
Microprocessors and Microsystems 36 (2012) 606–619
Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
FPGA-specific synthesis of loop-nests with pipelined computational cores

Christophe Alias ⇑, Bogdan Pasca, Alexandru Plesco
LIP (ENSL-CNRS-Inria-UCBL), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France

a r t i c l e i n f o
Article history:
Available online 19 June 2012

Keywords:
High-level synthesis
FPGA
Data-reuse
Polyhedral compilation
Pipelined arithmetic operators
Floating-point
Parallelization
Kernel accuracy
0141-9331/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.micpro.2012.06.009

⇑ Corresponding author.
E-mail addresses: Christophe.Alias@ens-lyon.fr (C

lyon.org (B. Pasca), Alexandru.Plesco@ens-lyon.org (A
a b s t r a c t

The increased capacity and enhanced features of modern FPGAs opens new opportunities for their use as
application accelerators. However, for FPGAs to be accepted as mainstream acceleration solutions, long
design cycles must be shortened by using high-level synthesis tools in the design process. Current HLS
tools targeting FPGAs have several limitations including the inefficient use of deeply pipelined arithmetic
operators, commonly encountered in high-throughput FPGA designs. We focus here on the efficient gen-
eration of FPGA-specific hardware accelerators for regular codes with perfect loop nests where inner
statements are implemented as a pipelined arithmetic operator, which is often the case of scientific codes
using floating-point arithmetic. We propose a semi-automatic code generation process where the arith-
metic operator is identified and generated. Its pipeline information is used to reschedule the initial pro-
gram execution in order to keep the operator’s pipeline as ‘‘busy’’ as possible, while minimizing memory
access. Next, we show how our method can be used as a tool to generate control FSMs for multiple par-
allel computing cores. Finally, we show that accounting for the application’s accuracy needs allows
designing smaller and faster operators.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Application development tends to pack more features per prod-
uct. In order to differentiate from competition, added features usu-
ally employ complex algorithms, making full use of existing
processing power. When application performance is poor, one
may envision accelerating the whole application or a computation-
ally demanding kernel using the following solutions: (1) multi-core
microprocessors: may not accelerate non-standard computations
(exponential, logarithm, square-root) and performance suffers
when implementing low-grain parallelism due to inter-process
communication (2) application-specific integrated circuits (ASICs):
the price tag is often too big, (3) Field Programmable Gate Arrays
(FPGAs): provide a trade-off between the performances of ASICs
and the costs of microprocessors.

FPGAs are memory-based integrated circuits whose functional-
ity can be modified after manufacturing. They are organized as bi-
dimensional arrays of logic elements containing small programma-
ble memories connected through a configurable routing network.
Modern FPGAs also include ‘‘ASIC-like’’ features like: embedded
memories, embedded DSP blocks containing small multipliers,
embedded processors, etc. All these features combined with
increasing capacities allow modern FPGAs to be uses with success
as application accelerators.
ll rights reserved.

. Alias), Bogdan.Pasca@ens-
. Plesco).
FPGAs have a potential speedup over microprocessor systems
that can go beyond two orders of magnitude, depending on the
application. Usually, such accelerations are believed to only be ob-
tained using low-level languages as VHDL or Verilog, exploiting the
specificity of the deployment FPGAs. Nevertheless, designing entire
systems using these languages is tedious and error-prone. Recent
research has shown that using generator frameworks such as
FloPoCo [1], Altera DSP Builder Advanced [2] or Langhammer’s
Floating-Point Compiler [3] for designing the arithmetic data-
paths, of such applications can increase both performance and pro-
ductivity. What is still needed are tools which use these arithmetic
operators and efficiently map computations to them.

In order to address this productivity issue as a whole, much
research has focused on high-level synthesis HLS tools [4–8],
which input the system description in higher level language, like
C and usually output a fully functional system including memory
interfaces. Unfortunately, these fully-automatic functional solu-
tions trade performance for productivity without offering users
the knobs to control the ratio. For these tools, the synthesis of
arithmetic data-paths, key components of such systems, reduces
to assembling library operators. It has been proven that manual
solutions outperform this process even if state-of-the-art arithme-
tic operators are used [1]. In this spirit, an automatic process for
systematizing fused floating-point datapaths was introduced by
Langhammer for Altera FPGAs [3]. On the other hand, these tools
perform poorly when synthesizing loops with inter-iteration
dependencies and where the inner statement involves deeply pipe-
lined arithmetic operators.

http://dx.doi.org/10.1016/j.micpro.2012.06.009
mailto:Christophe.Alias@ens-lyon.fr
mailto:Bogdan.Pasca@ens-lyon.org
mailto:Bogdan.Pasca@ens-lyon.org
mailto:Alexandru.Plesco@ens-lyon.org
http://dx.doi.org/10.1016/j.micpro.2012.06.009
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 607
One of the most popular forms of arithmetic requiring deeply
pipelined operators in FPGA designs is floating-point arithmetic.
Floating-point arithmetic offers a different trade-off between pre-
cision, dynamic range and implementation cost than fixed-point
arithmetic, classically used in FPGA designs. The implemented
operators require more area but offer a better dynamic range,
which is often crucial in applications manipulating these type of
values (most scientific computing applications).

Some HLS tools supporting standard floating-point arithmetic
do exist [6,7,5]. They allow synthesizing loop nests having inter-
iteration dependencies where the inner statement is an arithmetic
operation implemented in floating-point arithmetic. However, per-
formance is very poor due to the deep pipeline of the arithmetic
operators which causes the system to stall, waiting for the opera-
tion result before starting the next iteration.

In this article, we describe an automatic approach for synthesiz-
ing a specific but wide class of applications into fast FPGA designs.
This approach accounts for the pipeline depth of the operator and
uses state of the art code transformation techniques for scheduling
computations in order to avoid pipeline bubbles (void computa-
tions). We present here two classic examples: matrix multiplica-
tion and the Jacobi 1D relaxation for which we describe the
computational kernels and the code transformations used to
reschedule their execution. We also discuss execution paralleliza-
tion opportunities for these computing kernels and the impact of
accuracy-aware arithmetic operator design on the operator kernel
area. For these applications, simulation results show that our
scheduling is within 5% of the best theoretical pipeline utilization.

The rest of this article is organized as follows. Section 2 pre-
sents related approaches and their limitations. Section 3 presents
FloPoCo, the open-source tool used to generate efficient floating-
point pipelined operators. Then, Section 4 shows how to compile
a kernel written in C into efficient hardware with pipelined oper-
ators. The technique is then studied in subSection 4.2 on two
important running examples. Then, subsections 4.3 and 4.4 pro-
vide a formal description of our method. Section 5 discusses the
different parallelization opportunities, in the context of minimiz-
ing communication costs for our two applications. Next, Section
6 discusses the impact of accuracy-aware operator design on the
final operator size. Section 7 provides experimental results on
the running examples. Finally, Section 8 concludes and presents
research perspectives.
2. Related work

In the last years, important advances have been made in the
generation of computational accelerators from higher-level of
abstraction languages. Most of the tools restrict accepted data
types to simple ones like integer or fixed-point excluding float-
ing-point format. This is mostly due to the low resource utilization
of the corresponding arithmetic operators but can also be attrib-
uted to the long pipeline depth of floating-point operators. Current
high-level synthesis tools use control and data flow graph (CDFG)
like internal data structures to represent the program. This repre-
sentation limits the analysis of loops. Data dependency analysis
on these data structures is often limited to the syntactic level anal-
ysis (example C2H tool from Altera [9]) or cannot be computed ex-
actly. Even when data dependencies can be computed more
accurately, loop code transformation on CDFGs like the ones de-
scribed in [10] are not powerful enough to reschedule loop execu-
tion in order to increase data dependency length so that pipelined
arithmetic operators can be feed with data at each cycle. One can
apply these transformations by hand. We can take for example a
code consisting of two nested loops with the outer parallel loop
and the inner sequential with loop carried dependencies. Even if
the designer can interchange the loops by hand, if the tool cannot
detect correctly the parallelism, due to non-fine data dependency
analysis, it will still schedule it sequentially inserting voids in the
pipelined operators. Tools like C2H allow the designer to use a
pragma restrict keyword for specifying that two pointers do not
alias. One can use two restricted pointers to reference the same ar-
ray when writing and reading to force-eliminate the false data
dependency. However, this method works only in some cases
and requires deep user knowledge of the underlying tool.

Most of the current high-level synthesis tools like Spark [11],
Gaut [4], Synphony [8], Mentor Graphics’ CatapultC [12] and others
originate from the time when fixed-point formats were sufficient
to map most of the applications into silicium. However this is
not the case today, when the applications targeted for FPGAs pro-
cess data having a wider dynamic range with increased precisions.
The high-throughput scenarios that FPGAs are used in require the
fixed or floating-point operators to be deeply pipelined.

In order to work around the known weaknesses of fixed-point
arithmetic, AutoPilot [6], Impulse-C [5], and Cynthesizer [7] (in
SystemC) can synthesize floating-foint (FP) datatypes by instanti-
ating FP cores within the hardware accelerator. AutoPilot can
instantiate IEEE-754 Single Precision (SP) and Double Precision
(DP) standard FP operators. Impulse-C can instantiate IEEE-754
SP and DP standard FP operators using Xilinx and Altera libraries.
Cynthesizer can instantiate custom precision FP cores parameter-
ized by their exponent and fraction widths. Moreover, the user
has control over the number of pipeline stages of the operators,
having an indirect knob on the design frequency. Using these pipe-
lined operators requires careful scheduling techniques in order to
(1) ensure correct computations (2) prevent stalling the pipeline
for some data dependencies. For algorithms with no data depen-
dencies between iterations, it is indeed possible to schedule one
operation per cycle, and after the initial pipeline latency, the arith-
metic operators will output one result every cycle. For other algo-
rithms, these tools manage to ensure (1) at the expense of (2). For
example, in the case of algorithms having inter-iteration depen-
dencies, the scheduler will stall successive iterations for a number
of cycles equal to the pipeline latency of the operator. As said be-
fore, complex computational functions, especially FP, can have tens
and even hundreds of pipeline stages, therefore significantly reduc-
ing circuit performance.

