
SToP : Scalable Termination analysis

of (C) Programs

Guillaume Andrieu 1

University of Lille
Villeneuve d’Ascq, France

Christophe Alias 2

LIP/INRIA
University of Lyon

Lyon, France

Laure Gonnord3

LIFL
University of Lille

Villeneuve d’Ascq, France

Abstract

In this paper we describe a general method to prove termination of C programs in a scalable
and modular way. The program to analyse is reduced to the smallest relevant subset through a
termination-specific slicing technique. Then, the program is divided into pieces of code that are
analysed separately, thanks to an external engine for termination. The result is implemented in
the prototype SToP over our previous toolsuite WTC ([2]) and preliminary results shows the
feasibility of the method.

Keywords: Static Analysis, Termination, Ranking functions, Modularity, Interprocedural
Analysis, Slicing.

1 Introduction

Although proving program termination is known to be undecidable, recent
progress in program analysis made it possible to predict the termination of an
always increasing class of sequential programs. The standard approach of the
seminal paper [9] which consists in finding a function from the states of the
program to some well-founded set, which strictly decreases at each program
point, remains standard. In [2], we proposed a general algorithm to discover

1 Email: andrieuguillaume42@gmail.com
2 Email: christophe.alias@ens-lyon.fr
3 Email: laure.gonnord@lifl.fr

c©2012 Published by Elsevier Science B. V.

mailto:andrieuguillaume42@gmail.com
mailto:christophe.alias@ens-lyon.fr
mailto:laure.gonnord@lifl.fr

Andrieu and Alias and Gonnord

multidimensional ranking functions from flowcharts programs, by means of
the resolution of linear programing (LP) instances. However, our experiments
showed two main problems to scale to larger C programs :
• Although our C parser, namely C2fsm ([8]) was designed to handle a

large part of C syntax, many syntactical variants are not handled. Most
of them could be ignored to prove the termination.

• Moreover, the size of the LP problems increases with the number of code
lines, and thus quickly become intractable.

In this paper, we propose an effective modular interprocedural termination
analysis, which relies on the previous method, but enables to analyse a broad
range of C programs, and validate this approach on a large benchmark of the
literature. Our method relies on classical methods from static analysis and
compilation, such as slicing and summaries, but as far as we know, is the first
attempt in proving termination of a large set of C programs in a modular way.

The rest of the paper is organized as follows. In section 2, we introduce our
motivation of a challenging program of the literature. In section 3 we quickly
introduce our notation and theoretical foundations. In section 4 we describe
our method, and we evaluate it on a large bench of middle-sized programs in
section 6. We end with related works (section 7) and a conclusion.

2 Motivating example

In this paper we detail our method on an implementation of the merge sort
of an array. The code is taken from [5] and is depicted in Figure 1. For sake
of lisibility, we drawed boxes around innerloops, and commented the end of
outer loops.

C
program

OK
DK

TOOMuch

1 32

C2FSM
(parser)

ASPIC
(Analyser)

automaton RANK
(termination

proof)

diagnostic

invariants
+ automaton

Fig. 2. WTC toolchain

Calling our tool suite (Figure 2) detailed in [2] and [8] gives an intermediate
automaton of 12 variables, 80 transitions and 9 locations. Aspic successfully
computes the invariants but Rank fails with TWO_MUCH_VARIABLES error be-
cause the size of the underlying linear programming problem is too big.

The whole computation time is 12 seconds on a Intel Core2 @ 1.60GHz.
In the following, we will show how our method SToP , finally manages this
code to prove its termination.

2

Andrieu and Alias and Gonnord

1 int main () {
2 int n , i , j , k , l , t , h ,m, p , q , r ;
3 int up ; /∗ r e a l l y boo lean ∗/
4 int a [2∗n+1]
5 up = 1 ; p = 1 ;
6

7 loop4 : do{ // s o r t i n g a
8 h = 1 ;
9 m = n ;

10 i f (up == 1){
11 i = 1 ;
12 j = n ;
13 k = n+1;
14 l = 2∗n ;
15 } else {
16 k = 1 ;
17 l = n ;
18 i = n+1;
19 j = 2∗n ;
20 }
21 loop5 : do{
22 i f (m >= p)
23 q = p ;
24 else q = m;
25 m = m−q ;
26 i f (m >= p)
27 r = p ;
28 else r = m;
29 m = m−r ;
30

