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Abstract. Recent increase in the complexity of the circuits has brought
high-level synthesis tools as a must in the digital circuit design. However,
these tools come with several limitations, and one of them is the efficient
use of pipelined arithmetic operators. This paper explains how to gener-
ate efficient hardware with floating-point pipelined operators for regular
codes with perfect loop nests. The part to be mapped to the operator is
identified, then the program is scheduled so that each intermediate result
is produced exactly at the time it is needed by the operator, avoiding
pipeline stalling and temporary buffers. Finally, we show how to gener-
ate the VHDL code for the control unit and how to link it with special-
ized pipelined floating-point operators generated using the open-source
FloPoCo tool. The method has been implemented in the Bee research
compiler and experimental results on DSP kernels show promising results
with a minimum of 94% efficient utilization of the pipelined operators
for a complex kernel.

1 Introduction

Application development tends to pack more features per product. In order to
cope with competition, added features usually employ complex algorithms, mak-
ing full use of existing processing power. When application performance is poor,
one may envision accelerating the whole application or a computationally de-
manding kernel using the following solutions: (1) multi-core general purpose
processor (GPP): may not accelerate non-standard computations (exponential,
logarithm, square-root) (2) application-specific integrated circuit (ASIC): the
price tag is often too big, (3) Field Programmable Gate Array (FPGA): provide
a balance between the performance of ASIC and the costs of GPP.

FPGAs have a potential speedup over microprocessor systems that can go
beyond two orders of magnitude, depending on the application. Usually, such ac-
celerations are believed to be obtained only using low-level languages as VHDL
or Verilog, exploiting the specificity of the deployment FPGA. However, design-
ing entire systems using these languages is tedious and error-prone.

In order to address the productivity issue, much research has focused on high-
level synthesis (HLS) tools [25, 2, 10, 1, 7], which input the system description in
higher level language, such as C programming language (C). Unfortunately, so



far none of these tools come close to the speedups obtained by manual design.
Moreover, these tools have important data type limitations.

In order to take advantage of the hardware carry-chains (for performing fast
additions) and of the Digital Signal Processing (DSP) blocks (for performing
fast multiplications) available in modern FPGAs, most HLS tools use fixed-point
data types for which the operations are implemented using integer arithmetic.
Adapting the fixed-point format of the computations along the datapath is possi-
ble, but requires as much expertise as expressing the computational kernel using
VHDL or Verilog for a usually lower performance kernel. Keeping the same
fixed-point format for all computations is also possible, but in this case either
the design will overflow/underflow if the format is too small, either will largely
overestimate the optimal circuit size when choosing a large-enough format.

For applications manipulating data having a wide dynamic range, HLS tools
supporting standard floating-point precisions [10], or even custom precisions can
be used [1]. Floating-point operators are more complex than their fixed-point
counterparts. Their pipeline depth may count tens of cycles for the same fre-
quency for which the equivalent fixed-point operator require just one cycle. Cur-
rent HLS tools make use the pipelined FP operators cores in a similar fashion
as for combinatorial operators, but employing stalling whenever feedback loops
exists. This severely affects performance.

In this paper, we describe an automatic approach for synthesizing a specific
but wide class of applications into fast FPGA designs. This approach accounts for
the pipeline depth of the operator and uses state of the art code transformation
techniques for scheduling computations in order to avoid pipeline stalling. We
present here two classic examples: matrix multiplication and the Jacobi 1D re-
laxation for which we describe the computational kernels, code transformations
and provide synthesis results. For these applications, simulation results show
that our scheduling is within 5% of the best theoretical pipeline utilization.

The rest of this paper is organized as follows. Section 2 presents related ap-
proaches and their limitations. Section 3 presents FloPoCo, the tool used to
generate efficient floating-point pipelined operators. Then, Section 4 shows how
to compile a kernel written in C into efficient hardware with pipelined operators.
For this, Subsection 4.2 studies two important running examples. Then, Subsec-
tions 4.3 and 4.4 provide a formal description of our method. Section 5 provides
experimental results on the running examples. Finally, Section 6 concludes and
presents research perspectives.