Polyhedral compilation techniques allow addressing that kind
of problem by allowing a fine, operation-level, dependence and
scheduling analysis on programs whose loop iteration domains
are polyhedra. There has been a huge interest on polyhedral opti-
mization in the context of high-performance computing since the
90 s. Many analyses have been developed to automatically paralle-
lize programs and to manage automatically the memory. Several
academic tools has emerged, notably PIPS [13] and Par4ALL [14].

Now, polyhedral techniques are slowly migrating to high-level
synthesis. A few industrial tools use them (Synfora’s PiCo [15]
and Compaan/Laura [16,17]). For the moment, these tools use only
the most elementary form of parallelization, equivalent to instruc-
tion-level parallelism in ordinary compilers, with some limited
form of block pipelining. Unfortunately, nothing exists in these
tools to handle properly pipelined floating-point arithmetic opera-
tors. Also, as far as we know, this is the first academic approach to
solve this problem. In general, a lot of work remains to adapt/ex-
tend polyhedral techniques to the context of HLS, and with this
work we aim to take a step in this direction.

In order to address the inefficiencies of these tools regarding
synthesis of pipelined (integer, fixed-point, floating-point or a
mix) circuits, we present an automation tool chain implemented
in the PoCo research compiler [18], and which uses FloPoCo [1],
an open-source tool for FPGA-specific arithmetic-core generation.
The presented flow relies on advanced code transformation tech-

608 C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619
niques for finding a scheduling which eliminates pipeline stalling,
therefore maximizing throughput.

Another important advantage of fine data dependency analysis
is that one can detect and parallelize codes that standard tech-
niques (like the ones used in most HLS tools) cannot. Detecting
the parallelism is mandatory but not sufficient to improve perfor-
mances. One should also consider the deployment platform for the
application. In our case, targeting reconfigurable architectures al-
lows using fast dedicated communication lines between process-
ing elements, an advantage which is lost when targeting classical
multi-core processing systems. In order to ensure a correct compu-
tation, we use fine data dependency analysis techniques together
with advanced code transformation techniques.

The techniques presented in this article are a natural evolution
of hand-based scheduling techniques applied for the matrix–ma-
trix multiplication [19,20]. However, our techniques are signifi-
cantly more general, automatic, and also refine the execution
scheduling (more accurate FSMs) such that the generated architec-
tures require no buffers (whereas both previous works require buf-
fers) even for codes with more complex dependencies such as the
1D Jacobi kernel.
3. Designing arithmetic kernels using FloPoCo

Arithmetic operators are the key components of loop-nest
accelerators, as the accelerator’s frequency and area are strongly
influenced by those of the arithmetic operator. Two of the main
factors defining the quality of an arithmetic operator on FPGAs
are its frequency and its area. The frequency is determined by the
length of the critical path – largest combinatorial delay between
two register levels. Faster circuits can be obtained by iteratively
inserting register levels in order to reduce the critical path delay.
Consequently, there is a strong connection between the circuit fre-
quency, area and latency (number of pipeline levels). The objective
is to generate a circuit with just the right frequency thus minimiz-
ing area and latency.

Assembling and synchronizing by hand the data-path of the
arithmetic operator using subcomponents from common operator
libraries or generators such as Xilinx Logicore [21], Altera Mega-
wizard [22] and others offers full control over the choice of sub-
components and their characteristics: implementation, input/
output precision, latency etc. which potentially allows building
efficient circuits. Unfortunately, long design cycles needed to build
such pipelined system for a user-defined frequency: components
are parametrized by latency so a trial-and-error process is required
for convergence. A more automatic approach is adopted in DSP
Builder Advanced from Altera [2] which is able to automatically
pipeline such a system. However, the longer pipeline stages sug-
gest that the circuit is not minimally pipelined.

The approach behind open-source FloPoCo Core Generator1 [1]
is similar. For a given subcomponent, the user specifies its parame-
ters (as for other core generators), the target running frequency f
and a target FPGA (currently several FPGAs from main manufactur-
ers Altera and Xilinx are supported). Additionally, to our knowledge
FloPoCo has pioneered sub-cycle pipelining [23] allowing minimal
latency for a given frequency and target FPGA. FloPoCo also offers
a development framework which allows assembling the operators
available in its library and a test-bench suite for validating the
implementation against its mathematical description.

An alternative automatic solution for assembling floating-point
pipelines is given by Langhammer with the Altera Floating-Point
Datapath Compiler [24]. The compiler inputs and outputs numbers
in IEEE-754 format (SP is discussed) but uses alternative internal
1 http://flopoco.gforge.inria.fr/.
representations formats and fuses similar operations clusters, with
the main goal of better using the Altera FPGA resources. The down-
side of using this compiler is that it would restrict us to Altera
FPGAs, floating-point pipelines and reduced floating-point format
support. Moreover, as shown in [1] on the

ffi
X2 þ Y2 þ Z2

p
opera-

tors, FloPoCo manages to embed more optimizations, at the ex-
pense of a longer development time.

Some of the built-in operators of the ever-increasing FloPoCo
operator library are:

� specialized operators like squarers [25]. constant multipliers
[26], faithfully rounded multipliers with a user-defined accu-
racy (allow significantly reducing implementation resources)
[27] FPGA-specific floating-point accumulators [28].
� a generic fixed-point function evaluator based on polynomial

approximations (FunctionEvaluator) [29].
� floating-point functions: square-root [30], logarithm [31], expo-

nential [32] which are implemented using mathematical
libraries (libms) in microprocessors and are usually two orders
of magnitude slower than the basic floating-point operators +,�.
� dedicated architectures for coarser operators which have to be

implemented in software in processors, for example X2 þ Y2þ
Z2, and others [1].

Part of the recipe for obtaining good FPGA accelerations for complex
applications is: (a) use FPGA-specific operators, for example those
provided by FloPoCo (b) exploit the application parallelism by
instantiating several computational kernels working in parallel (c)
generate an application-specific finite state machine (FSM) which
keeps the computational kernels as busy as possible.

In the following sections we present an automatic approach for
generating computational-kernel specific FSMs and also discuss
parallelization opportunities in this context. The automation flow
for generating and scheduling the execution of these computations
onto computational kernels is given in Fig. 1.
4. Generation of sequential hardware with pipelined operators

In this section, we present a method to derive automatically an
efficient, sequential, hardware using FloPoCo operators in the data-
path. The operations are carefully scheduled to keep the FloPoCo
operators busy, hence making optimal use of their pipelines. The
input kernel is specified by a naive sequential C program, as de-
picted in Fig. 2a for matrix multiplication. The user must also spec-
ify the pipeline depth for each FloPoCo operator. These are the only
inputs required.

Section 4.1 presents the model of programs which can be pro-
cessed, and reviews the corresponding methodology. Then, Section
4.2 gives an intuitive explanation of our method on two important
examples. Finally, the two steps of our method are formally
described in Sections 4.3 and 4.4.

4.1. Program model and background

This section defines the class of programs which can be pro-
cessed by our method, and precisely reviews several related no-
tions which are used in the remaining of this article. For more
details the interested reader can consult [33].

4.1.1. Program model
We consider kernels with a single perfect loop nest, that is an

imbrication of for loops where each level contains either a single
for loop or a single assignment S. A typical example is the matrix
multiply kernel given in Fig. 2a. Writing i1; . . . ; in the loop counters,
the vector~i ¼ ði1; . . . ; inÞ is called an iteration vector. The set of iter-

http://flopoco.gforge.inria.fr/

(a) (b)
Fig. 2. Matrix multiplication: (a) C code, (b) iteration domain with tiling

Fig. 1. Automation flow.

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 609
ation vectors~i reached during an execution of the kernel is called
an iteration domain (see Fig. 2b). The execution instance of S at
the iteration~i is called an operation and is denoted by the couple
ðS;~iÞ. We will assume a single assignment in the loop nest, so we
can forget S and say ‘‘iteration’’ for ‘‘operation’’. The ability to pro-
duce program analysis at the operation level rather than at assign-
ment level is a key point of our automation method.

Moreover, the loop bounds and the array indices must be affine
expressions of surrounding loop counters and structure parameters.
For instance, the matrix-multiply (Fig. 2a) and Jacobi 1D (Fig. 3a)
kernels belong to this category. Under these restrictions, the itera-
tion domain I is invariant whatever the input value is. Also, as loop
bounds are affine, the iteration domain I is always a set of affine
(a)

(b)
Fig. 3. Jacobi 1D: (a) source code, (b) iteration domain with tiling.
lattice points lying in a polytope, usually referred as a Z-polytope.
This property makes it possible to perform program analysis by
means of integer linear programming (ILP) techniques and opera-
tions on polytopes.

