turn be used as
a domain or codomain of a relation and this process can
be continued arbitrarily. As a typical example, consider the
following relation, which maps an iteration space to the write
access relation corresponding to that space.

{ S1[i] -> [S1[i]->t[i]]; S2[i] -> [S2[i]->b[i]] }

When such a relation is applied to a set of one or more
statement iterations, the result will be an embedded access
relation for those iterations.

3. BASIC OPERATIONS
Any given integer set can be represented in many different

ways. Most of the operations supported by iscc are inde-
pendent of the representation. That is, they will produce the
same result whatever representation is chosen, although, of
course the representation of the result may depend on the
representation of the input. The main exceptions are op-
erations that involve some form of approximation such as
the polyhedral hull (poly), the transitive closure (^+) and
the computation of an upper bound (ub) on a piecewise
quasipolynomial over all elements in its domain. Some of
these operations will be explained below.

Basic operations on sets and relations include the obvi-
ous intersection (*), union (+) and set difference (-). Note
that, as illustrated above, if a relation is intersected with
a set (in that order), then it is actually the domain of the
relation that is intersected with the set. Pairs of sets or re-
lations can be checked for equality or inclusion using the =

and <= operators. Composition of two relations, M1 and M2

is written M2(M1) or M2 after M1, while the join (the same

operation with the arguments reversed) is written M1 . M2

or M1 before M2. The postfix ^-1 operator is used to obtain
the inverse of a relation. Domain and range can be obtained
using the domain and range operators. Sometimes, it is con-
venient to have a relation that, when applied to a relation,
performs one of these two operations and this is exactly what
the operators domain_map and range_map provide. The re-
sulting relations map an embedded copy of (part of) the
original relation to its domain or range. The wrap operation
can be used to obtain such an embedding, while the inverse
operation is called unwrap. That is, if R is a relation then
domain R is the same as (domain_map R)(wrap R).

A sample element can be obtained using the sample op-
eration. This is also the main way of checking whether a set
or relation is empty. If so, then the operation will return an
(explicitly) empty set. Note that the underlying isl library
will often implicitly check whether a set or relation is empty.
The affine hull (aff) operation returns a description of all
the (explicit and implicit) equalities defining the set. If the
input contains elements from different spaces, then the affine
hull is computed for each space individually.

The lexicographically maximal [minimal] element of a set
can be obtained using the lexmax [lexmin] operator. When
applied to a relation, these operators return the maximal
[minimal] image element for each domain element. The
lexmax operation can therefore be used to perform depen-
dence analysis, but handling the general case is fairly com-
plicated. In particular, if R contains the read accesses, W the
write accesses and S the schedule, i.e., a relation between the
iteration domains and a common iteration space ordered in
the lexicographic order, then the flow dependences could be
computed as

((lexmax((((range_map R).W^-1) * (domain_map(R) .

(S >> S))).S)).S^-1)^-1.domain_map(R)

We will discuss the >> operator used in this expression be-
low, but we will not explain the expression itself in detail
because there is an easier way to obtain dependences. Since
dependence analysis is so important, it is provided as an op-
erator on the write and read accesses and the schedule. The
operator is used as follows

(last W before R under S)[0]

The first argument specifies the potential sources of the de-
pendences, the second argument the sinks and the third ar-
gument the schedule. In case of flow dependences, the poten-
tial sources are the write access relations, while the sinks are
the read access relations. Note that the dependence analy-
sis operator returns two results, the actual dependences and
the subset of sinks for which no corresponding source could
be found. The [0] postfix operator selects the first of these
results. When applied to a schedule corresponding to the
program in Figure 1, e.g.,

S := { S1[i] -> [0,i]; S2[i] -> [1,i] };

and with W and R set to the write and read access relations,
the above call to the dependence analysis operator returns

[N] -> { S1[i] -> S2[-1 + N - i] : i <= -1 + N and

i >= 0 }

Given the above dependence relation, dependence distance
vectors can be computed by applying the deltas operator,