2 Related Work

In the last years, important advances have been made in the generation of com-
putational accelerators from higher-level of abstraction languages. Many of these
languages are limited to C-like subsets with additional extensions. The more re-
strictive the subset is, the more limited is the number of applications.

For example, Spark [22] can only synthesize integer datatypes, and is thus
restricted to a very narrow application class.



Tools like Gaut [25], Impulse-C [2], Synphony [7] require the user to convert
the floating-foint (FP) specification into a user-defined fixed-point format. Other,
like Mentor Graphics’ CatapultC [5], claim that this conversion is done automat-
ically. Either way, without additional knowledge on the ranges of processed data,
the determined fixed-point formats are just estimations. Spikes in the input data
can cause overflows which invalidate large volumes of computations.

In order to workaround the known weaknesses of fixed-point arithmetic, Au-
toPilot [10] and Cynthesizer [1] (in SystemC) can synthesize FP datatypes by
instantiating FP cores within the hardware accelerator. AutoPilot can instan-
tiate IEEE-754 Single Precision (SP) and Double Precision (DP) standard FP
operators. Cynthesizer can instantiate custom precision FP cores, parametrized
by exponent and fraction width. Moreover, the user has control over the number
of pipeline stages of the operators, having an indirect knob on the design fre-
quency. Using these pipelined operators requires careful scheduling techniques
in order to (1) ensure correct computations (2) prevent stalling the pipeline
for some data dependencies. For algorithms with no data dependencies between
iterations, it is indeed possible to schedule one operation per cycle, and after
an initial pipeline latency, the arithmetic operators will output one result every
cycle. For other algorithms, these tools manage to ensure (1) at the expense
of (2). For example, in the case of algorithms having inter-iteration dependen-
cies, the scheduler will stall successive iterations for a number of cycles equal
to the pipeline latency of the operator. As said before, complex computational
functions, especially FP, can have tens and even hundreds of pipeline stages,
therefore significantly reducing circuit performance.

In order to address the inefficiencies of these tools regarding synthesis of
pipelined (fixed or FP) circuits, we present an automation tool chain imple-
mented in the Bee research compiler [8], and which uses FloPoCo [17], an
open-source tool for FPGA-specific arithmetic-core generation, and advanced
code transformation techniques for finding scheduling which eliminates pipeline
stalling, therefore maximizing throughput.

3 FloPoCo - a tool for generating computational kernels

Two of the main factors defining the quality of an arithmetic operator on FPGAs
are its frequency and its size. The frequency is determined by the length of the
critical path – largest combinatorial delay between two register levels. Faster
circuits can be obtained by iteratively inserting register levels in order to reduce
the critical path delay. Consequently, there is a strong connection between the
circuit frequency and its size.

Unlike other core generators [3, 4], FloPoCo takes the target frequency f as
a parameter. As a consequence, complex designs can easily be assembled from
subcomponents generated for frequency f . In addition, the FloPoCo operators
are also optimized for several target FPGAs (most chips from Altera and Xilinx),
making it easy to retarget even complex designs to new FPGAs.
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However, FloPoCo is more than a generator of frequency-optimized standard
FP operators. It also provides:

– operators allowing custom precisions. In a microprocessor, if one needs a pre-
cision of 10bits for some computation it makes sense using single-precision (8-
bit exponent, 23-bit fraction) for this computation. In an FPGA one should
use custom operators (10-bit fraction), yielding smaller operators and there-
fore being able to pack more in parallel.

– specialized operators, as: squarers, faithful multipliers1, FPGA-specific FP
accumulators [19].

– elementary functions, as: square-root [16], logarithm [15], exponential [18]
which are implemented in software in processors (and are thus slow).

– dedicated architectures for coarser operators which have to be implemented
in software in processors, for example X2 + Y 2 + Z2, and others. [17].