4.1.2. Dependence vectors
On this program model, the data dependences can be computed

at iteration level. This enables very accurate analysis, like the num-
ber of cycles between the source and target of a dependence. As we
will see, this capability is absolutely mandatory to taking advan-
tage of the pipelined FloPoCo operators. We will assume each data
dependence to be uniform. This means that each occurrence of the
dependence is directed by the same vector ~d and must occur from
iteration~i to iteration~iþ~d for every valid iterations~i and~iþ~d. In
this case, we can represent the data dependence with the vector ~d
that we call a dependence vector. When array indices are them-
selves uniform (e.g. a[i � 1]) all the dependencies are uniform. In
the following, we will restrict to this case and we will denote by
D ¼ f~d1; . . .~dpg the set of dependence vectors. With this assump-
tion, the time spent between the production of a data and its use
(along a dependence) is constant. As we will see, this important
property allows letting the data to flow into small constant-size
FIFOs from producer to consumer, avoiding the use of buffers.

Many numerical kernels fit or can be restructured to fit in this
model [34]. Particularly, this model includes stencil operations
which are widely used in signal processing.

4.1.3. Schedules and hyperplanes
A schedule is a function h which maps each point of I to its exe-

cution date. Usually, it is convenient to represent execution dates
by integral vectors ordered by the lexicographic order: h : I !
ðNq;�Þ. We consider linear schedules hð~iÞ ¼ U~i where U is an inte-
gral matrix. If there is a dependence from an iteration~i to an iter-
ation~j, then~i must be executed before~j : hð~iÞ � hð~jÞ. With uniform
dependencies, this gives U~d� 0 for each dependence vector~d 2 D.

610 C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619
Each line ~/ of U can be seen as the normal vector to an affine
hyperplane H~/, the iteration domain being scanned by translating
the hyperplanes H~/ in the lexicographic ordering. An hyperplane
H~/ satisfies a dependence vector~d if by translating H~/ in the direc-
tion of ~/, the source~i is touched before the target~iþ~d for each~i,
that is if ~/:~d > 0. We say that H~/ preserves the dependence ~d if
~/:~d P 0 for each dependence vector ~d. In that case, the source
and the target can be touched at the same iteration and ~d must
then be solved by a subsequent hyperplane. We can always find
an hyperplane H~s satisfying all the dependencies. Any translation
of H~s touches in I a subset of iterations which can be executed
in parallel. In the literature, H~s is usually refereed as a parallel
hyperplane.
4.1.4. Loop tiling
With loop tiling [35,36], the iteration domain of a loop nest is

partitioned into parallelogram tiles, which are executed atomi-
cally. A first tile is executed, then another tile, and so on. For a loop
nest of depth n, this requires to generate a loop nest of depth 2n,
the first n inter-tile loops describing the different tiles and the next
n intra-tile loops scanning the current tile. A tile slice is the 2D set of
iterations described by the last two intra-tile loops for a given va-
lue of outer loops. See Fig. 2 for an illustration on the matrix mul-
tiply example.

We can specify a loop tiling for a perfect loop nest of depth n
with a collection of affine hyperplanes ðH1; . . . ;HnÞ. The vector ~/k

is the normal to the hyperplane Hk and the vectors ~/1; . . . ;~/n are
supposed to be linearly independent. Then, the iteration domain
of the loop nest can be tiled with regular translations of the hyper-
planes keeping the same distance ‘k between two translation of the
same hyperplane Hk. The iterations executed in a tile follow the
hyperplanes in the lexicographic order, it can be view as ‘‘tiling
of the tile’’ with ‘k ¼ 1 for each k. A tiling H ¼ ðH1; . . . ;HnÞ is valid
if each normal vector ~/k preserves all the dependencies: ~/k:

~d P 0
for each dependence vector ~d. As the hyperplanes Hk are linearly
independent, all the dependencies will be satisfied. The tiling H
can be represented by a matrix UH whose lines are ~/1; . . .~/n. As
the intra-tile execution order must follow the direction of the tiling
hyperplanes, UH also specifies the execution order for each tile.
4.1.5. Dependence distance
The distance of a dependence~d at the iteration~i is the number of

iterations executed between the source iteration~i and the target
iteration~iþ~d. Dependence distances are sometimes called reuse
distances because both source and target access the same memory
element. It is easy to see that in a full tile, the distance for a given
dependence ~d does not depend on the source iteration ~i (see
Fig. 3b). Thus, we can write it Dð~dÞ. However, the program schedule
can strongly impact the dependence distance. There is a strong
Fig. 4. Computational kernels
connection between dependence distance and pipeline depth, as
we will see in the next section.

4.2. Motivating examples

In this section, we illustrate the feasibility of our approach on
two examples. The first example is the matrix–matrix multiplica-
tion that has one uniform data dependency that propagates along
one axis. The second example is the Jacobi 1D algorithm. It is more
complicated because it has three uniform data dependencies with
different distances.

4.2.1. Matrix–matrix multiplication
The original code is given in Fig. 2a. The iteration domain is the

set of integral points lying into a cube of size N, as shown in Fig. 2b.
Each point of the iteration domain represents an execution of the
assignment S with the corresponding values for the loop counters
i, j and k. Essentially, the computation boils down to applying
sequentially a multiply and accumulate operation ðx; y; zÞ# xþ
ðy � zÞ along the k axis, that we want to implement with a special-
ized FloPoCo operator (Fig. 4a). It consists of a pipelined multiplier
with ‘ pipeline stages that multiplies the elements of matrices a

and b. In order to eliminate the step initializing c, the constant
value is propagated inside loop k. In other words, for k ¼ 0 the
multiplication result is added with a constant value 0 (when the
delayed control signal S is 0). For k > 0, the multiplication result
is accumulated with the current sum, available via the feedback
loop (when the delayed control signal S is 1). This result will be
available m cycles later (m is the adder pipeline depth), for the next
accumulation.

There is a unique data dependency carried by the loop k, which
can be expressed as a vector ~d ¼ ðid; jd; kdÞ ¼ ð0;0;1Þ (Fig. 2b). The
sequential execution of the original code would not exploit at all
the pipeline, causing a stall of m� 1 cycles for each iteration of
the loop k due to operator pipelining. Indeed, the iteration
ð0;0;0Þ would be executed, then wait m� 1 cycles for the result
to be available, then the iteration ð0;0;1Þ would be executed, and
so on.

Now, let us consider the parallel hyperplane H~s with ~s ¼
ð0;0;1Þ, which satisfies the data dependency ~d. Each iteration on
this hyperplane can be executed in parallel, independently, so it
is possible to insert in the arithmetic operator pipeline one compu-
tation every cycle. At iteration ð0;0;0Þ, the operator can be fed with
the inputs x = c[0][0] = 0, y = a[0][0], z = b[0][0]. Then, at iteration
ð0;1;0Þ; x = c[0][1] = 0, y = a[0][0], z = b[0] [1], and so on. In this
case, the dependence distance would be N � 1, which means that
the data computed by each iteration is needed N � 1 cycles later.
This is normally much larger than the pipeline latency m of the ad-
der and would require additional temporary storage. To avoid this,
we have to transform the program in such a way that: between the
generated using FloPoCo

Listing 2. Code using tiling for 1D Jacobi stencil computation.

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 611
definition of a variable at iteration~i and its use at iteration~iþ~d
there are exactly m cycles, i.e. Dð~dÞ ¼ m.

The method consists on applying tiling techniques to reduce the
dependence distance (Fig. 2b). First, as previously presented, we
find a parallel hyperplane H~s (here~s ¼ ð0;0;1Þ). Then, we complete
it into a valid tiling by choosing two hyperplanes H1 and H2 (here,
the normal vectors are ð1;0;0Þ and ð0;1;0Þ), H ¼ ðH1;H2;H~sÞ. Basi-
cally, on this example, the tile width along H2 is exactly Dð~dÞ. Thus,
it suffices to set it to the pipeline depth m.

This ensures that the result is scheduled to be used exactly at
the cycle it gets out of the operator pipeline. Thus, the result can
be used immediately with the feedback connection, without any
temporary buffering. In a way, the pipeline registers of the arith-
metic operator are used as a temporary buffer.

The code corresponding one valid tiling is given in Listing 1.
4.2.2. Jacobi 1D.
The kernel is given in Fig. 3a). This is a standard stencil compu-

tation with two nested loops. This example is more complex
because the set of dependence vectors D contains several depen-
dencies D ¼ f~d1 ¼ ð�1;1Þ; ~d2 ¼ ð0;1Þ; ~d3 ¼ ð1;1Þg (Fig. 3b). We
apply the same tiling method as in the previous example.

First, we choose a valid parallel hyperplane H~s, with ~s ¼
ðt~s; i~sÞ ¼ ð2;1Þ. H~s satisfies all the data dependencies of D. Then,
we complete H~s with a valid tiling hyperplane H1. Here, H1 can
be chosen with the normal vector ð1;0Þ. The final tiled loop nest
will have four loops: two inter-tile loops T and I iterating over
the tiles, and two intra-tile loops tt and ii iterating into the current
tile of coordinate (T, I). Therefore, any iteration vector can be ex-
pressed as (T, I, tt, ii). Fig. 3b shows the consecutive tile slices with
T = 0.

The resulting schedule is valid because it respects the data
dependencies of D. The data produced at iteration~i must be avail-
able five iterations later via the dependence~d1, 9 iterations later via
dependency ~d2 and 13 iterations later via the dependence ~d3. No-
tice that the dependence distances are the same for any point of
the iteration domain, as the dependencies are uniform. In hard-
ware, this translates to adding delay shift registers at the operator’s
output and connecting this output to the operator’s inputs via feed-
back lines, according to the data dependency distance levels ‘0; ‘1

and ‘2 (see Fig. 3b). Once again, the intermediate values are kept
in the pipeline, no additional storage is needed in a slice.