31 loop0 : while (q>0 && r>0) {
32 i f (a [i] < a [j]) {
33 a [k] = a [i] ;
34 k = k+h ;
35 i = i +1;
36 q = q−1;
37 } else {
38 a [k] = a [j] ;
39 k = k+h ;
40 j = j −1;
41 r = r−1;}

42

43

44 loop1 : while (r > 0){
45 a [k] = a [j] ;
46 k = k+h ;
47 j = j −1;
48 r = r−1; }
49

50

51 loop2 : while (q > 0){
52 a [k] = a [i] ;
53 k = k+h ;
54 i = i +1;
55 q = q−1;
56 }
57

58 h = −h ;
59 t = k ;
60 k = l ;
61 l = t ;
62 } while (m > 0) ; //end o f loop5
63

64 up = 1−up ;
65 p = 2∗p ;
66

67 } while (p<n) ; //end o f loop4
68

69 // f i n a l copy o f the array in the f i r s t h a l f o f a
70 i f (up == 0){
71 i = 1 ;
72

73 loop3 : while (i <= n){
74 a [i] = a [i+n] ;
75 i = i +1;
76 }
77

78 }//end i f t e s t up==0
79

80 return 0 ;
81 }

Fig. 1. Our motivating example: iterative merge sort

3 Preliminaries

3.1 Grammar for intraprocedural analysis

We define in Figure 3 a rather classical “mini while” grammar for programs,
named G. Expressions are simple Boolean and numerical expressions without
side-effects. The semantics of the programs is rather classical too and we do
not detail it.

On this kind of programs, the problem of proving termination is unde-
cidable, but like in [2] we will provide a sound (but not complete) analysis
that is able to deal with a large bench of problems. Basically, the method
described in this paper is based on the fact that while loops can be proven to
be terminating quite independently of the other ones, provided that we keep
an execution context precise enough, thanks to the notion of summary.

3

Andrieu and Alias and Gonnord

〈prog〉::=〈declaration list〉 〈statement list〉
〈declaration list〉::=〈decl〉 〈declaration list〉| (empty)
〈decl〉::=bool 〈ident〉 | int 〈ident〉
〈statement list〉::=〈statement〉 〈statement list〉 | (empty)
〈statement〉 ::= 〈assignment〉 | 〈ifstat〉 | 〈forstat〉 | 〈whilestat〉

|〈assertstat〉 | 〈breakstat〉
〈assignment〉 ::= 〈var〉 := 〈expr〉
〈ifstat〉 ::= if 〈expr〉 then 〈statement list〉 else 〈statement list〉
〈forstat〉 ::= for 〈var〉 from 〈expr〉 to 〈expr〉 do 〈statement list〉
〈whilestat〉 ::= while 〈formula〉 do 〈statementlist〉
〈breakstat〉 ::= break
〈assert stat〉 ::= assert 〈formula〉

Fig. 3. A simple grammar G for programs

3.2 Summaries

Definition 3.1 Let C ∈ G be a statement and RC(x0, y0, x, y) the relation-
ship between the values of the variables before and after C. C ′ ∈ G is said to
be an abstraction of C if RC ⊆ RC′ .

It is obvious that if we manage to prove that C ′ terminates, then C ter-
minates. Thanks to linear relation analysis, we are able to compute such
abstractions of code behaviours. We again use Aspic ([8]) with the appropri-

ate option to obtain a polyhedral over-approximation R̃C(x0, y0, x, y) of the
behaviour of a given code C.

Definition 3.2 [Summary] Let C be a code and RC(x0, y0, . . . , x, y) be an
over-approximation of the relation between initial variables x0, y0, . . . and final
variables x, y, Then the following code is called a summary of C :

x0 = x; y0 = y; ...

x = random(); y = random();...

if(!R_C(x0,y0, ..., x, y, ...)) break

The summary of C is obviously an abstraction of C and thus can be used
for proving the termination of C.