Part of the recipe for obtaining good FPGA accelerations for complex ap-
plications is: (a) use FPGA-specific operators, for example those provided by
FloPoCo (b) exploit the application parallelism by instantiating several com-
putational kernels working in parallel (c) generate an application-specific finite
state machine (FSM) which keeps the computational kernels as busy as possible.

In the following sections we present an automatic approach for generating
computational-kernel specific FSMs. Figure 1 presents the automation datapath.

4 Efficient Hardware Generation

This section presents the main contribution of this paper. Given an input pro-
gram written in C and a pipelined FloPoCo operator, we show how to generate
an equivalent hardware accelerator using cleverly the operator. This process is
divided into two steps. First, we schedule the program so the pipelined operator
is fed at every cycle, avoiding stalls. Then, we generate the VHDL code to con-
trol the operator with respect to the schedule. Section 4.1 defines the required
terminology, then Section 4.2 explains our method on two important examples.
Finally, Sections 4.3 and 4.4 present the two steps of our method.
1 have and error of 1ulp, while standard multipliers have 0.5ulp, but consume much

less resources



4.1 Background

Iteration domains. A perfect loop nest is an imbrication of for loops where
each level contains either a single for loop or a single assignment S. A typical
example is the matrix multiply kernel given in figure 2(a). Writing i1, ..., in the
loop counters, the vector i = (i1, ..., in) is called an iteration vector. The set of
iteration vectors i reached during an execution of the kernel is called an iteration
domain (see figure 2(b)). The execution instance of S at the iteration i is called
an operation and is denoted by the couple (S, i). We will assume a single assign-
ment in the loop nest, so we can forget S and say “iteration” for “operation”.
The ability to produce program analysis at the operation level rather than at as-
signment level is a key point of our automation method. We assume loop bounds
and array indices to be an affine expression of the surrounding loop counters.
Under these restrictions, the iteration domain I is an invariant polytope. This
property makes possible to design a program analysis by means of integer linear
programming (ILP) techniques.

Dependence vectors. A data dependence is uniform if it occurs from the
iteration i to the iteration i + d for every valid iterations i and i + d. In this
case, we can represent the data dependence with the vector d that we call a
dependence vector. When array indices are themselves uniform (e.g. a[i-1]) all
the dependencies are uniform. In the following, we will restrict to this case and we
will denote by D = {d1, . . . dp} the set of dependence vectors. Many numerical
kernels fit or can be restructured to fit in this model [11]. This particularly
includes stencil operations which are widely used in signal processing.

Schedules and hyperplanes. A schedule is a function θ which maps each
point of I to its execution date. Usually, it is convenient to represent execution
dates by integral vectors ordered by the lexicographic order: θ : I → (Nq,�).
We consider linear schedules θ(i) = Ui where U is an integral matrix. If there
is a dependence from an iteration i to an iteration j, then i must be executed
before j: θ(i) � θ(j). With uniform dependencies, this gives Ud � 0 for each
dependence vector d ∈ D. Each line φ of U can be seen as the normal vector
to an affine hyperplane Hφ, the iteration domain being scanned by translating
the hyperplanes Hφ in the lexicographic ordering. An hyperplane Hφ satisfies a
dependence vector d if by translating Hφ in the direction of φ, the source i is
touched before the target i + d for each i, that is if φ.d > 0. We say that Hφ

preserves the dependence d if φ.d ≥ 0 for each dependence vector d. In that
case, the source and the target can be touched at the same iteration. d must
then be solved by a subsequent hyperplane. We can always find an hyperplane
Hτ satisfying all the dependencies. Any translation of Hτ touches in I a subset
of iterations which can be executed in parallel. In the literature, Hτ is usually
refereed as a parallel hyperplane.