As the tiling hyperplanes are not parallel to the original axis,
some tiles in the borders are not full parallelograms (see left and
right triangles in Fig. 3b). Inside these tiles, the dependence vectors
are not longer constant. To overcome this issue, we extend the iter-
ation domain with virtual iteration points where the pipelined
operator will compute on dummy data. This data is discarded at
the border between the real and extended iteration domains (prop-
agate iterations, when i ¼ 0 and i ¼ N � 1). For the border cases,
the correctly delayed data is fed via line Q (oS = 1). The C code hav-
ing the tiled iteration domain is given in Listing 2.
Listing 1. One valid tiling for the matrix–matrix multiplication.
The two next sections formalize the ideas presented intuitively
on motivating examples and present an algorithm in two steps to
translate a loop kernel written in C into a hardware accelerator
using pipelined operators efficiently. Section 4.3 explains how to
get the tiling. Then, Section 4.4 explains how to generate the con-
trol FSM respecting the schedule induced by the loop tiling.

4.3. Step 1: Scheduling the Kernel

The key idea is to tile the program in such a way that each
dependence distance can be customized by playing on the tile size.
Then, it is always possible to set the minimum dependence dis-
tance to the pipelined depth of the FloPoCo operator, and to handle
the remaining dependencies with additional (pipeline) registers in
the way described for the Jacobi 1D example.

The idea presented on the motivating examples is to force the
last intra-tile inner loop Lpar to be parallel. This way, for a fixed va-
lue of the outer loop counters, there will be no dependence among
iterations of Lpar . The dependencies will all be carried by the outer-
loop, and then, the dependence distances will be fully customiz-
able by playing with the tile size associated to the loop enclosing
immediately Lpar ; Lit .

This amounts to find a parallel hyperplane H~s (step a), and to
complete with others hyperplanes forming a valid tiling (step b):
H1; . . . ;Hn�1, assuming the depth of the loop kernel is n. Now, it
is easy to see that the hyperplane H~s should be the (n � 1)th hyper-
plane (implemented by Lit), any hyperplane Hi being the last one
(implemented by Lpar). Roughly speaking, Lit pushes H~s, and Lpar tra-
verses the current 1D section of H~s.

It remains in step c to compute the tile size to fit the fixed Flo-
PoCo operator pipeline depth. If several dependencies exist, the
minimum dependence distance must be set to the pipeline depth
of the operator. The difference between this minimum dependence
distance and the other dependence distances indicate the number
of extra shift registers which need to be added to the operator’s
output in order to keep the results in the operator’s pipeline, sim-
ilar to the Jacobi 1D example. These three steps are detailed next.

Step a. Find a parallel hyperplane H~s

This can be done with a simple integer linear program (ILP).
Here are the constraints:

� ~s must satisfy every dependence: ~s �~d > 0 for each dependence
vector ~d 2 D.
� ~s must reduce the dependence distances. Notice that the depen-

dence distance is increasing with the radius between ~s, and
the corresponding dependence vector ~d. Notice that the radius
ð~s;~dÞ is decreasing with the dot product ~s �~d, and thus increas-
ing with �ð~s �~dÞ. Thus, it is sufficient to minimize the quantity

612 C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619
q ¼maxð�ð~s �~d1Þ; . . . ;�ð~s �~dpÞÞ. So, we build the constraints
q P �ð~s �~dkÞ for each k between 1 and p, which is equivalent
to q P maxð�ð~s �~d1Þ; . . . ;�ð~s �~dpÞÞ.

With this formulation, the set of valid vectors~s is an affine cone and
the vectors minimizing q tends to have an infinite norm. To over-
come this issue, we first minimize the coordinates of ~s, which
amounts to minimize their sum r, as they are supposed to be posi-
tive. Then, for the minimum value of r, we minimize q. This
amounts to looking for the lexicographic minimum of the vector
ðr; qÞ. This can be done with standard ILP techniques [37]. On the
Jacobi 1D example, this gives the following ILP, with ~s ¼ ðx; yÞ:

min� ðxþ y; qÞ

s:t: ðx P 0Þ ^ ðy P 0Þ

^ðy� x > 0Þ ^ ðy > 0Þ ^ ðxþ y > 0Þ

^ðq P x� yÞ ^ ðq P �yÞ ^ ðq P �x� yÞ

Writing d ¼ dim~s, the ILP problem has dþ 1 variables (one integer
variable per coordinate of~s, and one integer variable for q). Also, we
need d constraints to express the positivity of ~s coordinates, #D
constraints to express ~s �~d > 0 8~d 2 D, and #D constraints again
to express q P maxð�ð~s �~d1Þ; . . . ;�ð~s �~dpÞÞ. Finally, we end up with
an ILP problem with dþ 1 variables and dþ ð2 �#DÞ constraints.

On the Jacobi 1D example, we have d ¼ dim~s ¼ 2 coordinates
for ~s and #D ¼ 3 dependences. Hence, we obtain an ILP problem
with 2þ 1 ¼ 3 variables and 2þ 2 � 3 ¼ 8 constraints.

Step b. Find the remaining tiling hyperplanes
Let us assume a nesting depth of n, and let us assume that p < n

tiling hyperplanes H~s;H~/1
; . . . ;H~/p�1

were already found. We can
compute a vector ~u orthogonal to the vector space spanned by
~s;~/1; . . . ;~/p�1 using the internal inverse method [38]. Then, the
new tiling hyperplane vector ~/p can be built by means of ILP tech-
niques with the following constraints.

� ~/p must be a valid tiling hyperplane: ~/p:
~d P 0 for every depen-

dence vector ~d 2 D.
� ~/p must be linearly independent to the other hyperplanes:
~/p:~u – 0. Formally, the two cases ~/p:~u > 0 and ~/p:~u < 0 should
be investigated. As we just expect the tiling hyperplanes to be
valid, without any optimality criteria, we can restrict to the case
~/p:~u > 0 to get a single ILP.

Any solution of this ILP gives a valid tiling hyperplane. Starting from
H~s, and applying repeatedly the process, we get valid loop tiling
hyperplanes H ¼ ðH~/1

; . . . ;H~/n�2
;H~s;H~/n�1

Þ and the corresponding
tiling matrix UH.

With the same notations as for step a), we get an ILP problem
with d variables. Also, we need #D constraints to express
~/p:

~d P 0 8~d 2 D; d constraints to ensure the positivity of ~s coordi-
nates, 1 constraint to express that ~s –~0, and 1 constraint to ex-
press that /p �~u > 0. Hence, we get #Dþ dþ 2 constraints.

On the Jacobi 1D example, we get an ILP problem with d ¼ 2
variables and 3þ 2þ 2 ¼ 7 constraints.

It is possible to add an objective function to reduce the amount
of communication between tiles. Many approaches give a partial
solution to this problem in the context of automatic parallelization
and high performance computing [38,39,36]. However how to
adapt them in our context is not straightforward and is left for fu-
ture work.

Step c. Compute the dependence distances
Given a dependence vector~d and an iteration~x in a tile slice the

set of iterations~i executed between~x and ~xþ~d is exactly:
Dð~x;~dÞ ¼ f~i j UH~x� UH~i� UHðxþ~dÞg

Remember that UH, the tiling matrix computed in the previous step,
is also the intra-tile schedule matrix. By construction, Dð~x;~dÞ is a fi-
nite union of integral polyhedron. Now, the dependence distance
Dð~dÞ is exactly the number of integral points in Dð~x;~dÞ. As the
dependence distances are constant, this quantity does not depend
on ~x. The number of integral points in a polyhedron can be com-
puted with the Ehrhart polynomial method [40] which is imple-
mented in the polyhedral library [41]. Here, the result is a degree
1 polynomial in the tile size ‘n�2 associated to the hyperplane
Hn�2;Dð~dÞ ¼ a‘n�2 þ b. Then, given a fixed input pipeline depth d
for the FloPoCo operator, two cases can arise:

� Either we just have one dependence, D ¼ f~dg. Then, solve
Dð~dÞ ¼ d to obtain the right tile size ‘n�2.
� Either we have several dependencies, D ¼ f~d1; . . . ;~dpg. Then,

choose the dependence vectors with smallest a, and among
them choose a dependence vector ~dm with a smallest b. Solve
Dð~dmÞ ¼ d to obtain the right tile size ‘n�2. Replacing ‘n�2 by
its actual value gives the remaining dependence distances
Dð~diÞ for i – m, that can be sorted by increasing order and used
to add additional pipeline registers to the FloPoCo operator in
the way described for the Jacobi 1D example (see Fig. 4b).

4.4. Step 2: Generating the control

This section explains how to generate the finite state machine
(FSM) that will control the computational kernels according to
the schedule computed in the previous section. A direct translation
of loops would produce multiple synchronized Finite State Ma-
chines (FSMs), each FSM having an initialization time (initialize
the counters) resulting in an operator stall on every iteration of
the outer loops. We avoid this problem by using the Boulet-Feau-
trier algorithm [42] which generates a single FSM capturing the
whole execution schedule of the loop nest. At each cycle, the
resulting FSM executes the next operation scheduled. This allows
to respect the timing induced by dependence distances. The states
of the Boulet-Feautrier FSM are simply assignment numbers, each
transition updating the assignment number and the loop counters
signals. The Boulet-Feautrier procedure takes as input the tiled
iteration domain and the scheduling matrix UH and uses ILP tech-
niques to generate two functions. A function First () returning the
initial state of the FSM with initialized loop counters. And a func-
tion Next () which updates the loop counters and gives the next
state.

Then, the functions First () and Next () are trivially translated
into a VHDL FSM.

The signal assignments in the FSM do not take into account the
pipeline level at which the signals are connected. Therefore, we use
additional registers to delay every control signal with respect to its
pipeline depth. This ensures a correct execution without increasing
the complexity of the state machine.

