
Optimizing DDR-SDRAM Communications at C-level

for Automatically-Generated Hardware Accelerators

An Experience With the Altera C2H HLS Tool

Christophe Alias, Alain Darte, and Alexandru Plesco

LIP, UMR 5668 CNRS—ENS Lyon—UCB Lyon—Inria, France

Firstname.Lastname@ens-lyon.fr

Abstract—Thanks to efficient scheduling, resource sharing,
and finite-state machines generation, high-level synthesis (HLS)
tools are now more mature for generating hardware accelera-
tors with an optimized internal structure. But interfacing them
within the complete design, with optimized communications,
to achieve the best throughput remains hard. Expert designers
still need to program all the necessary glue (in VHDL/Verilog)
to get an efficient design. Taking the example of C2H, the Altera
HLS tool, and of accelerators communicating to an external DDR
memory, we show it is possible to restructure the application
code, to generate adequate communication processes, in C, and
to compile them all with C2H, so that the resulting application
is highly-optimized, with full usage of the memory bandwidth.
In other words, our study demonstrates that HLS tools can
be used as back-end optimizers for front-end optimizations,
as it is the case for standard compilation with high-level
transformations developed on top of assembly-code optimizers.
We believe this is the way to go for making HLS tools viable.

Keywords-High-level synthesis tools, hardware accelerators,
DDR SDRAM, optimized communications, program transfor-
mations, reconfigurable architectures, FPGA.

I. I  

High-level synthesis is a necessity mainly because the

exponential increase in the number of gates per chip far

outstrips the productivity of human designers. Besides, ap-

plications that need hardware accelerators usually belong to

domains, where fast turn-around and time-to-market min-

imization are paramount. VHDL (or Verilog) experts can

make a direct use of low-level synthesis tools, by program-

ming at structural or register-transfer level (RTL). But, at

this level, it is hard to perform high-level code optimizations,

especially on multi-dimensional loops and arrays, which are

important to exploit parallelism, pipelining, and to optimize

memory transfers and organization. In the last decade, the

generation of VHDL from higher-level specifications has

been considered, in particular from C-like descriptions, with

the introduction of extensions of (subsets of) C or languages

such as Handel-C, and the developments of HLS tools, both

in academia (e.g., Spark, Gaut, Ugh, Nisc, MMAlpha) and

in industry (e.g., C2H, CatapultC, Impulse-C, PicoExpress).

These tools are now quite efficient for generating finite-

state machines, for exploiting instruction-level parallelism,

operator selection, resource sharing, and even for performing

some form of software pipelining. However, this is only

part of the complete design. In general, the designer seeks

a pipelined solution with optimal throughput, where the

mediums for data accesses (either to local memory or

for outside communications) are saturated, i.e., a solution

where bandwidth is the limiting factor. An HLS tool can

be used to optimize the heart (the “compute” part) of the

accelerator so that data are consumed and produced at the

highest possible rate. But, in general, the designer has still

to decompose the application into smaller communicating

processes, to define the adequate memory organization or

communicating buffers, and to integrate all processes in one

complete design with suitable synchronization mechanisms.

This task is extremely difficult, time-consuming, and error-

prone. Some designers even believe that relying on HLS

tools to get the adequate design is just impossible and

they prefer to program directly in VHDL. Indeed, some

HLS tools do not consider the interface with the outside

world at all: data are assumed to be given on input ports,

available for each clock cycle, possibly with a timing di-

agram to be respected. Then, the designer has to program

the necessary glue (explicit communications, scheduling of

communications, synchronizations) in VHDL or with ad-hoc

libraries [1] [2, Chap. 9]. Some tools (e.g., Ugh, CatapultC)

can rely on FIFO-based communication but the designer still

needs to define the FIFO sizes, the number of data packed

together in a FIFO slot (to provide more parallelism), and to

prefetch data to hide memory latencies. Finally, some tools,

such as C2H, allow direct accesses to an external memory

and is (sometimes) able to pipeline them. But, again, the

designer has to perform preliminary code transformations to

change the computations order and the memory organization

to hide the latency and exploit the maximal bandwidth.

