
PIPS Is not (just) Polyhedral Software

Mehdi AMINI1,2 Corinne ANCOURT2 Fabien COELHO2

Béatrice CREUSILLET1 Serge GUELTON3,2 François IRIGOIN2

Pierre JOUVELOT2 Ronan KERYELL1,3 Pierre VILLALON1

1HPC Project

2Mines ParisTech/CRI

3Institut TÉLÉCOM/TÉLÉCOM Bretagne/HPCAS

2011/04/03
—

IMPACT 2011

http://hpc-project.com
http://www.cri.mines-paristech.fr
http://hpcas.enstb.org

• I

Some archeology (I)

• In the 70’s vector and parallel machines where the only way to
get top performances

• In the 80’s automatic vectorization and parallelization became a
hot research topic

• 1984: Rémi TRIOLET’s PhD @ Mines ParisTech with Paul
FEAUTRIER on interprocedural parallelization, convex array
regions, polyhedra and linear algebra...

• 1987: François IRIGOIN’s PhD @ Mines ParisTech with Paul
FEAUTRIER on tiling, control code generation

• 1988: PIPS starts as a project to parallelize scientific
applications. Motivation: electrocardiography signal processing
code written in Fortran

• 1991: first PIPS PhD: Corinne ANCOURT (on code generation for
data communication, under well-known WP65 secret project)

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 2 / 42

http://pips4u.org

• I

Some archeology (II)

• Followed a lot of internships, PhDs, post-docs, research
engineers...

• Use very French specialties
I Abstract interpretation to « understand » programs (COUSOT,

HALBWACHS...)
I Linear algebra to represent things in a mathematical way (good

expressiveness, easy to manipulate) (FOURIER...)

• Automatic vectorization and parallelization: overly high
expectations on ; deserted research domains in 90’s–00’s

• Nowadays parallelism here to prevent processors from melting
; parallel programming is just a way to avoid application to run
slower... /

• ; Need parallelism for the masses
• Automatic parallelization is one of the ways to go ,

• Advanced compilation needed anyway

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 3 / 42

http://pips4u.org

• I

PIPS (I)

• PIPS (Interprocedural Parallelizer of Scientific Programs): Open
Source project from Mines ParisTech... 23-year old! ,

• Funded by many people (French DoD, Industry & Research
Departments, University, CEA, IFP, Onera, ANR (French NSF),
European projects, regional research clusters...)

• One of the projects that introduced polytope model-based
compilation

• ≈ 450 KLOC according to David A. Wheeler’s SLOCCount
• ... but modular and sensible approach to pass through the years

I ≈300 phases (parsers, analyzers, transformations, optimizers,
parallelizers, code generators, pretty-printers...) that can be
combined for the right purpose

I Polytope lattice (sparse linear algebra) used for semantics
analysis, transformations, cone-based dependance graph, code
generation... to deal with big programs, not only loop-nests

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 4 / 42

http://pips4u.org

• I

PIPS (II)

I Source-to-source to be more independent of targets (trust good
work from back-end people ,)

I NewGen object description language for language-agnostic
automatic generation of methods, persistence, object introspection,
visitors, accessors, constructors, XML marshaling for interfacing
with external tools...
Cf. presentation @ WIR 2011

I Interprocedural à la make engine to chain the phases as needed.
Lazy construction of resources

I On-going efforts to extend the semantics analysis for C

• Around 15 programmers currently developing in PIPS (Mines
ParisTech, HPC Project, IT SudParis, TÉLÉCOM Bretagne) with
public svn, Trac, git, mailing lists, IRC, Plone, Skype... and use
it for many projects

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 5 / 42

http://pips4u.org

• I

Current PIPS usage

• Automatic parallelization (Par4All C & Fortran to OpenMP)
• Distributed memory computing with OpenMP-to-MPI translation