4.5. Step 3: Computing core

In this section, we present the general architecture of the com-
puting core which will be used for all the kernels. The architecture
is presented in Fig. 5. It consists of the FSM, the FloPoCo core and
multiple memories that the design may require. For the matrix-
multiplication example there are two memories which contain
matrices A and B, and one memory to store the matrix C. In general
case we can have N input memories and M output ones.

The FSM generates address and control signals for memories
and control signals to FloPoCo core. When generating the FSM,
we do not take into consideration the pipelined architecture, so

A B C

Fig. 6. Matrix–matrix multiply using blocking.

Fig. 5. Computing core architecture.

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 613
write to memory signals cannot be directly connected. We use
loop software pipelining method [10] to insert correct delay regis-
ters. Control signals for the FloPoCo core are delayed inside the
core. In this case, the pipelined FloPoCo core can be viewed as a
pipelined loop basic block. In our case the initiation interval of
the loop is one and the latency is equal to the delay of the FloPoCo
core plus one (latency of the memory read). The presented method
is suitable for regular kernels where the execution can be statically
determined, as the control flow does not depend on values pro-
duced in the kernel.
A B C

Fig. 7. Matrix–matrix multiply blocking applied using our technique. Scheduling of
computations is modified in order to minimize external memory usage.
5. Parallelization and communication optimization

In the previous sections we have described an effective method
for efficiently mapping an entire computational task described by a
perfect loop nest to one computing kernel. In this section show
how this methodology can be effectively utilized for generating
the control FSMs needed for scheduling this task onto multiple
computing kernels.

5.1. Matrix–matrix multiplication

Parallelizing the matrix–matrix multiplication kernel can be
seen as simple due to the fact that both external loops i and j carry
no dependencies. However, this is not entirely true if we want this
parallelization to be efficient as well, with regard to memory
transfers.

A naive implementation of a single computing kernel perform-
ing C ¼ AB requires 4N3 memory accesses: N3 readðaÞ þ readðbÞþð
readðcÞ þ storeðcÞÞ. At each step two elements are ready from A
and B together with the destination accumulator from C. After
the computation is done, the corresponding element from c is up-
dated in the memory. By using our technique to reschedule the
execution of this core we avoid having to read and update c at each
iteration step, as its value is stored inside the pipeline’s registers:
N2ðNðreadðaÞ þ readðbÞÞ þ storeðcÞÞ.

We can additionally reduce this cost if we are provided with lo-
cal memory. Blocking consists is splitting the input matrices into
blocks which are fetched in pairs into the local memory. Fig. 6
illustrates this technique. For a given block-size p� q (where we
suppose for simplicity that both p and q divide N) and suppose
we are provided with 2ðp� qÞ þ ðp� pÞ local memory for buffering
(sufficient to store one block from A;B and C), the external memory
requirement is:

M ¼ 2
N
p

N
q

N
p
ðp� qÞ þ 2

N
q
� 1

� �
N2

p2 ðp� pÞ ¼ 2
N3

p
þ 2

N
q
� 1

� �
N2

The technique trades local memory requirement for memory band-
width. For p ¼ q ¼ N it reduces to storing locally the three matrices
3N2 buffer. The bandwidth requirement is 2N2 for fetching A and B
and N2 for writing C.

When the execution schedules the processing of consecutive
memory blocks in the direction of j : A0;0 � B0;0;A0;1 � B1;0 etc. the
same block C block will get affected, and is therefore possible to
skip its writing to memory until the last product affecting it was
processed (C0;0 is written to the main memory only when
A0;1 � B1;0 was complete. This reduces our memory bandwidth to
2 N3

p þ N2. Now, by applying our scheduling technique, we are able
to process entire computation without even needing a buffer for
the C block (its values are stored inside the operator’s pipeline lev-
els). The current technique requires freezing the computational
kernels the time needed to fetch a new pair of blocks from A and B.

Consider the Fig. 7 which illustrates how our scheduling algo-
rithm would perform if blocking was used. Note that m denotes
the number of stages of our accumulator (see Fig. 4a). The points
executed in the i direction of are on parallel front and therefore
have no data dependencies. While m is fixed by the operator’s
pipeline depth, the size of the internal memory dictates the size
of q.

When sufficient local memory is available, a second well known
technique, double buffering, is used to interlacing memory access
and computations. Provided we are assigned twice the local mem-
ory we need for our enhanced blocking, 2� 2ðp� qÞ, the idea is to
fetch the next set of blocks from A and B for computation at time
t þ 1 while performing the computing stage at time t. This said,
when a variable is reused on successive tiles, it is better to load
it one time for all, and to avoid reloading it for each tile. An exact
solution to this problem has been found recently [43]. The objec-
tive now is to try to reuse the same fetched block as much as
possible.

The execution schedule is optimized such to maximize the use
of the A block buffer. Successive blocks of A and B (A is by far more
costly with a size of m� q whereas B has a size q� 1) are fetched
from the memory in the direction of j for A and i for B. Once the
edge is reached (say we have finished processing A0;1 � B1;0), we
keep A0;1 (which would be costly to discard) and we load B1,1 in-
stead. We can clearly execute the accumulation on C iterating from
N � 1 towards 0. This saves an important amount of external mem-
ory accesses particularly when implementing the double buffering
technique.

Fig. 9. Inter tile slice iteration domain for Jacobi 1D stencil code. The parallel
hyperplane has ~s ¼ ð1;3Þ and describes the tile-slices which can be executed in
parallel. The dashed lines indicated various translations of the hyperplane H~s

showing different levels of parallelism.

614 C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619
Now, finally we consider using multiple processing elements to
accomplish the task. It is easy too see that up to m PEs can work on
the same block of A and on m different blocks of B (Bml;mðlþ1Þ�1). The
local memory requirement is as much 2�m� q for such a case (m
PEs). The size of m can be increased within reasonable limits due to
the embedded memories which can act as shift-registers in mod-
ern FPGA devices. Nevertheless, it is much more likely that the
external memory bandwidth will be the real limitation.

5.2. One dimensional Jacobi stencil computation

In this section we will present two solutions to parallelize the
Jacobi 1D stencil execution. The first solution is based on classical
parallel execution of tile slices. Consider the execution of the tile
slices in Fig. 8. Finding what tile slices can be executed in parallel
reduces to finding a hyperplane parallel H~s which in the new iter-
ation domain of the tile slices.

The new iteration domain and the corresponding hyperplane H~s

are depicted in Fig. 9. The normal vector ~s ¼ ð1;3Þ indicates that
the maximum degree of parallelism is dN=3e. One could increase
this to dN=2e at the expense of performing a different tiling than
Fig. 8 shows. In the new tiling the tile slices at T ¼ 1 would be de-
scribed by the transition of the same hyperplane H~s as for T ¼ 0.
This increase the complexity of the border conditions (where we
propagate or execute virtual points). We believe that the complex-
ity of the conditions in such an implementation would severely af-
fect the performance of our FSM and we did not consider it further.

Our second proposed parallelization solution will be described
next. It was initially supposed to be example-specific; however
its execution can be extended to some reduced set of application
classes presenting dependence symmetries. The benefits of this
solution are: a wider degree of parallelism in execution and a re-
duced local memory size.

Fig. 10 presents the basic principle behind our proposed solu-
tion in the case of using two PEs. The iteration domain is split into
two parts (suppose for clarity that N is even in this example): right
part is tiled as previously described in Fig. 8 and the left parts tiling
is mirrored (symmetrical) to that on the right.

The tile slices intersect the neighboring iteration domains. The
set of points described by this intersection represent virtual itera-
tion points.

The border iteration points carry the dependencies between the
tile slices of neighboring iteration domains. On these points, the
green incoming dependence represents a datum computed by
neighboring PE which must be communicated. Thanks to the sym-
metry of the execution schedule, two symmetric iteration points
are executed at the same time. This means that two symmetric
border iteration points are executed at the same time. Consider
for example the iteration points executed at time 1 on Fig. 10,
say P1 on the left and P2 on the right, and consider the red depen-
dence starting from P1 to a point P3 executed by the right PE. The
Fig. 8. Tiled iteration domain for 1
corresponding datum should be communicated exactly at the exe-
cution of P3, which is the same as the symmetric of P3 in the left
PE. This means that the left PE should communicate the datum
as for a vertical dependence.

From the architecture perspective this involves widening the
green multiplexer of each accelerator with one input from the
neighboring blue extraction point and modifying the select line
of the multiplexer so to fetch the correct data for these border
points.

Fig. 11 illustrates the simplicity of this architecture. When
recursively instantiating multiple pairs of accelerators the tails of
the tile slices will similarly overlap. The border iteration points
at these intersections will be solved by the blue dependency from
neighbor. Consequently, the red multiplexer will have a third input
fed from the second neighbor’s blue dependency.

Notice that this method could be easily applied to any stencil
computation. The only difficulty is to insert a wire to communicate
the data at the relevant time. Indeed, it can happen that the sym-
metric of P3 is not targeted by a dependence starting from P1. In
this case, the execution distance with P1 should be computed as
in the step c, and extra wire/registers should be added.
5.3. Lessons

In this section, we have derived by hand several parallel pipe-
lined accelerators by following different methodologies. We have
started from the sequential accelerators generated with the tech-
nique described in the previous section.

For data parallel examples like matrix multiplication the parall-
elization is trivial and consists in instantiating multiple parallel
computational cores each having assigned a sub-domain of the glo-
bal iteration domain.