This paper aims to demonstrate that such transformations,

in front of HLS tools, are needed and can be automated.

We believe it is a sine qua non condition for HLS tools to

be a usable thus viable solution to hardware design, in the

same way a traditional front-end compiler performs high-

level optimizations on top of an assembly-code optimizer.

The challenge is to be able to perform optimizations at C

level that are directly beneficial when used in front of an

HLS tool, with no modification of the tool itself. Our study is

done with the C2H Altera tool, for accelerators with external

accesses to a DDR-SDRAM memory (DDR for short), always

keeping in mind that any code transformation we perform

can be automated. Our contributions are the following:

1) We analyze C2H and we identify the features that make

DDR optimizations feasible or hard to perform.

2) We propose a technique based on tiling, the generation



of communicating processes, and of software pipelining

that can lead to fully-optimized DDR accesses.

3) We show how our scheme can be automated, with stan-

dard techniques from high-performance compilation.

II. C2H  

One of the reasons why we chose C2H is that it relies on a

quite direct mechanism to map the C syntax elements to the

corresponding hardware, e.g., encoding a loop with a simple

finite-state machine (FSM) instead of unrolling it, mapping

each scalar variable to a register and each array to a distinct

local memory, etc. This may seem a limitation but, at the

same time, it gives a mean to control what the HLS tool

produces, which is particularly important when used with

source-to-source preprocessing, as we do. This requirement

for predictability and control is also the basis of Ugh [2,

Chap. 10], where each scalar variable is register-allocated at

C level, by the user, to guide the hardware generation.

C2H [3] creates a custom hardware accelerator, described

by a C function, offloading the Nios II processor. Most C

constructs (pointers, structures, loops, subfunction calls) are

supported. Integrated in the development flow of Altera

FPGAs (with Quartus II, SOPC Builder, Nios II IDE),

the accelerator can communicate, not only through FIFOs,

but also using memory mapped address space connection.

This eliminates the need for the hardware interface designer

to integrate the accelerator in the whole system as required

for many HLS tools [2]. The communication interface also

supports pipelined memory accesses, a mandatory optimiza-

tion to achieve good performances, which are, in general,

limited by external data transfer bandwidth and rate, not by

a lack of parallelism within the function to be accelerated.

The accelerator is controlled by several synchronized

FSMs, one for each function or loop. Each loop is software-

pipelined to optimize its CPLI (cycles per loop iteration).

Memory transactions are pipelined with an optimistic latency

(the FSM stalls if the data arrives later) and implicit FIFOs

are created to store transferred data. If a loop contains

another loop, the FSM of the outer loop stalls at the cycle

containing the inner loop and waits for its end. With this

hierarchical principle, each time the accelerator enters a loop

involving communications, a latency penalty is incurred as

the loop pipeline needs to be restarted (see Fig. 1 for 2 nested

loops). For example, with C2H, the inner loop of a simple

matrix-matrix product can be optimized to have CPLI 1 but,

then, a latency of 43 cycles is paid for each iteration of the

outer loop, due to the long pipeline involved to access data.

for (i=0;i<n;i++)

{

/*computation*/

}

............

for (j=0;j<n;j++)

j loop

time

i loop
latency

p
ip

el
in

e

DDR

first request

first data
received

Figure 1. Latency penalty for an outer loop

/RAS

/CAS

/WE

DQ

ACTIVATE

a(i) a(i+k)

PRECHARGE READ PRECHARGE READ

ACTIVATE

b(i) b(i+k)

store c(i) ... c(i+k)

PRECHARGE

ACTIVATE

WRITE

c(i) c(i+k)

load a(i) ... a(i+k) load b(i) ... b(i+k)

block size

Figure 2. Accesses for optimized vector sum

Unlike PicoExpress, which relies on the Omega Library

(see [2, Chap. 4]), dependence analysis in C2H is limited to

an analysis of “names”, with no analysis of array elements.

Some potential aliasing can be removed, thanks to the

pragma restrict but, still, this weakness is a real diffi-

culty for source-to-source transformations. Other pragmas

can be used to specify the connections of the generated

communication ports and how many successive transfers

can be performed without requiring to rearbitrate (pragma

arbitration share). See [3] and the longer version of

this paper [4] for details on C2H features and limitations.