[STEP project]
• Generic vectorization for SIMD instructions (SSE, VMX, NEON,

CUDA, OpenCL...) (SAC project) [SCALOPES, SMECY]
• Parallelization for embedded systems [SCALOPES, SMECY]
• Compilation for hardware accelerators (Ter@PIX, SPoC, SIMD,

FPGA, SCMP, MPPA...) [FREIA, SCALOPES, SIMILAN]
• High-level hardware accelerators synthesis generation for FPGA

[PHRASE, CoMap]
• Reverse engineering & decompiler (reconstruction from binary to

C)
• Genetic algorithm-based optimization [Luxembourg

university+TB]
• Code instrumentation for performance measures
• GPU with CUDA & OpenCL [TransMedi@, FREIA, OpenGPU,

MediaGPU, SMECY]
�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 6 / 42

http://pips4u.org

•Key use cases I

Outline

1 Key use cases

2 Key PIPS internals

3 Code transformations for heterogeneous computing

4 Conclusion

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 7 / 42

http://pips4u.org

•Key use cases I

Vectorization and parallelization

• Historical application for PIPS (1988–)
I Introduced interprocedural parallelization based on linear algebra

method
I Fortran 77 ; Cray Fortran, CM Fortran, Fortran 90 array syntax,

HPF, OpenMP loops
I Fine grain, corse grain, loop nest...

• Come back with SIMD instruction sets in most recent processors
I SAC (SIMD Architecture Compiler) in PIPS (2003–2011)
I Based on unrolling and SLP extraction instead of direct

vectorization
I Generate source with vector types & intrinsic functions for x86

SSE/AVX, ARM NEON (smart phones, tablets)...
I Useful in GPU too: generate OpenCL & CUDA vector data types

and intrinsics

Cf. Adrien GUINET’s poster @ CGO 2011

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 8 / 42

http://pips4u.org

•Key use cases I

Code and memory distribution

• Work Package 65 from European project (1989–1992)
• Transputer-based parallel computer

I Automatic code parallelization
I Distribution of sequential code
I « Compile » a global shared memory with some nodes running

computations and some other giving memory services
I Introduced

� Code generation by scanning polyhedra
� Code distribution with a linear algebra method

I PVM version too

• More recently, generation of SPMD MPI code from OpenMP
code by using PIPS convex array regions [STEP @ Institut
Télécom SudParis]

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 9 / 42

http://pips4u.org

•Key use cases I

HPF compilation (I)

• Extension of WP65 concepts to HPF compilation (1992–1997)
• HPF = Fortran + Arrays of processors + Affine data-mapping of

arrays
real A(0:24), B(0:24) ! 0 ≤ aA ≤ 24, 0 ≤ aB ≤ 24

!HPF$ template T(0:80) ! 0 ≤ t ≤ 80
!HPF$ processors P(0:3) ! 0 ≤ p ≤ 3
!HPF$ align A(i) with T(3*i) ! aA = 3t
!HPF$ align B(i) with A(i) ! aA = aB
!HPF$ distribute T(cyclic(4)) onto P ! t = 16c + 4p + `

! 0 ≤ ` < 4
A(0:U:3) = A(0:U:3) + B(1:U+1:3) ! i = 3i ′, 0 ≤ i ≤ U

! a = i

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 10 / 42

http://pips4u.org

•Key use cases I

HPF compilation (II)

• Distribute code and data on processors without shared memory

• Generate allocations, local iterations, optimize communications,
remappings and IO

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 11 / 42

http://pips4u.org

•Key use cases I

HPF compilation (III)

• Array distribution:

ownX(p) =
{

a | ∃t ,∃c,∃` : RXt = AXa + tX0
∧ Πt = CXPc + CXp + `X ∧ 0 ≤ a < DX
∧ 0 ≤ p < P ∧ 0 ≤ ` < CX
∧ 0 ≤ t < TX

}
• Local iterations (owner compute rule):

compute(p) = {i | SXi + aX0 ∈ ownX(p)}

• Elements needed by computation:

viewY(p) = {a | ∃i ∈ compute(p) : a = SYi + aY0}

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 12 / 42

http://pips4u.org

•Key use cases I

HPF compilation (IV)

• Send-receive

sendY(p) = {(p′,a) | a ∈ ownY(p) ∩ viewY(p′)}
receiveY(p) = {(p′,a) | a ∈ viewY(p) ∩ ownY(p′)}

• Compact allocation (HERMITE + non-linear transformation)

• Extension to Phénix machine from ETCA/SEH (work with Pierre
FIORINI ; CEO of HPC Project)

• Coming back? Placement directives interesting nowadays to
organize manycore data and computations...