2



which computes differences between image and domain el-
ements. Of course, we need to apply this operation in a
space where the difference makes sense, e.g, the scheduling
domain. Assuming Dep contains the above dependence rela-
tion, we therefore compute

deltas (S^-1.Dep.S);

which results in

[N] -> { [1, i1] : exists (e0 = [(-1 - N + i1)/2]:

2e0 = -1 - N + i1 and i1 >= 1 - N and i1 <=

-1 + N) }

Notice that the second coordinate in this set is odd. The []

in the definition of the existentially quantified variable e0

denote the greatest integer part.
Code that visits each element of a set in lexicographical

order can be obtained by applying the codegen operator.
Note that the given set may only contain elements from a
single space since the lexicographical order is only defined
within a given space. When applied to a relation, code is
generated for each element in the domain of the relation ac-
cording to the lexicographic order on the image. We can
then check whether the above schedule does indeed corre-
spond to Figure 1 by calling

codegen (S * D);

which results in

if (N >= 1) {

for (c2=0;c2<=N-1;c2++) {

S1(c2);

}

for (c2=0;c2<=N-1;c2++) {

S2(c2);

}

}

This code can be transformed by applying a different sched-
ule. For example,

S2 := [N] -> { S1[i] -> [i,0]; S2[i] -> [N-i-1,1] };

codegen (S2 * D);

which results in

if (N >= 1) {

for (c1=0;c1<=N-1;c1++) {

S1(c1);

S2(-c1+N-1);

}

}

To ensure that the above code is semantically equivalent
to the original, we need to check that no dependences are
violated, i.e., that no statement instance is scheduled before
any statement instance on which it depends. In other words,
if we construct a relation from statement instances to ear-
lier statement instances, then the intersection of this relation
with the dependence relation should be empty. The >> oper-
ator can be used to construct such a relation. When applied
to a pair of sets, it constructs a relation between elements of
the first set and elements of the second set such that the first
are lexicographically larger than the second. When applied
to a pair of relations, the resulting relation is constructed
from elements in the domains of the input relations, but the
lexicographical order is applied to the corresponding image
elements. Since

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t < 1000; t++) {

for (i = 0; i < 10; i++)

x[new][i] = g(x[old][i]);

new = (new+1) % 2; old = (old+1) % 2;

}

Figure 2: Flip-flop example from [1, Fig. 3]

i = 0; j = 0;

while (i <= 100) {

if (A[i] <= A[j]) {

i = i + 2; j = j + 1;

} else

i = i + 4;

}

Figure 3: Example from [10, page 35]

(S2 >> S2) * Dep;

results in the empty set, the schedule does not violate any
dependences.

4. TRANSITIVE CLOSURES
The transitive closure of a relation can be computed using

the ^+ postfix operator. Actually, the transitive closure of
a quasi-affine relation may not be quasi-affine [13], or, even
if it is, it may be too expensive to compute. The operation
therefore returns an overapproximation of the transitive clo-
sure, along with a boolean that is false when the result may
not be exact. That is, if the boolean is true, then the result
is known to be exact. The details of the transitive closure
algorithm implemented in isl will appear in a forthcoming
publication. The purpose of this section is then not to show
the accuracy or the speed of the algorithm, but rather the
ease with which it can be used in an application due to the
high-level interface of iscc.

In particular, we will consider the application of invari-
ant analysis, where invariants on the program variables are
computed at different control points. Let us first consider
an example from [1], reproduced in Figure 2. The authors
consider several variations of essentially interchanging the
values of new and old and the main objective is to show
that new and old always have different values. The vari-
ation shown in Figure 2 is one for which the authors are
unable to prove this invariant, mainly because they do not
support existentially quantified variables. The effect of the
loop on the two variables can be represented as

T := { [new, old] -> [(new+1) % 2, (old+1) % 2] };