Unfortunately, for examples like Jacobi 1D, the parallelization is
not trivial. Due to many data dependencies, the parallel hyper-
planes are skewed. There exist an infinite number of such parallel
D Jacobi stencil computation.

Fig. 10. An alternative for executing the Jacobi Kernel using two processing elements.

Fig. 11. Architecture for the second proposed parallelization of Jacobi 1D

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 615
hyperplanes. One has to choose a trade-off between maximizing the
parallelism and not increasing dramatically the number of delay
registers. The second solution that consists in cutting the domain
into sub-domains which execute using a mirror-like schedule
seems to be more adapted for stencil examples as it benefits the
most from FPGA structure and fast direct links between adjacent
computational cores. This solution should be used for stencil exam-
ples on FPGA platforms and could be easily automatized.
6. Computing kernel accuracy and performance

In this section we show, on our two working examples that the
accelerators implementation cost can be significantly reduced by
designing operators which account for the application’s accuracy
requirements. In other words, given an average target relative error
(which roughly gives average number of valid result bits) we give a
heuristic for choosing the intermediary floating-point formats
based on a worst case error analysis. The validity of these heuris-
tics is then tested on several examples.

6.1. Matrix–matrix multiplication

Let us consider the matrix–matrix multiplication C AB, where
the elements of these matrices are floating-point numbers having
wE bits for representing the exponent and wF bits for representing
the fraction.

The standard iterative operator used in matrix–matrix multipli-
cation performs

PN�1
k¼0 ai;kbk;j. For relatively small values of N this

sum can be performed in parallel. For larger values of N an iterative
operator ci;j ci;j þ ai;kbk;j; k 2 0::N � 1 is used.

The iterative operator implementation requires assembling one
FP multiplier and one FP adder which serves as an accumulator.
First, we consider that the elements of the input matrices A and
B are exact and the instantiated FP operators employ the round-
to-nearest rounding mode (the result of a calculation is rounded
to the nearest floating-point number).

We denote by flð�Þ the evaluation in floating-point arithmetic of
an expression and we assume that the basic arithmetic operators
þ;�; �; = satisfy:

flðx op yÞ ¼ ðx op yÞð1þ dÞ; jdj 6 ulp=2

In plain words we state that the maximum rounding error intro-
duced by one of the above basic operations is bounded by 1/2
ulp and is in average 1/4 ulp.

During the iterative calculation of ci;j (a dot product between
one vector of A and one of B) the rounding errors build-up at each
iteration. Possible cancelations during iterations prevent us from
finding a practical static error bound in the general case. Therefore,
we decide to provide an approximate static error bound, for each
element of c by discarding the cancelation effects [44]. Let us con-
sider as an example the dot product between two vector having
two elements:

p̂0 ¼ a0b0ð1þ d0Þ
p̂1 ¼ a1b0ð1þ d1Þ
ŝ0 ¼ ðp̂0 þ p̂1Þð1þ d2Þ
¼ a0b0ð1þ d0Þð1þ d2Þ þ a0b0ð1þ d1Þð1þ d2Þ

From here on we do not wish to distinguish between the di so we
use a notation due to Higham [44] which denotes products of the
form ð1þ diÞ . . . ð1þ diþk�1Þ with ð1	 dÞk. Using this new notation,
the error the N-length dot-product kernel is:

ĉN ¼ ðbcN�1 þ ai;N�1bN�1;jð1	 dÞÞð1	 dÞ

¼ ai;0b0;jð1	 dÞN þ
XN�1

k¼1

ai;kbk;jð1	 dÞNþ1�k

A simplified way to express this, due to Higham [44] is using the fol-
lowing notation:

Yn

i¼1

ð1þ diÞqi ¼ 1þ hn;qi 2 f�1;1g

where:

jhnj 6
nu

1� nu
¼ cn

The dot product can then be written as:

ĉN ¼ ai;0b0;jð1þ hNÞ þ
XN�1

k¼1

ai;kbk;jð1þ hNþ1�kÞ

The error will exhibit the largest value when all sub-products have
the same magnitude, and the rounding errors will all have the same
sign. We will denote this bound by D. A well known rule of thumb
[44] states that given an error bound D, the average error will
roughly be

ffiffiffiffi
D
p

. The number of invalid bits due to rounding alone is
bounded by log2ðDÞ and is equal, on average to log2ð

ffiffiffiffi
D
p
Þ. This value

was indeed validated experimentally as presented in Table 1. which

Table 1
Minimum, average and maximum relative error out of a set of 4096 runs, for N ¼ 4096, the elements of A and B are uniformly distributed on the positive/entire floating-point axis.
The third architecture uses truncated multipliers having an error of 1 ulp with ulp ¼ 2�wF�6. Implementation results are given for a Virtex-4 speedgrade-3 FPGA device.

Architecture Sign Min Average Max Performance

SP in/out + 1.55e�08 (2�25) 5.19e�05 (2�14) 1.06e�04 (2�13) 21 clk, 368 MHz, 565 sl., 4 DSP

SP intern ± 3.00e�11 (2�34) 9.27e�06 (2�16) 1.68e�03 (2�9)

SP in/out + 9.34e�10 (2�29) 4.72e�07 (2�21) 1.49e�06 (2�19) 32 clk, 308 MHz, 1656 sl., 16 DSP

DP intern ± 3.00e�11 (2�34) 3.99e�06 (2�17) 8.42e�04 (2�10)

SP in/out + 1.11e�10 (2�33) 5.29e�07 (2�20) 1.64e�06 (2�19) 22 clk, 334 MHz, 952 sl., 1 DSP

wF þ 6 intern ± 3.02e�11 (2�34) 5.14e�06 (2�17) 1.29e�03 (2�9)

616 C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619
reports the minimum, average and maximum relative errors for the
vector product, the basic block in the matrix-multiplication algo-
rithm. The input vectors have been populated using positive random
numbers for one set of tests, and both positive and negative random
numbers for the second set, uniformly distributed on the corre-
sponding floating-point axis (uniformly distributed exponents).

The average relative error reported for a standard single-preci-
sion architecture using positive inputs (in order to avoid the effects
of cancelation) is of the order 2�14. The error bound obtained using
Eq. 6.1 is about 4100 ulp. Using the previously mentioned rule of
thumb, we expect that the average relative error in this case to beffiffiffiffiffiffiffiffiffiffiffiffi

4100
p

 64:03. Therefore the number of invalidated bits is equal
to dlog2ð64:03Þe ¼ 7. Which gives an expected average relative er-
ror of 2�16 which is close to the 2�14 obtained experimentally.

The second architecture listed in Table 1 processes the same SP
input data using double-precision operators. The result is finally
rounded back to single-precision. As expected, the accuracy of this
architecture is improved, at a significant increase in operator size.

The third architecture processes the same SP input data using
internal operators with a slightly larger precision (wF þ 6 bits).
Additionally, the floating-point multiplier is implemented using
the truncated multipliers [27] (allow reducing the number of DSP
blocks over classical implementations). Due to the extended frac-
tion, the ulp value for this architecture is 2�29. Accounting for
the lower multiplier accuracy and the final conversion back to sin-
gle precision, this architecture should still be roughly 26 times
more accurate than the SP version. Indeed, experimental results
presented in Table 1 confirm that the average relative error for this
implementation is of the order of 2�20;26 times smaller than the
2�14 for SP.

The second row presents same relative error values when the
input numbers are uniformly distributed on the entire floating-
point axis (positive and negative) making cancelations possible.
In average, each run had seven cancelations. It can be observed that
in such a situation, the three different architectures report similar
numbers for the relative errors. Improving accuracy in such a case
could be accomplished by avoiding cancelations as much as possi-
ble, allowing the computing unit to reorder the operations on the
fly. Unfortunately, the proposed scheduling solution requires
deterministic execution of operations which will not be the case
for such architectures.
Table 2
Minimum, average and maximum relative error for elements of an array in the Jacobi stenc
numbers are uniformly distributed within wF exponent values. Implementation results ar

Architecture Min Average

SP 1.29e�11 (2�35) 2.56e�06 (2�1

SP in/out, DP int. 1.90e�11 (2�38) 2.12e�08 (2�2

SP in/out, wF þ 3 int 1.78e�11 (2�35) 6.97e�08 (2�2
6.2. One dimensional Jacobi stencil computation

The Jacobi stencil computation offers similar optimization
opportunities. The main statement executes the averaging of three
consecutive members of array a at time t to update the middle in-
dex at time t þ 1.

We can model the impact of the rounding errors on this code
using the arithmetic model previously introduced. Consider the
assembly of standard floating-point operators.

âtþ1;k ¼ ðððât;k�1 þ ât;k�1Þð1þ d1Þ þ ât;kþ1Þð1þ d2Þ
1
3
Þð1þ d3Þ

¼ 1
3

ât;k�1ð1þ h3Þ þ ât;kð1þ h3Þ þ ât;kþ1ð1þ h2Þ
� �

The error bound after T steps is of the order h3T . In the case of an
FPGA architecture, this error bound can be reduced to h2T by using
a 3-input adder:

âtþ1;k ¼ ððât;k�1 þ ât;k�1 þ ât;kþ1Þð1þ d1Þ �
1
3
Þð1þ d2Þ

¼ 1
3

ât;k�1ð1þ h2Þ þ ât;kð1þ h2Þ þ ât;kþ1ð1þ h2Þ
� �

Using the same rule or thumb we estimate that the average error for
a single-precision implementation with two floating-point adders
and one constant multiplier will be 2�23þ5 ¼ 2�18 (dlog2ð

ffiffiffiffiffiffiffiffiffi
jh3T j

p
Þe ¼

5). This is indeed confirmed by the data presented in Table 2.
The our specific implementation (third line in Table 2) uses a

fused 3-input adder in order to enhance accuracy by saving one
rounding error. Moreover, it uses an extended format of wF þ 3
bits. The average error in ulps one would expect from this imple-
mentation is dlog2ð

ffiffiffiffiffiffiffiffiffi
jh2T j

p
Þe ¼ 4 which invalidates 4 lower bits. For-

tunately, the extended precision should absorb 3 of those, leaving
the relative error of the order 2�22. This is indeed confirmed by Ta-
ble 2.