III. O DDR 

We target a particular class of accelerators: those working

on a large data set that cannot be entirely stored in local

memory, but need to be transferred from a DDR at the highest

possible rate, and possibly stored temporarily locally. The

maximum throughput for accesses to a DDR (see the JEDEC

specification) is when the state changes in the FSM of its

controller are reduced. In particular, in our study (DDR-400

128Mbx8, size 16MB, CAS 3 at 200MHz), a read is at least

6.5 times faster if it does not imply a change of row.

Consider the example of the sum of two (long) vectors:
int vector_sum (int* __restrict__ a, int* __restrict__ b,

int* __restrict__ c, int n) {

int i;

for (i=0; i<n; i++) c[i] = a[i] + b[i];

return 0;

}

In software, a cache imposes a data burst transfer of the

cache line size, even though data are accessed one by one.

Hardware accelerators usually do not have a cache, because

of its high price compared to SRAM memory and because of

the regularity of the accelerated algorithms. In this example,

if a, b, and c are much larger than the DDR row size then most

accesses belong to different rows, resulting in an important

performance penalty. Thus, we seek transfers with as many

successive reads to the same row as possible (same for

writes), in particular communications by blocks, to obtain

the time diagram of Fig. 2, with an optimized DDR usage.

IV. A    

The previous sections identified two important reasons for

performance loss. The row change penalty, due to consecu-

tive accesses in different DDR rows, can occur in inner loops

with a direct impact on the accelerator throughput. The data

fetch penalty, due to nested loops with DDR accesses, occurs

less often (not for inner loops, unless not pipelined), but with

a higher penalty. To get better performances, the code must

be restructured so that: a) arrays are accessed by blocks of

the same DDR row; b) the accesses re-organization should



not increase the CPLI of computations; c) nested loops with

remote accesses should be avoided to not pay data fetch

latencies; d) all necessary house-keeping should be written in

C and synthesized with C2H. For that, a local memory may

be used to store data that cannot be consumed immediately.

To get accesses per block, a natural solution is to use

strip-mining and loop distribution as follows:

for (i=0; i<MAX; i=i+BLOCK) {

for(j=0; j<BLOCK; j++) a_tmp[j] = a_in[i+j];//prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b_in[i+j];//prefetch

for(j=0; j<BLOCK; j++) c_out[i+j] = a_tmp[j] + b_tmp[j];

}

C2H schedules the 2 independent prefetch loops in parallel,

thus requests of a and b are still interleaved (which is

bad). With arbitration share, this interleaving can be

avoided but only for a limited block size. However, data

fetch penalties are paid for each iteration of the i loop. A

possibility is to unroll the inner loops and to store each data

read in a different scalar variable. With some luck, the data

may be fetched by the scheduler in the textual order of the

requests. The downside is the code explosion and hence the

resource need explosion. Also, it requires a non parametric

unrolling factor. A more involved solution, similar to the

juggling technique [5], is to linearize the 3 inner loops

into one loop, emulating the desired behavior thanks to an

automaton that retrieves the original indices. We tried many

variants to implement this technique at source level (see [4]),

with different pointers, different writing, trying to enforce

dependences when needed and to remove false dependences

with restrict. We did not find any satisfactory solution.

Either the code is potentially incorrect, depending on the

schedule, or its CPLI increases, or it is not pipelined at all.

These considerations pushed us towards a more involved

solution with several communicating accelerators (see the

template architecture in Fig. 3). The data required for a given

block of computations are transferred in the order desired for

optimizing DDR accesses using a double buffering approach

implemented by two accelerators BUFF0_LD and BUFF1_LD.