Loop tiling. With loop tiling [23, 27], the iteration domain of a loop nest is
partitioned into parallelogram tiles, which are executed atomically. A first tile is
executed, then another tile, and so on. For a loop nest of depth n, this requires
to generate a loop nest of depth 2n, the first n inter-tile loops describing the
different tiles and the next n intra-tile loops scanning the current tile. A tile



slice is the 2D set of iterations described by the last two intra-tile loops for a
given value of outer loops. See figure 2 for an illustration on the matrix multiply
example. We can specify a loop tiling for a perfect loop nest of depth n with
a collection of affine hyperplanes (H1, . . . ,Hn). The vector φk is the normal
to the hyperplane Hk and the vectors φ1, . . . ,φn are supposed to be linearly
independent. Then, the iteration domain of the loop nest can be tiled with
regular translations of the hyperplanes keeping the same distance `k between
two translation of the same hyperplane Hk. The iterations executed in a tile
follow the hyperplanes in the lexicographic order, it can be view as “tiling of
the tile” with `k = 1 for each k. A tiling H = (H1, . . . ,Hn) is valid if each
normal vector φk preserves all the dependencies: φk.d ≥ 0 for each dependence
vector d. As the hyperplanes Hk are linearly independent, all the dependencies
will be satisfied. The tiling H can be represented by a matrix UH whose lines
are φ1, . . . φn. As the intra-tile execution order must follow the direction of the
tiling hyperplanes, UH also specifies the execution order for each tile.

Dependence distance. The distance of a dependence d at the iteration
i is the number of iterations executed between the source iteration i and the
target iteration i+d. Dependence distances are sometimes called reuse distances
because both source and target access the same memory element. It is easy to
see that in a full tile, the distance for a given dependence d does not depend
on the source iteration i (see figure 3(b)). Thus, we can write it ∆(d). However,
the program schedule can strongly impact the dependence distance. There is a
strong connection between dependence distance and pipeline depth, as we will
see in the next section.

4.2 Motivating examples

In this section we illustrate the feasibility of our approach on two examples.
The first example is the matrix-matrix multiplication, that has one uniform
data dependency that propagates along one axis. The second example is the
Jacobi 1D algorithm. It is more complicated because it has three uniform data
dependencies with different distances.

Matrix-matrix multiplication. The original code is given in Figure 2(a). The
iteration domain is the set integral points lying into a cube of size N, as shown
in Figure 2(b). Each point of the iteration domain represents an execution of
the assignment S with the corresponding values for the loop counters i, j and
k. Essentially, the computation boils down to apply sequentially a multiply and
accumulate operation (x, y, z) 7→ x + (y ∗ z) that we want to implement with
a specialized FloPoCo operator (Fig. 4(a)). It consists of a pipelined multiplier
with ` pipeline stages that multiplies the elements of matrices a and b. In order
to eliminate the step initializing c, the constant value is propagated inside loop k.
In other words, for k = 0 the multiplication result is added with a constant value
0 (when the delayed control signal S is 0). For k > 0, the multiplication result
is accumulated with the current sum, available via the feedback loop (when the



1 typedef float fl;
2 void mmm(fl∗ a, fl∗ b, fl∗ c, int N) {
3 int i , j , k;
4 for ( i = 0; j < N; j++)
5 for (j = 0; i < N; i++){
6 for (k = 0; k < N; k++)
7 c[ i ][ j ] = c[i ][ j ] + a[i ][ k]∗b[k ][ j ]; //S
8 }
9 }

(a) pipeline size m

step 0

step 2
step 1

τ

N-10 j

k

i

N-1

tile slice

(b)

Fig. 2. Matrix-matrix multiplication: (a) C code, (b) iteration domain with tiling

delayed control signal S is 1). This result will be available m cycles later (m is
the adder pipeline depth), for the next accumulation.

There is a unique data dependency carried by the loop k, which can be
expressed as a vector d = (id, jd, kd) = (0, 0, 1) (Fig. 2(b)). The sequential
execution of the original code would not exploit at all the pipeline, causing a
stall of m− 1 cycles for each iteration of the loop k due to operator pipelining.
Indeed, the iteration (0, 0, 0) would be executed, then wait m− 1 cycles for the
result to be available, then the iteration (0, 0, 1) would be executed, and so on.