Computing T^+ results in

({ [new, old] -> [o0, o1] : exists (e0 = [(-new -

old - o0 + o1)/2]: 2e0 = -new - old - o0 + o1

and o0 >= 0 and o0 <= 1 and o1 >= 0 and o1 <=

1) }, True)

showing that in this case the computed transitive closure is
exact. Applying this transitive closure to the initial state,
i.e., computing (T^+)({[0,1]}), we obtain

3



{ [i0, i1] : exists (e0 = [(-1 - i0 + i1)/2]: 2e0

= -1 - i0 + i1 and i0 >= 0 and i0 <= 1 and i1

>= 0 and i1 <= 1) }

This set describes all reachable states after at least one iter-
ation of the loop. In general, the result would be an overap-
proximation of the set of reachable states, but in this case
we know that the result is exact. Note that we did not
have to explicitly take the first element in the result of the
transitive closure. When a list is given consisting of a rela-
tion and a boolean where simply a relation is expected, the
first element of the list is used implicitly. Also note that
the set of reachable states is not represented in the simplest
way. Although the desired invariant is available, it may not
be apparent from this representation. The invariant can be
made more explicit by computing the affine hull of the above
set, resulting in

{ [i0, 1 - i0] }

As a second example, take that of [10], reproduced in Fig-
ure 3. In this case, we consider three program points: at the
start, before the loop and after the loop. The transitions
between these points can be described as

T := {

zero[i,j] -> one[0,0];

one[i,j] -> one[i+4,j] : i <= 100;

one[i,j] -> one[i+2,j+1] : i <= 100;

one[i,j] -> two[i,j] : i > 100

};

The transitive closure of this transition relation can again
be computed exactly. Applying this transitive closure to an
arbitrary initial state and taking the union with this initial
state, we obtain the set of all reachable states exactly. In
particular, the result of

Init := { zero[i,j] };

(T^+)(Init) + Init;

is

{ one[i0, i1] : (2i1 = i0 and i0 >= 2 and i0 <=

102) or (exists (e0 = [(i0)/2], e1 = [(-i0 + 2

i1)/4]: 2e0 = i0 and 4e1 = -i0 + 2i1 and i1 >=

1 and i1 <= 50 and 2i1 <= -4 + i0 and i0 <=

104)); one[0, 0]; one[i0, 0] : exists (e0 = [(

i0)/4]: 4e0 = i0 and i0 >= 4 and i0 <= 104);

two[i0, i1] : (2i1 = i0 and i0 >= 101 and i0

<= 102) or (exists (e0 = [(i0)/2], e1 = [(-i0

+ 2i1)/4]: 2e0 = i0 and 4e1 = -i0 + 2i1 and i1

>= 1 and i1 <= 50 and 2i1 <= -4 + i0 and i0

<= 104 and i0 >= 101)); two[i0, 0] : exists (

e0 = [(i0)/4]: 4e0 = i0 and i0 >= 101 and i0

<= 104); zero[i, j] }

If we are only interested in affine invariants (rather than
quasi-affine), we can apply the poly operator to this set and
obtain

{ one[i0, i1] : i0 <= 104 and 2i1 <= i0 and 2i1 <=

204 - i0 and i1 >= 0; two[i0, i1] : i0 <= 104

and i0 >= 102 and 2i1 >= 104 - i0 and 2i1 <=

204 - i0; zero[i, j] }

5. BASIC COUNTING
The card operator can be used to compute the cardinal-

ity of a set, i.e., the number of elements in the set. If the
input set is parametric, then the result of this operation will
be a piecewise quasipolynomial in the parameters, where a
quasipolynomial is a polynomial expression that may involve
greatest integer parts of affine expressions. When the card

operator is applied to a relation, then what is counted is
the number of image elements associated to each domain
element.