This allows the use of single-port local memories, usually

preferred over dual port ones. Also, with two accelerators,

the data transfer of one can hide the data fetch penalty of

the other one. The generated accelerators are represented

as bold rounded rectangles, local memories as normal bold

ST0_ST1

C01_ST1C01_ST0

BUFF1_ST0

ST1_BUFF0

BUFF0_BUFF1

BUFF01_C01

BUFF0

ST0

BUFF1

ST1

COMP 0/1

STORE0

BUFF0_LD BUFF1_LD

STORE1

Figure 3. Accelerators module architecture

D
A

T
A

 R
E

C
E

IV
E

D
D

R
R

E
Q

U
E

S
T

pipeline depth for (t=0; t<iter_space; t+=db_iter) {
dummy_read += *st1_buff0_read;
for(r=0, tmp=dummy_read; r<r_sup; r++) {

if (s==0) {
compute local and global addresses for array a
and scan the iteration space of array a;
if end of iteration space: s++;

} else if (s==1) { same as s==0 for array b; }
transfer data from DDR to local memory;
if (r == r_sup −1) {*buff0_buff1_write = 0; tmp = 0; }

} 

}

*buff0_c01_write = tmp;
external linearized loop control; 

time

Figure 4. Simplified generic template C code

rectangles, and the rest are FIFOs. In this design, FIFOs

are used only for synchronization. The arrays on which the

computations are performed are located in local memories.

Fig. 4 shows the template code of the BUFF0_LD acceler-

ator for a situation similar to the vector sum example. The

code has two nested loops. The outer loop iterates over the

blocks (tiles), here each tile is a block of array a, followed by

a block of b. The inner loop uses a juggling-like strategy to

emulate the traversal of the read requests, in the right order.

After the desired local and external addresses are computed,

the data is transferred from external to local memory. As the

code has only reads, it can be fully pipelined with CPLI 1.

The same is true for the writing accelerators. The key point

is how this accelerator is synchronized, at C level, with the

others. Before each inner loop invocation, the accelerator

performs a blocking read from a synchronization FIFO. We

guarantee that the inner loop starts after this synchronization

with the dependence on the variable dummy_read. At the

last inner loop iteration, the accelerator has finished sending

requests to memory: a synchronization token is sent so

that another accelerator can start requesting data from the

memory controller. When the inner loop FSM receives

all requested data, a synchronization token is sent to the

computation accelerator. As for dummy_read, the variable

tmp guarantees this synchronization occurs after the loop.

With this generic technique, it is possible to fetch, in an

optimized blocked manner, many blocks of different sizes,

each with its individual access addresses, without increasing

the hardware resources too much (the only increase is the

state machine size of the inner loop). Another advantage

is that we can dispatch one or multiple arrays to multiple

memories. This should be used jointly with optimizations

of the computation accelerator so that parallel computations

can be performed on data from different local memories.

Fig. 5 shows a possible synchronization of the whole

system, with two kinds of synchronizations, due to data

dependencies (e.g., from BUFF0_LD to COMP0) and due to

resource utilization (e.g., from BUFF0_LD to BUFF1_LD).

Here, the DDR transfers are still not optimal: there is a small

gap between the load and the store, due to the conservative

synchronization between BUFF1_LD and STORE0. We indeed

assumed here, for the sake of illustration, that STORE0

may write to the location that BUFF0_LD reads. A generic

solution is given in [4], formulating the problem as a coarse-

grain software pipelining at block level, considering each



BUFF0_LD(t)

BUFF1_LD(t)

DDR’

DDR

STORE1(t)

STORE0(t)

STORE0(t−1)

STORE1(t−1)

time

p
ip

el
in

e 
le

v
el

COMP0(t) COMP1(t)

Figure 5. Synchronization diagram

accelerator as a (cyclic) macro-task that reads or writes (local

and external) memories, in a common outer block loop to

be pipelined. As in Fig. 3, the different tasks synchronize

each other, at the block boundary, using blocking FIFOs

of size 1, each acting as a token. These synchronizations,

all together, enforce a particular pipelined execution of the

blocks computed by the accelerators, similar to Fig. 5.

V. F :  

We focused on optimizing DDR transfers for a hardware

accelerator, automatically-generated from a C description.