Now, let us consider the parallel hyperplane Hτ with τ = (0, 0, 1), which sat-
isfies the data dependency d. Each iteration on this hyperplane can be executed
in parallel, independently, so it is possible to insert in the arithmetic operator
pipeline one computation every cycle. At iteration (0, 0, 0), the operator can be
fed with the inputs x = c[0][0]=0, y = a[0][0], z = b[0][0]. Then, at iteration
(0, 1, 0), x = c[0][1]=0, y = a[0][0], z = b[0][1], and so on. In this case, the
dependence distance would be N − 1, which means that the data computed by
each iteration is needed N−1 cycles later. This is normally much larger than the
pipeline latency m of the adder and would require additional temporary storage.
To avoid this, we have to transform the program in such a way that: between
the definition of a variable at iteration i and its use at iteration i + d there are
exactly m cycles, i.e. ∆(d) = m.

The method consists on applying tiling techniques to reduce the dependence
distance (Fig. 2(b)). First, as previously presented, we find a parallel hyperplane
Hτ (here τ = (0, 0, 1)). Then, we complete it into a valid tiling by choosing
two hyperplanes H1 and H2 (here, the normal vectors are (1, 0, 0) and (0, 1, 0)),
H = (H1,H2,Hτ ). Basically, on this example, the tile width along H2 is exactly
∆(d). Thus, it suffices to set it to the pipeline depth m. This ensures that the
result is scheduled to be used exactly at the cycle it gets out of the operator
pipeline. Thus, the result can be used immediately with the feedback connec-
tion, without any temporary buffering. In a way, the pipeline registers of the
arithmetic operator are used as a temporary buffer.



1 typedef float fl;
2 void jacobi1d(fl a[T][N]){
3 fl b[T][N];
4 int i , t ;
5 for (t = 0; t < T; t++){
6 for ( i = 1; i < N−1; i++)
7 a[t ][ i ] = (a[t−1][i−1] + a[t−1][i] + a[t−1][i+1])/3;
8 }}
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Fig. 3. Jacobi 1D: (a) source code, (b) iteration domain with tiling

Jacobi 1D. The kernel is given in Figure 3(a)). This is a standard stencil
computation with two nested loops. This example is more complex because
the set of dependence vectors D contain several dependencies D = {d1 =
(−1, 1),d2 = (0, 1),d3 = (1, 1)} (Fig. 3(b)). We apply the same tiling method
as in the previous example. First, we choose a valid parallel hyperplane Hτ ,
with τ = (tτ , iτ ) = (2, 1). Hτ satisfies all the data dependencies of D. Then, we
complete Hτ with a valid tiling hyperplane H1. Here, H1 can be chosen with the
normal vector (1, 0). The final tiled loop nest will have four loops: two inter-tile
loops T and I iterating over the tiles, and two intra-tile loops tt and ii iterating
into the current tile of coordinate (T,I). Therefore, any iteration vector can be
expressed as (T,I,tt,ii). Figure 3(b) shows the consecutive tile slices with T=0.
The resulting schedule is valid because it respects the data dependencies of D.
The data produced at iteration i must be available 5 iterations later via the
dependence d1, 9 iterations later via dependency d2 and 13 iterations later via
the dependence d3. Notice that the dependence distances are the same for any
point of the iteration domain, as the dependencies are uniform. In hardware, this
translates to add delay shift registers at the operator output and connect this
output to the operator input via feedback lines, after data dependency distances
levels `0, `1 and `2 (see Fig. 3(b)). Once again, the intermediate values are kept
in the pipeline, no additional storage is needed on a slice.