6.3. Lessons

The heuristic we propose is very simple, works for codes involv-
ing the basic operations: þ;�;�;�;

ffiffiffi
x
p

working in floating-point
arithmetic. The first task consists in defining the average accuracy
requirement of the application (how many bits we expect, on aver-
il code over a total set of 4096 runs, for T ¼ 1024 iterations in the time direction. The
e given for a Virtex-4 speedgrade-3 FPGA device.

Max Performance

8) 5.24e�04 (2�10) 32 clk, 395 MHz, 954 slices
5) 5.83e�08 (2�24) 44 clk, 308 MHz, 2280 slices
3) 4.53e�06 (2�17) 31 clk, 313 MHz, 1716 slices

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 617
age to be valid in our result), which we denote by c. Why this aver-
age number of bits and not the worst case accuracy? In floating-
point arithmetic due to cancelations (subtraction of two very close
values) errors can be amplified theoretically at every subtraction,
possibly losing all the result’s accuracy.

Next, we express the accumulation of rounding errors (by dis-
carding the possible amplifying effect of cancelations) using the
model of floating-point arithmetic previously introduced (the
interested reader should check the excellent book by Higham
[44]). This gives us a worst case relative error (considering that
no cancelations have amplified any error in the process) which
we denote by D. We use the rule-of-thumb presented in [44]: the
average relative error of the result is roughly equal to

ffiffiffiffi
D
p

. The aver-
age number of invalidated bits, due to this error is f ¼ dlog2ð

ffiffiffiffi
D
p
Þe.

The working precision we chose for our circuit is therefore wþ f in
order to attain an average output accuracy of w.
7. Reality check

Table 3 presents synthesis results for both our running exam-
ples, using a large range of precisions, and two different FPGAs.
The results presented confirm that precision selection plays an
important role in determining the maximum number of operators
to be packed on one FPGA. As it can be remarked from the table,
our automation approach is both flexible (several precisions) and
portable (Virtex5 and StratixIII), while preserving good frequency
characteristics.

The generated kernel performance for one computing kernel is:
0.4 GFLOPs in the case of matrix–matrix multiplication, and 0.56
GFLOPs for Jacobi, for a 200 MHz clock frequency. Thanks to pro-
gram restructuring and optimized scheduling in the generated
Table 3
Synthesis results for the full (including FSM) MMM and Jacobi1D codes. Results obtained

Application FPGA Precision ðwE;wF Þ

Matrix–matrix Virtex5 (�3) (5, 10)
multiply (8, 23)

(10, 40)
N = 128 (11, 52)

(15,64)
StratixIII (5, 10)

(9, 36)

Jacobi1D stencil N = 1024 T = 1024 Virtex5 (�3) (5, 10)
(8, 23)
(15, 64)

StratixIII (5, 10)
(9, 36)
(15, 64)

Table 4
Synthesis results for the parallelized MMM and Jacobi1D. Results obtained using Quartus

Application Par. factor Frequency (M

Matrix–matrix Multiply N = 128 1 308
2 282
4 303
8 302

16 281

Jacobi1D stencil N = 1024 T = 1024 1 311
2 295
4 283
8 274

16 251
FSM, the pipelined kernels are used with very high efficiency. Here,
the efficiency can be defined as the percentage of useful (non-vir-
tual) inputs fed to the pipelined operator. This can be expressed as
the ratio #ðI n VÞ=#I , where I is the iteration domain, as defined
in Section 4 and V# I is the set of virtual iterations. The efficiency
represents more than 99% for matrix-multiply, and more than 94%

for Jacobi 1D. Taking into account the kernel size and operating fre-
quencies, tens, even hundreds of pipelined operators can be packed
per FPGA, resulting in significant potential speedups.

Table 4 presents synthesis results of the parallelization for both
our running examples on the StratixIII FPGA using the single preci-
sion format. As expected, due to massive parallelism and no inter
parallel process communication, for matrix multiplication example
the scaling in terms of resources is proportional to the paralleliza-
tion factor. The maximum operating frequency remains fairly con-
stant. Jacobi 1D scales very well too. A small increase in utilized
resources is due to the increase in the multiplexer size in order
to fit signals from neighbor computational cores. The frequency re-
mains fairly constant. This proves that our method is well suited
for FPGA implementation.

There exists several manual approaches like the one described
in [45] that presents a manually implemented acceleration of ma-
trix–matrix multiplication on FPGA. Unfortunately, the paper
lacks of detailed experimental results, so we are unable to per-
form correct performance comparisons. Our approach is fully
automated, and we can clearly point important performance opti-
mization. To store intermediate results, there approach makes a
systematic use of local SRAM memory, whereas we rely on pipe-
line registers to minimize the use of local SRAM memory. As con-
cerns commercial HLS tools, the comparisons are made difficult
due to lack of clear documentation as well as software availability
to academics.
using Xilinx ISE 11.5 for Virtex5, and QuartusII 9.0 for StratixIII.

Latency (cycles) Frequency (MHz) Resources

REG (A) LUT DSPs

11 277 320 526 1
15 281 592 864 2
14 175 978 2098 4
15 150 1315 2122 8
15 189 1634 4036 8
12 276 399 549 2
12 218 978 2098 4

98 255 770 1013 –
98 250 1559 1833 –
98 147 3669 4558 –
98 284 1141 1058 –
98 261 2883 2266 –
98 199 4921 3978 –

II 10.1 for StratixIII with wE ¼ 8;wF ¼ 23.

Hz) Resources

REG (A) LUT M9K DSPs

701 614 3 4
1317 999 5 8
2473 1789 12 16
4842 3291 20 32
9582 6291 32 64

1217 1199 9 –
2394 2095 21 –
4600 3853 38 –
9018 7314 69 –

17806 14218 132 –

618 C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619
8. Conclusion and future work

In this article, we have shown how the polyhedral compilation
framework can be used to derive efficient hardware accelerators
assuming a datapath with pipelined arithmetic operators. We tar-
get FPGAs as our arithmetic does, but the compilations techniques
presented here (scheduling and code generation) are very general
and could be applied for other hardware categories. Our work
has several contributions.

First, we have presented a novel approach to derive automati-
cally an efficient, sequential, hardware with accurate pipelined
arithmetic. We used state-of-the-art polyhedral compilation tech-
niques to reschedule the kernel execution so that the arithmetic
pipelines are used optimally. Our HLS flow has been implemented
in the research compiler Bee, using FloPoCo to generate specialized
pipelined floating point arithmetic operators. We have applied our
method on two DSP kernels; the obtained circuits have very high
pipelined operator utilization and high operating frequencies, even
for algorithms with tricky data dependencies and operating on
high precision floating point numbers.

Second, we have shown how efficient parallel hardware can be
designed starting with automatically derived sequential hardware.
Particularly, we show how to produce a parallel hardware for sten-
cil computations in a semi-automatic way. As a bonus, the commu-
nications between processing elements are minimal with our
scheme.

Finally, we have presented a heuristic method that given the
average target accuracy for an application allows dimensioning
the internal floating-point arithmetic data-path to obtain this
accuracy. This technique can be easily automated and integrated
in the same compiler tool. The savings in terms of resource usage
implied by this technique are significant.

In the future, it would be interesting to extend our technique to
non-perfect loop nests. This requires considering each assignment
as a process, the whole kernel being a network of communicating
processes. Several models of process networks can be investigated,
depending on the communication medium between processes
(FIFOs or buffers).

As for many other HLS tools, the HLS flow described in this arti-
cle focuses on optimizing the computational part, assuming the
availability of the data. We have shown in a previous work [43]
how to generate the hardware to prefetch the data from the
DDR, with minimal DDR accesses and local memory size. Again,
this technique works well for perfect loop nest, but its extension
to non-perfect loop nest remains a challenge that must be tackled
at the same time as kernel scheduling presented in the previous
paragraph.

References

[1] F. de Dinechin, B. Pasca, Designing custom arithmetic data paths with FloPoCo,
IEEE Design and Test.

[2] S. Perry, Model based design needs high level synthesis: a collection of high
level synthesis techniques to improve productivity and quality of results for
model based electronic design, in: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’09, European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, 2009, pp. 1202–1207. <http://
portal.acm.org/citation.cfm?id=1874620.1874909>.

[3] M. Langhammer, T. VanCourt, Fpga floating point datapath compiler, Field-
Programmable Custom Computing Machines, Annual IEEE Symposium 0
(2009) 259–262. doi: http://doi.ieeecomputersociety.org/10.1109/
FCCM.2009.54.

[4] E. Martin, O. Sentieys, H. Dubois, J.-L. Philippe, Gaut: An architectural synthesis
tool for dedicated signal processors, in: Design Automation Conference with
EURO-VHDL’93 (EURO-DAC), 1993. doi:10.1109/EURDAC.1993.410610.

[5] Impulse-C. <http://www.impulseaccelerated.com>.
[6] AutoESL, Autopilot datasheet, 2009.
[7] Forte Design Systems: Cynthesizer. <http://www.forteds.com>.
[8] Synopsys: Synphony. <http://www.synopsys.com/>.
[9] Nios II C2H Compiler User Guide, version 9.1. <http://www.altera.com>
(11.09).