Our study demonstrates that such an optimization is possible

with high-level transformations, fully developed in C, on top

of a HLS tool (in our case, Altera C2H), without modifying

it. We proposed a generic solution, based on communicating

accelerators, themselves compiled from C with the same

HLS tool, in a form of meta-compilation. Fig. 6 is typical of

the results we obtain for different block sizes (here, for the

vector sum synthesized on Altera Stratix II EP2S180F1508C3,

for vectors of size 16K): a small initial degradation due to

the extra FIFO management, an increasing speed-up as the

row change penalty becomes less frequent, and a plateau

once the block size gets close to the DDR row size.

The generic solution of Section IV was designed to be

automated. The synchronized communicating accelerators

define a kind of run-time system, described at C level

and compiled by C2H itself, on top of which high-level

transformations are made to re-organize the code and fill

the communication and computation templates with the

 0

 1

 2

 3

 4

 5

 6

 7

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p
e
e
d
-u

p

Block size

row size

LC ALUTs Registers Memory Bits Freq. Max

Original (whole system) 4912 4517 68956 160 MHz

Optimized (whole system) 14110 14783 269148 139,04 MHz

Original (kernel alone) 564 1228 2048 307 MHz

Optimized (kernel alone) 1143 1603 1024 285 MHz

Figure 6. Speedups and resource usage

adequate codes. This automation requires both program anal-

ysis and code transformations, in particular optimizations

based on polyhedral techniques, that were developed in the

context of high-performance computing. We list here the

main necessary steps. See more details and references in [4].

Loop tiling divides the kernel into blocks of computations

to be executed with a double buffering scheme (additional

loop unrolling by 2). Communication coalescing identifies,

for a given tile, the set of data to be exchanged with the DDR,

which is scanned, preferably row by row. Array contration

defines a mapping function to convert indices of the global

array (in the DDR) to local indices of a smaller array in

which the transferred data are stored. Finally, nested loops

linearization is used to avoid any data fetch penalty.

Considering high-level loop transformations to improve

the performance and memory usage of hardware accelerators

is not new [6]–[8]. However, so far, such transformations

were either plugged in a HLS tool or required the develop-

ment of special hardware structures, designed by hand, for

optimizing transfers [9], [10]. We believe such our study is a

necessary step to be able to consider HLS tools as back-end

optimizers for source-to-source optimizers.

R

[1] A. Fraboulet and T. Risset, “Master interface for on-chip
hardware accelerator burst communications,” Journal of VLSI
Signal Processing, vol. 2, no. 1, pp. 73–85, 2007.

[2] P. Coussy and A. Morawiec, High-Level Synthesis: From
Algorithm to Digital Circuit. Springer, 2008.

[3] “Altera C2H: Nios II C-to-hardware acceleration compiler,”
http://www.altera.com/products/ip/processors/nios2/tools/
c2h/ni2-c2h.html.

[4] C. Alias, A. Darte, and A. Plesco, “Optimizing DDR-SDRAM
communications at C-level for automatically-generated hard-
ware accelerators,” INRIA, Research Report 7281, May 2010.

[5] A. Darte, R. Schreiber, B. R. Rau, and F. Vivien, “Con-
structing and exploiting linear schedules with prescribed
parallelism,” ACM TODAES, vol. 7, no. 1, pp. 159–172, 2002.

[6] P. R. Panda, N. D. Dutt, and A. Nicolau, “Exploiting off-chip
memory access modes in high-level synthesis,” in IEEE/ACM
Computer-Aided Design (ICCAD’97), 1997, pp. 333–340.

[7] A. Plesco and T. Risset, “Coupling loop transformations
and high-level synthesis,” in SYMPosium en Architectures
nouvelles de machines (SYMPA’08), Fribourg, Switz., 2008.

[8] H. Devos, J. Van Campenhout, and D. Stroobandt, “Build-
ing an application-specific memory hierarchy on FPGA,” in
HiPEAC Workshop on Reconfig. Computing, 2008, pp. 53–62.

[9] J. Park and P. Diniz, “Synthesis of pipelined memory access
controllers for streamed data applications on FPGA-based
computing engines,” in ACM ISSS’01, 2001, pp. 221–226.

[10] G. Stitt, G. Chaudhari, and J. Coole, “Traversal caches: A
first step towards FPGA acceleration of pointer-based data
structures,” in ACM/IEEE CODES-ISSS’08, 2008, pp. 61–66.