As the tiling hyperplanes are not parallel to the original axis, some tiles in the
borders are not full parallelograms (see left and right triangle from Fig. 3(b)).
Inside these tiles, the dependence vectors are not longer constant. To overcome
this issue, we extend the iteration domain with virtual iteration points where
the pipelined operator will compute dummy data. This data is discarded at the
border between the real and extended iteration domains (propagate iterations,
when i = 0 and i = N − 1). For the border cases, the correctly delayed data is
fed via line Q (oS=1).
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Fig. 4. Computational kernels generated using FloPoCo

The two next sections formalize the ideas presented intuitively on motivat-
ing examples and presents an algorithm in two steps to translate a loop kernel
written in C into an hardware accelerator using pipelined operators efficiently.
Section 4.3 explains how to get the tiling. Then, section 4.4 explains how to
generate the control FSM respecting the schedule induced by the loop tiling.

4.3 Step 1: Scheduling the Kernel

The key idea is to tile the program in such a way that each dependence distance
can be customized by playing on the tile size. Then, it is always possible to
set the minimum dependence distance to the pipelined depth of the FloPoCo
operator, and to handle the remaining dependencies with additional (pipeline)
registers in the way described for the Jacobi 1D example.

The idea presented on the motivating examples is to force the last intra-tile
inner loop Lpar to be parallel. This way, for a fixed value of the outer loop coun-
ters, there will be no dependence among iterations of Lpar. The dependencies
will all be carried by the outer-loop, and then, the dependence distances will be
fully customizable by playing with the tile size associated to the loop enclosing
immediately Lpar, Lit.

This amounts to find a parallel hyperplane Hτ (step a), and to complete
with others hyperplanes forming a valid tiling (step b): H1, . . . ,Hn−1, assuming
the depth of the loop kernel is n. Now, it is easy to see that the hyperplane
Hτ should be the (n-1)-th hyperplane (implemented by Lit), any hyperplane Hi

being the last one (implemented by Lpar). Roughly speaking, Lit pushes Hτ ,
and Lpar traverses the current 1D section of Hτ .

It remains in step c to compute the tile size to fit the fixed FloPoCo operator
pipeline depth. If several dependencies exist, the minimum dependence distance
must be set to the pipeline depth of the operator, and the other distances gives
the number of extra shift registers to be added to the operator to keep the results
within the operator pipeline, as seen with the Jacobi 1D example. These three
steps are detailed thereafter.



Step a. Find a parallel hyperplane Hτ

This can be done with a simple integer linear program (ILP). Here are the
constraints:
– τ must satisfy every dependence: τ · d > 0 for each dependence vector

d ∈ D.
– τ must reduce the dependence distances. Notice that the dependence

distance is increasing with the radius between τ , and the corresponding
dependence vector d. Notice that the radius (τ ,d) is decreasing with
the dot product τ · d, and thus increasing with −(τ · d). Thus, it is
sufficient to minimize the quantity q = max(−(τ ·d1), . . . ,−(τ ·dp)). So,
we build the constraints q ≥ −(τ ·dk) for each k between 1 and p, which
is equivalent to q ≥ max(−(τ · d1), . . . ,−(τ · dp)).

With this formulation, the set of valid vectors τ is an affine cone and the
vectors minimizing q tends to have an infinite norm. To overcome this issue,
we first minimize the coordinates of τ , which amounts to minimize their sum
σ, as they are supposed to be positive. Then, for the minimum value of σ,
we minimize q. This amounts to look for the lexicographic minimum of the
vector (σ, q). This can be done with standard ILP techniques [21]. On the
Jacobi 1D example, this gives the following ILP, with τ = (x, y):

min� (x + y, q)
s.t. (x ≥ 0) ∧ (y ≥ 0)

∧ (y − x > 0) ∧ (y > 0) ∧ (x + y > 0)
∧ (q ≥ x− y) ∧ (q ≥ −y) ∧ (q ≥ −x− y)

Step b. Find the remaining tiling hyperplanes
Let us assume a nesting depth of n, and let us assume that p < n tiling
hyperplanes Hτ , Hφ1

, . . . ,Hφp−1
were already found. We can compute a

vector u orthogonal to the vector space spanned by τ ,φ1, . . . ,φp−1 using
the internal inverse method [12]. Then, the new tiling hyperplane vector φp

can be built by means of ILP techniques with the following constraints.
– φp must be a valid tiling hyperplane: φp.d ≥ 0 for every dependence

vector d ∈ D.
– φp must be linearly independent to the other hyperplanes: φp.u 6= 0.