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 13 / 42

http://pips4u.org

•Key use cases I

Compilation for heterogeneous targets

• Providing high level tools: direct compilation of sequential code
• Adaptation of previous techniques

I Generate host and accelerator code from pragma annotated code
(CoMap) (2004–2007)

I Generalize and improve for Ter@pix vector accelerator from
THALES (2008–2011)

I Support of CEA SCMP task oriented data-flow machine (2011)
I Par4All project for GPU and other manycore accelerators (ST

Microelectronics P2012, Kalray MPPA...) (2010–)

• Configurations for the SPoC configurable image pipelined
processor
Cf. Fabien COELHO’s presentation @ ODES 2011

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 14 / 42

http://pips4u.org

•Key use cases I

Program Verification

• Automatic parallelization and abstract interpretation in PIPS:
uses verifiers of mathematical polyhedral proofs

• ; Can also be used
I To extract semantics properties to prove facts about programs
I Array bound checking and provably redundant array bound checks

removing
I On-going more precise linear integer pre- and post-conditions on

programs

Cf. François IRIGOIN presentation @ ACCA 2011

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 15 / 42

http://pips4u.org

•Key use cases I

Program synthesis

• Code generation and memory allocation from application
descriptions in SPEAR-DE from THALES

• Composition of Simulink, Scade, Xcos/Scicos components by
analyzing the C code of components (HPC Project 2010–)

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 16 / 42

http://pips4u.org

•Key use cases I

High-level hardware synthesis

• Generate FPGA configurations from sequential code + pragma
(2002–2004)

• Use Madeo hardware synthesis tool from UBO, SmallTalk as
input language

• Side effect: SmallTalk prettyprinter in PIPS ,

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 17 / 42

http://pips4u.org

•Key use cases I

Decompilation

• Parallelization of binaries?
• Generate raw C-equivalent code with objdump + HPC Project

crude C translator (2008)
• Apply PIPS code restructurer (control graph restructuring, graph

loop recovering...)
• Apply PIPS parallelization

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 18 / 42

http://pips4u.org

•Key PIPS internals I

Outline

1 Key use cases

2 Key PIPS internals

3 Code transformations for heterogeneous computing

4 Conclusion

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 19 / 42

http://pips4u.org

•Key PIPS internals I

General organization

• Compiler & tools: p4a (Par4All), sac (SIMD), terapyps (Ter@pix)
• Pass manager: PyPS, tpips
• PIPSmake consistency manager
• Phases

I Passes: inlining, unrolling, communication generation...
I Analyses: HCFG, DFG, array regions, transformers,

preconditions...
I Prettyprinters: C, Fortran, XML...

• Internal representation
Cf. Fabien COELHO’s presentation @ WIR 2011

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 20 / 42

http://pips4u.org

•Key PIPS internals I

Simple memory effects (I)

• Describe memory operations performed by a given statement
• Proper effects: memory references local to individual statements
• Cumulated effects take into account all effects of compound

statements, including those of their sub-statements
• Summary effects summarize the cumulated effects for a function

and mask effects on local entities

1 // <may be read >: x [∗] y [∗]
// <may be written>: R[∗]

3 // < is read >: M N
i n t corr(i n t N, f l o a t x[N], f l o a t y[N],

5 i n t M, f l o a t R[M]){
// <may be read >: x [∗] y [∗]