[10] J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable
Architectures, 2009. doi: 10.1007/978-0-387-09671-1.

[11] S. Gupta, N. Dutt, R. Gupta, A. Nicolau, Spark: a high-level synthesis framework
for applying parallelizing compiler transformations, in: International
Conference on VLSI Design, doi: http://doi.ieeecomputersociety.org/10.1109/
ICVD.2003.1183177.

[12] Mentor CatapultC high-level synthesis. <http://www.mentor.com>.
[13] M. Amini, C. Ancourt, F. Coelho, B. Creusillet, S. Guelton, F. Irigoin, P. Jouvelot,

R. Keryell, P. Villalon, Pips is not (just) polyhedral software, in: 1st Workshop
on Polyhedral Compilation Techniques (IMPACT), 2011.

[14] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton, J.O.
McMahon, F.X. Pasquier, G. Pan, P. Villalon, Par4all: From convex array regions
to heterogeneous computing, in: 2nd Workshop on Polyhedral Compilation
Techniques (IMPACT), 2012.

[15] V. Kathail, S. Aditya, R. Schreiber, B. Rau, D. Cronquist, M. Sivaraman, Pico:
Automatically designing custom computers, Computer 35 (2002) 39–+.

[16] A. Turjan, B. Kienhuis, E. Deprettere, Translating affine nested-loop programs
to process networks, in: International conference on Compilers, architecture,
and synthesis for embedded systems (CASES’04), ACM, New York, NY, USA,
2004, pp. 220–229.

[17] E.F. Deprettere, E. Rijpkema, P. Lieverse, B. Kienhuis, Compaan: deriving
process networks from Matlab for embedded signal processing architectures,
in: 8th International Workshop on Hardware/Software Codesign
(CODES’2000), San Diego, CA, 2000.

[18] C. Alias, F. Baray, A. Darte, Bee+Cl@k: an implementation of lattice-based
memory reuse in the source-to-source translator ROSE, in: ACM SIGPLAN/
SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2007.

[19] L. Zhuo, V.K. Prasanna, High performance linear algebra operations on
reconfigurable systems, in: ACM/IEEE conference on Supercomputing, IEEE,
2005. doi:http://dx.doi.org/10.1109/SC.2005.31.

[20] M.R. Bodnar, J.R. Humphrey, P.F. Curt, J.P. Durbano, D.W. Prather, Floating-
point accumulation circuit for matrix applications, in: International
Symposium on Field-Programmable Custom Computing Machines, IEEE
Computer Society, 2006, pp. 303–304. doi:http://
doi.ieeecomputersociety.org/10.1109/FCCM.2006.41.

[21] ISE 11.4 CORE Generator IP. <http://www.xilinx.com>.
[22] MegaWizard Plug-In Manager. <http://www.altera.com>.
[23] B. Pasca, High-performance floating-point computing on reconfigurable

circuits, Ph.D. thesis, Ecole Normale Suprieure de Lyon, 2011.
[24] M. Langhammer, Floating point datapath synthesis for FPGAs, in: International

Conference on Field Programmable Logic and Applications, 2008, pp. 355–360.
doi: 10.1109/FPL.2008.4629963.

[25] F. de Dinechin, B. Pasca, Large multipliers with fewer DSP blocks, in: Field
Programmable Logic and Applications, IEEE, 2009.

[26] N. Brisebarre, F. de Dinechin, J.-M. Muller, Integer and floating-point constant
multipliers for FPGAs, Application-Specific Systems, Architectures and
Processors, IEEE International Conference 0 (2008) 239–244. doi:http://
doi.ieeecomputersociety.org/10.1109/ASAP.2008.4580184.

[27] S. Banescu, F. de Dinechin, B. Pasca, R. Tudoran, Multipliers for floating-point
double precision and beyond on FPGAs, in: International Workshop on Higly-
Efficient Accelerators and Reconfigurable Technologies (HEART), ACM, 2010.

[28] F. de Dinechin, B. Pasca, O. Cret�, R. Tudoran, An FPGA-specific approach to
floating-point accumulation and sum-of-products, in: Field-Programmable
Technologies, IEEE, 2008.

[29] F. de Dinechin, M. Joldes, B. Pasca, Automatic generation of polynomial-based
hardware architectures for function evaluation, in: 21st IEEE International
Conference on Application-specific Systems, Architectures and Processors
(ASAP), Rennes, 2010.

[30] F. de Dinechin, M. Joldes, B. Pasca, G. Revy, Multiplicative square root
algorithms for FPGAs, in: Field Programmable Logic and Applications, IEEE,
2010.

[31] F. de Dinechin, A flexible floating-point logarithm for reconfigurable
computers, Lip research report RR2010-22, ENS-Lyon, 2010. <http://
prunel.ccsd.cnrs.fr/ensl-00506122/>.

[32] F. de Dinechin, B. Pasca, Floating-point exponential functions for DSP-enabled
FPGAs, in: Field Programmable Technologies, IEEE, 2010. <http://
prunel.ccsd.cnrs.fr/ensl-00506125/>.

[33] P. Feautrier, C. Lengauer, The polyhedron model, Encyclopedia of Parallel
Computing.

[34] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, O. Temam, Putting polyhedral loop
transformations to work, in: International Workshop on Languages and
Compilers for Parallel Computing (LCPC), 2003.

[35] F. Irigoin, R. Triolet, Supernode partitioning, in: 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1988.

[36] J. Xue, Loop Tiling for Parallelism, Kluwer Academic Publishers, 2000.
[37] P. Feautrier, Parametric integer programming, RAIRO Recherche

Opérationnelle 22 (3) (1988) 243–268.
[38] U. Bondhugula, A. Hartono, J. Ramanujam, P. Sadayappan, A practical

automatic polyhedral parallelizer and locality optimizer, in: ACM
International Conference on Programming Languages Design and
Implementation (PLDI), 2008.

http://portal.acm.org/citation.cfm?id=1874620.1874909
http://portal.acm.org/citation.cfm?id=1874620.1874909
http://www.impulseaccelerated.com
http://www.forteds.com
http://www.synopsys.com/
http://www.altera.com
http://www.mentor.com
http://www.xilinx.com
http://www.altera.com
http://prunel.ccsd.cnrs.fr/ensl-00506122/
http://prunel.ccsd.cnrs.fr/ensl-00506122/
http://prunel.ccsd.cnrs.fr/ensl-00506125/
http://prunel.ccsd.cnrs.fr/ensl-00506125/

C. Alias et al. / Microprocessors and Microsystems 36 (2012) 606–619 619
[39] A.W. Lim, M.S. Lam, Maximizing parallelism and minimizing synchronization
with affine transforms, in: 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 1997.

[40] P. Clauss, Counting solutions to linear and nonlinear constraints through
Ehrhart polynomials: Applications to analyze and transform scientific
programs, in: ACM International Conference on Supercomputing (ICS), 1996.

[41] Polylib – A library of polyhedral functions. <http://www.irisa.fr/polylib>.
[42] P. Boulet, P. Feautrier, Scanning polyhedra without Do-loops, in: IEEE

International Conference on Parallel Architectures and Compilation
Techniques (PACT), 1998.

[43] A. Plesco, Program transformations and memory architecture optimizations
for High-Level Synthesis of hardware accelerators, Ph.D. thesis, École Normale
Supérieure de Lyon, 2010.

[44] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second ed., SIAM,
Philadelphia, PA, 2002.

[45] Y. Dou, S. Vassiliadis, G.K. Kuzmanov, G.N. Gaydadjiev, 64-bit floating-point
FPGA matrix multiplication, in: ACM/SIGDA symposium on Field-
Programmable Gate Arrays (FPGA), 2005.

Christophe Alias received his Ph.D. in Computer Science
from the University of Versailles in 2005. He is currently
a permanent research scientist at INRIA. His research
interests include polyhedral compilation techniques
and high-level synthesis.
Bogdan Pasca is pursuing a Ph.D. in the Department of
Computer Science at École Normale Supérieure de Lyon.
His research interests include FPGA computing and
hardware computer arithmetic. He has an MSc in com-
puter science from École Normale Supérieure de Lyon
and an engineering degree from the Technical Univer-
sity of Cluj-Napoca.
Alexandru Plesco received his Ph.D. in Computer Sci-
ence from Ecole Normale Superieure de Lyon in 2010.
He is in the process of creating a startup arround the
technologies presented in this paper. His research
interests include polyhedral compilation techniques
and high-level synthesis.

http://www.irisa.fr/polylib

	FPGA-specific synthesis of loop-nests with pipelined computational cores
	1 Introduction
	2 Related work
	3 Designing arithmetic kernels using FloPoCo
	4 Generation of sequential hardware with pipelined operators
	4.1 Program model and background
	4.1.1 Program model
	4.1.2 Dependence vectors
	4.1.3 Schedules and hyperplanes
	4.1.4 Loop tiling
	4.1.5 Dependence distance

	4.2 Motivating examples
	4.2.1 Matrix–matrix multiplication
	4.2.2 Jacobi 1D.

	4.3 Step 1: Scheduling the Kernel
	4.4 Step 2: Generating the control
	4.5 Step 3: Computing core

	5 Parallelization and communication optimization
	5.1 Matrix–matrix multiplication
	5.2 One dimensional Jacobi stencil computation
	5.3 Lessons

	6 Computing kernel accuracy and performance
	6.1 Matrix–matrix multiplication
	6.2 One dimensional Jacobi stencil computation
	6.3 Lessons

	7 Reality check
	8 Conclusion and future work
	References