Formally, the two cases φp.u > 0 and φp.u < 0 should be investigated.
As we just expect the tiling hyperplanes to be valid, without any op-
timality criteria, we can restrict to the case φp.u > 0 to get a single
ILP.

Any solution of this ILP gives a valid tiling hyperplane. Starting from Hτ ,
and applying repeatedly the process, we get valid loop tiling hyperplanesH =
(Hφ1

, . . . ,Hφn−2
,Hτ ,Hφn−1

) and the corresponding tiling matrix UH. It is
possible to add an objective function to reduce the amount of communication
between tiles. Many approaches give a partial solution to this problem in the
context of automatic parallelization and high performance computing [12, 24,
27]. However how to adapt them in our context is not straightforward and
is left for future work.



Step c. Compute the dependence distances
Given a dependence vector d and an iteration x in a tile slice the set of
iterations i executed between x and x + d is exactly:

D(x,d) = {i | UHx � UHi � UH(x + d)}

Remember that UH, the tiling matrix computed in the previous step, is
also the intra-tile schedule matrix. By construction, D(x,d) is a finite union
of integral polyhedron. Now, the dependence distance ∆(d) is exactly the
number of integral points in D(x,d). As the dependence distance are con-
stant, this quantity does not depend on x. The number of integral points
in a polyhedron can be computed with the Ehrhart polynomial method [14]
which is implemented in the polyhedral library [6]. Here, the result is a de-
gree 1 polynomial in the tile size `n−2 associated to the hyperplane Hn−2,
∆(d) = α`n−2+β. Then, given a fixed input pipeline depth δ for the FloPoCo
operator, two cases can arise:
– Either we just have one dependence, D = {d}. Then, solve ∆(d) = δ to

obtain the right tile size `n−2.
– Either we have several dependencies, D = {d1, . . . ,dp}. Then, choose the

dependence vectors with smallest α, and among them choose a depen-
dence vector dm with a smallest β. Solve ∆(dm) = δ to obtain the right
tile size `n−2. Replacing `n−2 by its actual value gives the remaining
dependence distances ∆(di) for i 6= m, that can be sorted by increasing
order and used to add additional pipeline registers to the FloPoCo op-
erator in the way described for the Jacobi 1D example (see figure 4(b)).

4.4 Step 2: Generating the Control FSM

This section explains how to generate the FSM that will control the pipelined
operator according to the schedule computed in the previous section. A direct
hardware generation of loops, would produce multiple synchronized Finite State
Machines (FSMs), each FSM having an initialization time (initialize the coun-
ters) resulting in an operator stall on every iteration of the outer loops. We avoid
this problem by using the Boulet-Feautrier algorithm [13] which generates a FSM
whose states are assignments and whose transitions update the loop counters.
The method takes as input the tiled iteration domain and the scheduling matrix
UH and uses ILP techniques to generate two functions: First() and Next(). The
function First() is actually a constant function, returning the initial state of the
FSM with initialized loop counters. The function Next is a transition function
which updates the loop counters and gives the next state.

The functions First() and Next() are directly translated into VHDL if condi-
tions. When the conditions are satisfied, the corresponding iterators are updated
and the control signals are set.

The signal assignments in the FSM do not take into account the pipeline
level at which the signals are connected. Therefore, we use additional registers
to delay every control signal with respect to its pipeline depth. This ensures a
correct execution without increasing the complexity of the state machine.