7 // <may be written>: R[∗]
// < is read >: M N

9 i f (M<N) {{
// <may be read >: N k x [∗] y [∗]

11 // <may be written>: R[∗]
// < is read >: M

13 // < is written>: k

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 21 / 42

http://pips4u.org

•Key PIPS internals I

Simple memory effects (II)

f o r (i n t k = 0; k <= M-1; k += 1)
15 // <may be read >: x [∗] y [∗]

// <may be written>: R[∗]
17 // < is read >: M N k

R[k] = corr_body(k,N,&x[k],y);
19 }

re turn 1;
21 }

else
23 re turn 0;

}

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 22 / 42

http://pips4u.org

•Key PIPS internals I

Transformers (I)

• Basis for linear relation analysis in PIPS
• Represent relation between the store after an instruction and the

store before in a linear way (mainly for integer variables)

1 // T() {}
2 f l o a t corr_body(i n t k, i n t N, f l o a t x[N], f l o a t y[N]){

// T() {}
4 f l o a t out = 0.;

// T(n) {k+n’==N}
6 i n t n = N-k;

// T(n) {k+n==N,1<=n ’ ,n’<=n,1<=n}
8 while (n>0) {

// T(n) {n’==n−1,k+1<=N,0<=n’}
10 n = n-1;

// T() {k+1<=N,0<=n}
12 out += x[n]*y[n]/N;

}
14 // T() {k+n<=N,n<=0}

re turn out;
16 }

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 23 / 42

http://pips4u.org

•Key PIPS internals I

Transformers (II)

Can be used by forloop_recover transformation:
1 f l o a t corr_body(i n t k, i n t N, f l o a t x[N], f l o a t y[N]){
2 f l o a t out = 0.;

i n t n = N-k;
4

f o r (i n t n0 = n; n0 >= 1; n0 += -1) {
6 n = n0 -1;

out += x[n]*y[n]/N;
8 }

re turn out;
10 }

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 24 / 42

http://pips4u.org

•Key PIPS internals I

Preconditions (I)

• Affine predicates over scalar variables
• Computed by combination of transformers
• Interprocedural analysis
• Used in many phases (partial evaluation, dead code

elimination...)

1 // P() {k+2<=N,0<=k}
2 f l o a t corr_body(i n t k, i n t N, f l o a t x[N], f l o a t y[N]){

// P() {k+2<=N,0<=k}
4 f l o a t out = 0.;

// P() {k+2<=N,0<=k}
6 i n t n = N-k;

// P(n) {k+n==N, k+2<=N,0<=k}
8 while (n>0) {

// P(n) {k+2<=N, k+n<=N,0<=k,1<=n}
10 n = n-1;

// P(n) {k+2<=N, k+n+1<=N,0<=k,0<=n}
12 out += x[n]*y[n]/N;

}
14 // P(n) {n==0,k+2<=N,0<=k}

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 25 / 42

http://pips4u.org

•Key PIPS internals I

Preconditions (II)

re turn out;
16 }

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 26 / 42

http://pips4u.org

•Key PIPS internals I

Convex array regions (I)

• Abstract with with affine equalities and inequalities set of array
elements accessed by statement

• Many different model of regions: read/write/in (needed)/out
(useful after)/...

1 // <R[PHI1]−W−MAY−{0<=PHI1,PHI1+1<=M,M+1<=N}>
2 // <x [PHI1]−R−MAY−{0<=PHI1,PHI1+1<=N,1<=M,M+1<=N}>

// <y [PHI1]−R−MAY−{0<=PHI1,PHI1+1<=N,1<=M,M+1<=N}>
4 i n t corr(i n t N, f l o a t x[N], f l o a t y[N],