4 Intraprocedural modular termination

This section presents a termination procedure able to handle large programs.
Our termination procedure is based on the following remarks.
• The program terminates if and only if all the conditional loops (referred

as “while loops” in the following) terminate. Hence, the termination
analysis can focus on the smallest program slice which contains the while

4

Andrieu and Alias and Gonnord

loops and the minimum subset of instructions to preserve their behaviour.
This preprocessing is called termination-specific slicing and described in
subsection 4.1. In general, the slicing reduces drastically the program
size. However, this may not be sufficient (see for example our motivating
example) and the following analysis is generally required.

• Basically, a while loop terminates if and only if (i) the body terminates for
each iteration and (ii) the while loop itself terminates. This simple idea
allows to decompose a big termination problem into several termination
sub-problems, small enough to be processed successfully by WTC. The
detail of the decomposition is presented in subsection 4.2.

4.1 Step 1. Termination-Specific Slicing

The termination-specific slicing step is a preprocessing which extracts the
program subset relevant for proving termination. This subset must contains
the while loops and the instructions required to preserve their behaviour.

1 i f (up == 0){
2 i = 1 ;
3 while (i <= n){
4 a [i] = a [i+n] ;
5 i = i +1;
6 }
7 }

(a) Before slicing

1 i f (up == 0) {
2 i = 1 ;
3 while (i <= n){
4 i = (i + 1) ;
5 }
6 }

(b) After slicing

Fig. 4. Example for slicing taken from our motivating example

Consider the example given in figure 4. Clearly, for each variable used in
the while condition, the definition sites must be kept (here, i=1 and i=i+1).
But the variables read by these definitions sites must be kept as well, and so
on. This process boils down to a backward traversal of the data dependencies,
starting from the variables used in the while condition. Also, control depen-
dencies must be taken into account. On the example, the while loop will be
executed only when the then branch is chosen. In turn, this depends on the
up variable, on which the same process must be applied. These are the basic
ideas of program slicing, for which many variants has been developed [13] for
various purposes as reverse engineering, program comprehension,. . .

Our termination-specific slicing algorithm is depicted in Algorithm 1.
• Do Slice(function body), the main function, selects the set of while state-

ments of the current function body and runs the main slicing function,
Slice. Do Slice is applied to each function body of the program.

• Slice(stmt set) proceeds the definition sites of stmt set with a depth-
first traversal, flooding the connex part of stmt set in the meaning of
Definition Sites. Notice that the function mark(stmt) adds the line of

5

Andrieu and Alias and Gonnord

stmt to the slice. When stmt is a control structure (if, for,while,...), only
the control lines are added (e.g. if, else, {, }), not the body.

• Definition Sites(stmt) computes the set of statements whose stmt de-
pends immediately, in the meaning of data- and control-dependence.
More precisely, Definition Sites computes the reaching definitions [1]
RDstmt(xi) of each variable xi read by stmt. The result is a set of as-
signments which can possibly define the value of xi read by stmt. Also,
the immediate compound control structure of stmt, Compound(stmt), is
added if it exists. This way control dependencies are taken into account.

Algorithm 1 Termination-Specific Slicing Algorithm

1: function Do Slice(function body)
2: while loop set = set of while statements
3: Slice(while loop set)

//At this point, all the statements belonging to the slice are marked
4: end function
5: function Slice(stmt set)
6: for all stmt ∈ stmt set do
7: if is not marked(stmt) then
8: mark(stmt) //Add stmt to the slice
9: Slice(Definition Sites(stmt))
10: end if
11: end for
12: end function
13: function Definition Sites(stmt)
14: if stmt = x := expr[x1,...,xn] then

return RDstmt(x1) ∪ . . . ∪ RDstmt(xn) ∪ Compound(stmt)
15: end if
16: if stmt = if cond[x1,...,xn] then S1 else S2 then

return RDstmt(x1) ∪ . . . ∪ RDstmt(xn) ∪ Compound(stmt)
17: end if
18: if stmt = for i from expr1[x1,...,xn] to expr2[y1,...,yp] do S then

return RDstmt(x1) ∪ . . . ∪ RDstmt(yp) ∪ Compound(stmt)
19: end if
20: if stmt = while cond[x1,...xn] do S then

return RDstmt(x1) ∪ . . . ∪ RDstmt(xn) ∪ Compound(stmt)
21: end if
22: end function

Example (cont’d). Let us apply our slicing algorithm to the piece of
code given figure 4. This code has been picked from the end of the motivating
example. For the sake of the presentation, the while statement will be denoted
by “while” and the if statement by “if”.
• Do Slice call Slice with while loop set = { while }. Initially, the slice

is empty, no lines are marked. Lines 3 and 6 are marked, then
Definition Sites(while) is run and gives RD3(i) ∪ RD3(n) ∪ {if} =
{i=1, i=i+1, if}.