5 Reality Check

Table 1 presents synthesis results for both our running examples, using a large
range of precisions, and two different FPGAs. The results presented confirm
that precision selection plays an important role in determining the maximum
number of operators to be packed on one FPGA. As it can be remarked from the
table, our automation approach is both flexible (several precisions) and portable
(Virtex5 and StratixIII), while preserving good frequency characteristics.

Table 1. Synthesis results for the full (including FSM) MMM and Jacobi1D codes.
Results obtained using using Xilinx ISE 11.5 for Virtex5, and Quartus 9.0 for StratixIII

Application FPGA
Precision Latency Frequency Resources
(wE , wF ) (cycles) (MHz) REG (A)LUT DSPs

Matrix-Matrix
Virtex5(-3)

(5,10) 11 277 320 526 1

Multiply
(8,23) 15 281 592 864 2
(10,40) 14 175 978 2098 4

N=128

(11,52) 15 150 1315 2122 8
(15,64) 15 189 1634 4036 8

StratixIII
(5,10) 12 276 399 549 2
(9,36) 12 218 978 2098 4

Jacobi1D Virtex5(-3)
(5,10) 98 255 770 1013

stencil
(8,23) 98 250 1559 1833

N=1024

(15,64) 98 147 3669 4558

T=1024 StratixIII
(5,10) 98 284 1141 1058
(9,36) 98 261 2883 2266
(15,64) 98 199 4921 3978

The generated kernel performance for one computing kernel is: 0.4 GFLOPs
for matrix-matrix multiplication, and 0.56 GFLOPs for Jacobi, for a 200 MHz
clock frequency. Thanks to program restructuring and optimized scheduling in
the generated FSM, the pipelined kernels are used with very high efficiency. Here,
the efficiency can be defined as the percentage of useful (non-virtual) inputs fed
to the pipelined operator. This can be expressed as the ratio #(I\V)/#I, where
I is the iteration domain, as defined in section 4 and V ⊆ I is the set of virtual
iterations. The efficiency represents more than 99% for matrix-multiply, and
more than 94% for Jacobi 1D. Taking into account the kernel size and operating
frequencies, tens, even hundreds of pipelined operators can be packed per FPGA,
resulting in significant potential speedups.

There exists several manual approaches like the one described in [20] that
presents a manually implemented acceleration of matrix-matrix multiplication
on FPGAs. Unfortunately, the paper lacks of detailed experimental results, so we
are unable to perform correct performance comparisons. Our approach is fully
automated, and we can clearly point important performance optimization. To
store intermediate results, there approach makes a systematic use of local SRAM



memory, whereas we rely on pipeline registers to minimize the use of local SRAM
memory. As concerns commercial HLS tools, the comparison is made difficult due
to lack of clear documentation as well as software availability to academics.

6 Conclusion and Future Work

In this paper, we have presented a novel approach using state-of-the-art code
transformation techniques to restructure the program in order to use more effi-
ciently pipelined operators. Our HLS flow has been implemented in the research
compiler Bee, using FloPoCo to generate specialized pipelined floating point
arithmetic operators. We have applied our method on two DSP kernels, the ob-
tained circuits have a very high pipelined operator utilization and high operating
frequencies, even for algorithms with tricky data dependencies and operating on
high precision floating point numbers.

It would be interesting to extend our technique to non-perfect loop nests.
This would require more general tiling techniques as those described in [12]. As
for many other HLS tools, the HLS flow described in this paper focuses only
on optimizing the performances of the computational part. However, experience
shows that the performance is often bounded by the availability of data. In
future work we plan to focus on local memory usage optimizations by minimizing
the communication betweeen the tiles. This can be obtained by chosing a tile
orientation to minimize the number of dependencies that crosses the hyperplane.
This problem has been partially solved in the context of HPC [24, 12]. However,
it is unclear how to apply it in our context. Also, we would like to focus on
global memory usage optimizations by adapting the work presented in [9] and
[26] to optimize communications with the outside world in a complete system
design. Finally, we believe that the scheduling technique can be extended to
apply several pipelined operators in parallel.
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