i n t M, f l o a t R[M]){
6 // <R[PHI1]−W−MAY−{0<=PHI1,PHI1+1<=M,M+1<=N}>

// <x [PHI1]−R−MAY−{0<=PHI1,PHI1+1<=N,1<=M,M+1<=N}>
8 // <y [PHI1]−R−MAY−{0<=PHI1,PHI1+1<=N,1<=M,M+1<=N}>

i f (M<N) {{
10 // <R[PHI1]−W−EXACT−{0<=PHI1,PHI1+1<=M,M+1<=N}>

// <x [PHI1]−R−EXACT−{0<=PHI1,PHI1+1<=N,1<=M,M+1<=N}>
12 // <y [PHI1]−R−EXACT−{0<=PHI1,PHI1+1<=N,1<=M,M+1<=N}>

f o r (i n t k = 0; k <= M-1; k += 1)
14 // <R[PHI1]−W−EXACT−{PHI1==k,0<=k , k+1<=M,M+1<=N}>

// <x [PHI1]−R−EXACT−{k<=PHI1,PHI1+1<=N,0<=k , k+1<=M,M+1<=N}>
16 // <y [PHI1]−R−EXACT−{0<=PHI1,PHI1+k+1<=N,0<=k , k+1<=M,M+1<=N}>

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 27 / 42

http://pips4u.org

•Key PIPS internals I

Convex array regions (II)

kernel(M,N,k,R,x,y);
18 }

re turn 1;
20 }

else
22 re turn 0;

}

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 28 / 42

http://pips4u.org

•Key PIPS internals I

Linear algebra for analyses and transformations

• PIPS analyses based on the C3 linear algebra library
• Mainly developed at MINES ParisTech from the 80’s
• Integer vectors, matrix, polynomial...
• Mathematical operations, HERMITE’s normal form, SMITH’s

normal form, sorting, simplex...
• ; implementation of all the PIPS polyhedral and linear analyses

and transformations (unimodular transformations...)
• In real code, large number of variables including global variables

that are mostly not related
; Use a sparse representation of constraints: reduce memory
storage

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 29 / 42

http://pips4u.org

•Key PIPS internals I

Consistency and persistence manager

• Many passes and resources in PIPS...
• Difficult to have always up-to-date informations
• Consistency manager using an à la make description of

dependence relations between resources though passes or
analyses

• Lazy construction of resources to produce goal asked by user
• Deal with interprocedural analysis
• A persistance manager allows to stop and resume PIPS later

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 30 / 42

http://pips4u.org

•Key PIPS internals I

Pass manager

• PIPS is a source-to-source tool box
• ...but how to use them?
• Simple tpips shell like
• New Python-based PyPS

I Modules, loops and compilation units are exposed as first-class
entities

I Introspection
I Base of Par4All

Cf. PIPS tutorial @ CGO 2011

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 31 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

Outline

1 Key use cases

2 Key PIPS internals

3 Code transformations for heterogeneous computing

4 Conclusion

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 32 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

Computation intensity estimation

• Offloading a loop on accelerator or not?
• Relevant only if the data transfer vs. computational intensity

trade-off is interesting
• Execution time estimation given by complexity analysis
• Memory size estimated by region analysis as a polynomial in the

program variables

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 33 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

Outlining

• Off-loading to accelerator...
• Use load work store idiom
• Extract work into new functions to be executed on accelerator
• Use summary effects to build formal parameters
• Use privatization analysis to filter out variables with local use only

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 34 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

Statement Isolation

• Isolate all data accessed by a statement in newly allocated
memory areas: simulate the remote memory

• Use convex array regions to generate the data copy between the
remote and local memories

• DMA can often only transfer efficiently rectangular areas:
over-estimate regions using their rectangular hull

• read regions are translated into a sequence of
host-to-accelerator data transfers

• written regions are converted into accelerator-to-host data
transfers

Cf. PIPS tutorial @ CGO 2011

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 35 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

Rectangular symbolic tiling and memory footprint

• Array regions estimate memory needed for a computation
• If it exceeds accelerator memory size, cannot run in 1 pass
• Use some tiling, but depends of memory needed
• ; Perform symbolic tiling
• Compute memory footprint according to tiling parameters ; new

inequalities
• If not possible to decide at compile time, postpone at run time

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 36 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