• Slice is then called on {i=1,i=i+1,if}. i=1 is processed first. Line 2
is marked and Definition Sites(i=1) is computed. i=1 does not read
variables, thus we get RD2(∅) ∪ {if} = {if}.

6

Andrieu and Alias and Gonnord

• Slice is then called on { if }. Lines 1 and 7 are marked. Defini-

tion Sites(if) gives RD1(up) ∪ ∅ = ∅. Indeed, up is not defined in this
piece of code and if has no compound control structure. So, no additional
recursive call is issued.

• Going back on the recursive calls, Slice({ i=i+1 }) is called. Line 5 is
marked, then Definition Sites(i=i+1) is computed and gives RD5(i) ∪
{if} = {i=1, i=i+1, if}.

• Slice is then called on {i=1,i=i+1,if}. All these statements were already
processed, so no further recursive exploration is done.

• Do Slice ends up with the slice defined by the marked lines
{1,2,3,5,6,7}. This slice excludes a[i]=a[i+n] which, indeed, does not
influence the termination of the while loop.

4.2 Step 2. Scalable Termination

This section presents a scalable termination procedure, which scatters the
termination proof into several proof obligations, on small programs with a
single conditional loop. These proof obligations will be small enough to be
handled successfully with the termination method WTC, presented in [2].

Here, although WTC is a tool that can handle programs (with nested
loops), we can see WTC as a termination engine that takes as input a single
loop and an execution context, and tries to prove that this loops terminates
under the given context. WTC can either answer OK, which means that the
program actually terminates, or DK, which is inconclusive.

Basically, our algorithm is based on the structure of the program to anal-
yse. As expressions have no side-effects, they terminate. Breaks and asserts
terminate. A sequence of instructions terminates if each terminates (given
their execution context). For tests, we have to prove the termination of each
branch under their respective contexts. A for loop terminates if its body ter-
minates (in our simple version of for loops). A (single) while loop terminates
if we are able to exhibit a ranking function. This is done by a call to our tool
WTC. To handle nested loops, we can replace the inner loop by a summary (3.2)
of its behaviour, and call WTC on the outer loop with a lesser body.

Algorithm

The previous remarks are implemented in Algorithm 2. The main function
ModularTerm takes as input a statement and a structure that is able to give
an over approximation of the context of each statement of the program under
analysis. These invariants are computed using linear relation analysis [7],
implemented in the Aspic tool ([8]). ModularTerm proceeds the abstract
syntactic tree with a depth-first traversal, evaluating each sub-tree to the
value OK if it terminates, or DK if the analysis does not succeed to answer. If
a sub-tree is evaluated to DK, the analysis fails and stops with DK output.

7

Andrieu and Alias and Gonnord

Algorithm 2 Scalable Algorithm for proving termination

1: function ModularTerm(statement,pcinvs)
2: if statement = x:=expr then return OK
3: end if
4: if statement = st1;st2 then
5: res←ModularTerm(st1, pcinvs)
6: if res = OK then
7: return ModularTerm(st2, pcinvs)
8: else
9: return DK
10: end if
11: end if
12: if statement = if cond then S1 else S2 then
13: res←ModularTerm(st1, pcinvs)
14: if res = OK then
15: res′ ←ModularTerm(st2, pcinvs)
16: return res′

17: else
18: return DK
19: end if
20: end if
21: if statement = for i from exp1 to exp2 do S then
22: return ModularTerm(S, pcinvs)
23: end if
24: if statement = while cond do S then
25: res←ModularTerm(S, pcinvs)
26: if res = DK then
27: return DK
28: else
29: context← getContext(statement, pcinvs)
30: res←WTC(context, statement)
31: if res = DK then
32: return DK
33: else
34: Compute a summary of the loop and replace in the code.
35: return OK
36: end if
37: end if
38: end if
39: end function

Let us focus on while loops. To analyse loops, the algorithm :

(i) First tries to prove the loop body to terminate. If the loop body cannot
be proved to terminate, then the analysis fails without having to analyse
the loop itself.