As a simple application of counting, let us compute (an
upper bound on) the minimal number of memory elements
required to store the t-array in the program of Figure 1.
We first need to determine for each array element, when
it is live, i.e., when it has been written and still needs to
be read. We have already computed the dependences for
this program before and the resulting dependence relation is
already single-valued, meaning that the dependence relation
itself already contains the live ranges for each of the array
elements. We assume here that each statement only writes
a single value so that this value can be identified by the
statement instance that writes the value. In general, any
given value may be used several times and to determine the
live ranges, we need to compute for each write operation, the
last read (according to the schedule) of the value written by
that write operation. That is, assuming Dep contains the
dependence relation, we need to compute

LR := (lexmax (Dep . S)) . S^-1;

In this example, the result is equal to Dep. Now, we need
to compute how many values are live at each iteration of
the program, i.e., how many elements in LR are such that
the write occurs strictly before the given iteration and the
read occurs at or after the given iteration. To do so, we first
compute for each value, the set of iterations in its live range.
Then, we take the inverse of the resulting relation and we
count the number of image elements (i.e., live ranges) for
each domain element (i.e., iteration). That is, we compute

LLT := (S << S) * (D -> D);

LGE := (S >>= S) * (D -> D);

After_Write := domain_map(LR) . LLT;

Before_Read := range_map(LR) . LGE;

N_Live := card ((After_Write * Before_Read)^-1);

The result is

[N] -> { S2[i] -> (N - i) : i <= -1 + N and i >= 0;

S1[i] -> i : i <= -1 + N and i >= 1 }

This means that, as expected, the number of memory ele-
ments required increases for each iteration of S1 and then
decreases again for each iteration of S2. The -> operator
used in the computations of LLT and LGE constructs a uni-
verse relation between the given domain and codomain.

The final step is to compute an upper bound on this num-
ber over all iterations:

ub N_Live;

The result is

([N] -> { max(N) : N >= 2; max(N) : N = 1 }, True)

As in the case of the transitive closure, the second element
in the result shows whether the first element is exact, i.e.,

4



whether the result is not just an upper bound but the ac-
tual maximum. The result of an upper bound computation
is called a fold and may in general consist of a piecewise list
of quasipolynomials. It may happen that, as above, some
pieces have the same associated list. The coalesce opera-
tion can then sometimes help to simplify the representation.
Applying this operation to the fold above results in

[N] -> { max(N) : N >= 1 }

It should be noted that the above sequence of operations
used to compute the number of live elements is independent
of the input program. All that is needed is a description of
the iteration domains, the read and write access relations
and the schedule. We may, for example, use the S2 schedule
instead and then the result is

([N] -> { max(1) : N >= 1 }, True)

That is, with this schedule, a single memory element is suf-
ficient to store all elements of the t-array.

6. WEIGHTED COUNTING
The card operator of the previous section simply counts

the number of elements in a set. In some applications, how-
ever, we would like to assign a weight to each point and
compute the sum of all these weights. This can be accom-
plished using the sum operator. As an example, let us assign
to each point i in the interval [0, N ] the weight i2, i.e.,

F := [N] -> { [i] -> i^2 : 0 <= i <= N };

sum F;

The result is

[N] -> { (1/6 * N + 1/2 * N^2 + 1/3 * N^3) : N >= 0 }

The same result can be obtained by applying the function
F to its domain, i.e., F(domain F). Applying a piecewise
quasipolynomial to a set evaluates the function in each el-
ement of the set and returns the sum. Similarly, applying
a fold to a set evaluates the fold in each element and then
returns a bound on the result. Although it should be clear
from its textual representation whether a function is a piece-
wise quasipolynomial or a fold, it may sometimes be inconve-
nient to print out the function and then the typeof operator
can be used instead. As usual, applying a function to a re-
lation means that it is applied to the image elements. If the
relation is single-valued, then this composition amounts to a
substitution because the sum or the bound is computed over
a single element. The application F(R) may also be written
as R.F.

Let us apply these compositions to a technique for esti-
mating the dynamic memory requirements of the Java pro-
gram in Figure 4. The example is borrowed from [7], while
the technique is explained in detail in [5]. Essentially, it
is assumed that at the end of each method execution, the
memory allocations performed during that execution that
are no longer needed are released. In a simplified analy-
sis, we then need to keep track of the amount of allocated
memory that is returned by a method and the amount that
is captured (i.e., not returned). The memory required for
running a method is then the sum of the amount of mem-
ory captured and the maximal memory requirement for any
nested method invocation.