From preconditions to iteration clamping (I)

• Parallel loop nests are compiled into a CUDA kernel wrapper
launch

• The kernel wrapper itself gets its virtual processor index with
some blockIdx.x*blockDim.x + threadIdx.x

• Since only full blocks of threads are executed, if the number of
iterations in a given dimension is not a multiple of the blockDim,
there are incomplete blocks /

• An incomplete block means that some index overrun occurs if all
the threads of the block are executed

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 37 / 42

http://pips4u.org

•Code transformations for heterogeneous computing I

From preconditions to iteration clamping (II)

• So we need to generate code such as
1 void p4a_kernel_wrapper_0(i n t k, i n t l,...)
2 {

k = blockIdx.x*blockDim.x + threadIdx.x;
4 l = blockIdx.y*blockDim.y + threadIdx.y;

i f (k >= 0 && k <= M - 1 && l >= 0 && l <= M - 1)
6 kernel(k, l, ...);

}

• Guard ≡ directly translation in C of preconditions on loop indices
that are GPU thread indices

1 // P(i , j , k , l) {0<=k , k<=63, 0<=l , l<=63}

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 38 / 42

http://pips4u.org

•Conclusion I

Outline

1 Key use cases

2 Key PIPS internals

3 Code transformations for heterogeneous computing

4 Conclusion

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 39 / 42

http://pips4u.org

•Conclusion I

Conclusion (I)

• Manycores & GPU: impressive peak performances and memory
bandwidth, power efficient

• Future will be heterogeneous
• ; Programming tools will be heterogeneous too: association of

different tools specialized in different domains
• Future challenge: composing tools to make robust compilers
• PIPS uses polyhedral abstractions at high-level with

approximations
I Prefer to deal with whole programs rather than optimal method on

small parts (work done in a Mining school, not École Normale
Supérieure ,)

I Good to prepare work for other more specialized and precise tools
I On-going interfacing with PoCC in OpenGPU project

• Source-to-source
I Avoid sticking to much or architectures

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 40 / 42

http://pips4u.org

•Conclusion I

Conclusion (II)

I But can also capture architectural details
I Source is a great way to interface 6= tools!

• Extensions in Python with more abstractions and dynamicity

• Basis of Par4All tool to provide end-user tools

• Open Source for community network effect

• More information this afternoon on PIPS and Par4All during the
tutorial

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 41 / 42

http://pips4u.org

•Conclusion I

Questions?

Historical disclaimer
I’m related to this project for only 19 years, so I ignore many details
from the beginning but some colleagues in the audience can answer
,

Completeness disclaimer

• There are too many things in PIPS and nobody knows about all
of them anyway ,

• Not enough things has been published on PIPS /

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 42 / 42

http://pips4u.org

•Table of content I

Some archeology 2
PIPS 4
Current PIPS usage 6

1 Key use cases
Outline 7
Vectorization and parallelization 8
Code and memory distribution 9
HPF compilation 10
Compilation for heterogeneous targets 14
Program Verification 15
Program synthesis 16
High-level hardware synthesis 17
Decompilation 18

2 Key PIPS internals
Outline 19
General organization 20
Simple memory effects 21

Transformers 23
Preconditions 25
Convex array regions 27
Linear algebra for analyses and transformations 29
Consistency and persistence manager 30
Pass manager 31

3 Code transformations for heterogeneous computing
Outline 32
Computation intensity estimation 33
Outlining 34
Statement Isolation 35
Rectangular symbolic tiling and memory footprint 36
From preconditions to iteration clamping 37

4 Conclusion
Outline 39
Conclusion 40
Questions? 42
You are here! 43

�PIPS Is not (just) Polyhedral Software

IMPACT 2011 — 2011/04/03 Ronan KERYELL et al. 42 / 42

http://pips4u.org

	Key use cases
	Key PIPS internals
	Code transformations for heterogeneous computing
	Conclusion