We start by writing down the iteration domains.

void m0(int m) {

for (c = 0; c < m; c++) {

m1(c); /* S1 */

B[] m2Arr = m2(2 * m - c); /* S2 */

}

}

void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

B[] m2(int n) {

B[] arrB = new B[n]; /* S5 */

for (j = 1; j <= n; j++)

B b = new B(); /* S6 */

return arrB;

}

Figure 4: A Java program

D := { m0[m] -> S1[c] : 0 <= c < m;

m0[m] -> S2[c] : 0 <= c < m;

m1[k] -> S3[i] : 1 <= i <= k;

m1[k] -> S4[i] : 1 <= i <= k;

m2[n] -> S5[];

m2[n] -> S6[j] : 1 <= j <= n };

DM := (domain_map D)^-1;

Notice how we separate the method arguments from the lo-
cal iterators so that we can easily construct a mapping from
the method arguments to the combination of method argu-
ments and local iterators in DM. This relation can then be
composed with functions to compute the sum or a bound
over all the iterations of the statements in a method.

The amount of memory returned, captured and required
by method m2 can then be computed as follows.

ret_m2 := DM . { [m2[n] -> S5[]] -> n : n >= 0 };

cap_m2 := DM . { [m2[n] -> S6[j]] -> 1 };

req_m2 := cap_m2 + { m2[n] -> max(0) };

The single iteration of S5 allocates n memory elements,
which are returned, while each iteration of S6 allocates one
memory element, which is captured. For consistency with
the other methods, we add a zero fold to req_m2 to make
sure req_m2 itself is a fold.

For method m1, we first define the parameter bindings for
all calls returning memory that is captured by m1 in CB_m1.

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

ret_m1 := { m1[k] -> 0 };

cap_m1 := DM . ({ [m1[k] -> S3[i]] -> 1 }

+ (CB_m1 . ret_m2));

req_m1 := cap_m1 + (DM . CB_m1 . req_m2);

No memory is returned by the method, while the captured
memory consists of the memory allocated in S3 and the
memory returned by the call to m2. The composition of
ret_m2 and req_m2 with CB_m1 only performs a substitution
since CB_m1 is single-valued. The actual summation and
bounding happens during the composition with DM.

The computation of the memory requirement of m0 is very
similar. The only new operation is the composition of two

5



folds in req_m1 . req_m2.

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];

[m0[m] -> S2[c]] -> m2[2 * m - c] };

ret_m0 := { m0[m] -> 0 };

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);

req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 . req_m2));

The final result (req_m0) is equal to

{ m0[m] -> max((-2 + 2 * m + 2 * m^2), (5/2 * m +

3/2 * m^2)) : m >= 2; m0[m] -> max((5/2 * m +

3/2 * m^2)) : m = 1 }

7. RELATED WORK AND CONCLUSION
Two related interactive polyhedral tools are the Omega

calculator [11] and SPPoC [4]. The syntax of iscc was very
much inspired by that of the Omega calculator. However,
the Omega calculator only knows sets and relations. In par-
ticular, it does not perform any form of counting. An ear-
lier version of barvinok came with a modified version of the
Omega calculator that introduced an operation for count-
ing the number of elements in a set, but it would simply
print the result and not allow any further manipulations.
SPPoC does support counting, but only the basic operation
of counting the elements in a set. In particular, it does not
support weighted counting, nor the computation of upper
bounds. It also only supports (single-valued) functions and
not generic relations like the Omega calculator and iscc.
In fact, all variables are treated in the way the Omega cal-
culator and iscc would treat parameters. Internally, SP-

PoC uses PolyLib, PipLib and Omega to perform its opera-
tions. The isl library contains an improved implementation
of the operation (essentially lexmin) supported by PipLib.
Barvinok’s algorithm, implemented in the barvinok library,
is usually much faster than the algorithm implemented in
PolyLib [17].

Furthermore, the ability to work with named and nested
spaces and the ability of sets and relations to contain (pairs
of) elements from different spaces are not available in the
Omega calculator and SPPoC. Instead, the user of the Omega
calculator would have to “normalize” all spaces to the same
dimensionality by adding arbitrarily valued coordinates and
manually add an extra coordinate identifying the space. iscc
not only makes these manipulations redundant, it also allows
some operations such as the affine hull and the lexicographic
optimum to operate on each of the spaces separately.

8. REFERENCES
[1] C. Ancourt, F. Coelho, and F. Irigoin. A modular

static analysis approach to affine loop invariants
detection. Electron. Notes Theor. Comput. Sci.,
267:3–16, October 2010.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma
Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification
of hardware and software systems. Science of
Computer Programming, 72(1–2):3–21, 2008.

[3] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In PACT ’04: Proceedings of
the 13th International Conference on Parallel
Architectures and Compilation Techniques, pages 7–16,
Washington, DC, USA, 2004. IEEE Computer Society.

[4] P. Boulet and X. Redon. SPPoC: manipulation
automatique de polyèdres pour la compilation.
Technique et Science Informatiques, 20(8):1019–1048,
2001.

[5] V. Braberman, F. Fernández, D. Garbervetsky, and
S. Yovine. Parametric prediction of heap memory
requirements. In International Symposium on Memory
Management, pages 141–150. ACM, ACM, jun 2008.

[6] C. Chen. Omega+ library, 2009.
http://www.chunchen.info/omega/.

[7] P. Clauss, F. J. Fernández, D. Garbervetsky, and
S. Verdoolaege. Symbolic polynomial maximization
over convex sets and its application to memory
requirement estimation. ICPS Research Report 06-04,
Université Louis Pasteur, Oct. 2006.

[8] P. Feautrier. The Data Parallel Programming Model,
volume 1132 of LNCS, chapter Automatic
Parallelization in the Polytope Model, pages 79–100.
Springer-Verlag, 1996.

[9] P. Feautrier, J. Collard, and C. Bastoul. Solving
systems of affine (in)equalities. Technical report,
PRiSM, Versailles University, 2002.

[10] N. Halbwachs. Détermination automatique de relations
linéaires vérifiées par les variables d’un programme.
PhD thesis, Université Scientifique et Médicale de
Grenoble, Mar. 1979.

[11] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, and D. Wonnacott. The Omega
calculator and library. Technical report, University of
Maryland, Nov. 1996.

[12] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, and D. Wonnacott. The Omega library.
Technical report, University of Maryland, Nov. 1996.

[13] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman.
Transitive closure of infinite graphs and its
applications. Int. J. Parallel Program., 24(6):579–598,
1996.

[14] V. Loechner. PolyLib: A library for manipulating
parameterized polyhedra. Technical report, ICPS,
Université Louis Pasteur de Strasbourg, France, Mar.
1999.

[15] S. Verdoolaege. isl: An integer set library for the
polyhedral model. In K. Fukuda, J. Hoeven,
M. Joswig, and N. Takayama, editors, Mathematical
Software - ICMS 2010, volume 6327 of Lecture Notes
in Computer Science, pages 299–302. Springer, 2010.

[16] S. Verdoolaege and M. Bruynooghe. Algorithms for
weighted counting over parametric polytopes: A
survey and a practical comparison. In M. Beck and
T. Stoll, editors, The 2008 International Conference
on Information Theory and Statistical Learning, July
2008.

[17] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric
polytopes using Barvinok’s rational functions.
Algorithmica, 48(1):37–66, June 2007.

[18] D. K. Wilde. A library for doing polyhedral
operations. International Journal of Parallel,
Emergent and Distributed Systems, 15(3):137–166,
2000.

6

http://www.chunchen.info/omega/

	Introduction
	Syntax
	Basic Operations
	Transitive Closures
	Basic Counting
	Weighted Counting
	Related Work and Conclusion
	References