(ii) If the analysis succeeds, the termination of the loop is checked by applying
the WTC method described in [2] on the loop itself, under its context.

(iii) Then the loop is replaced by its summary (section 3.2).The analysis con-
tinues with this last code. Notice that the subsequent calls to WTC will
have to deal with simpler programs with a single loop, which reduces
scalability issues.

Notice that linear relation analysis expresses the invariants by a convex
polyhedron, which over-approximate the actual possible values of the vari-

8

Andrieu and Alias and Gonnord

ables. As a consequence, the precondition of the loop needed to apply WTC
(stored in pcinvs), as well as the summary of the loop are over-approximated.
These approximations can make unprovable programs which could be proved
successfully with WTC, on the cases where the ILP can be processed with a
reasonable amount of resource (time and memory) (see Section 6).

Example (cont’d). Our termination procedure processes the loops 0, 1,
2, 5, 4 and 3 in this order (deep-first search). For the sake of the presentation,
we will restrict the discussion to the first steps of the algorithm.

After instrumenting the code with loops labels and calling C2fsm and Aspic

on the resulting code, we find the following execution contexts for the loops :
• loop0 : {r ≥ 0, p ≥ q, p ≥ r, p ≥ 1,m ≥ 0, i + m + q + r ≥ j + 1}
• loop5 : {i + m + q ≥ j + 1,m ≥ 0, p ≥ 1q ≤ 0, r = 0}
WTC succeeds to prove the termination of loop0 under its context (its

finds the ranking function q+r), and also gives the following approximation for
its behaviour : {j ≤ j0∧i ≥ i0∧h = h0∧n = n0∧i+q = i0+q0∧j+r0 = r+j0}
whose summary is :

i0 = i; j0 = j; q0 = q; r0 = r; h0 = h; n0 = n;

if(!(<=j0 && i>= i0 && h=h0 && n=n0 && i+q=i0+q0 && j+r0=r+j0))

break;

Loop1 and loop2 are processed in the same way. At the end, the outer
loop loop5 no longer contains while loops, which were all substituted by an
abstraction of their effect on the variables.

The termination of loop5 comes from the two first conditions at the be-
ginning of loop5, whose global effect would be equivalent to the assignment m
= m - 2*min(p,m). As p ≥ 1 , m strictly decreases at each step of the loop
and will end up with the value 0, ensuring the termination. A call to WTC
ends with m as ranking function and gives a summary for loop5. In the same
way, the process continues with the remaining loop4 and loop3, and ends up
with the final answer OK, meaning that the program always terminates.

5 Extensions

5.1 Interprocedural analysis

We add the notion of function calls and a main. Dealing with local variables,
parameters, and function calls is rather classical. The main restrictions are
that we avoid recursive functions and modifications of the parameters and
global variables during the function calls.

〈function〉::= 〈declaration list〉 〈statement list〉
〈funcall〉::= 〈var〉 := 〈functionname〉 (〈var1〉 ... 〈varn〉)

9

Andrieu and Alias and Gonnord

To handle functions, we first compute invariants for all program functions
f : pcinvsf . Then, if the current statement is a function call x:=f(x1,...xn):

(i) Compute the projection of the call context at the current control point
(pcinvscaller(progpoint)) on the union of variables x1 . . . xn and the global
variables. This invariant is called callcontext.

(ii) Call recursively ModularTerm on the function body whose context is
modified by the call context : pcinvscallee ∩ callcontext.

5.2 Extensions to “full” C

For the moment, our tool is restricted to a subset of C and could not handle
a general C program. However, it is always possible to extend the set of
analysable programs with an appropriate set of normalizations, implemented
as a preprocessing. We give thereafter two important normalizations which
should enlarge drastically the class of analyzable programs.

For loops We assume the for loops to be Pascal-compliant: for i from

expr1 to expr2 do BLOCK(i);. In C, the for loops can be much
more general and used, for example, to iterate on linear data struc-
tures: for(ptr=first; ptr != NULL; ptr=next(ptr)) BLOCK(ptr). It
is easy to design a preprocessing which detects non-Pascal-compliant for

loops, and turn them into a while loop: ptr=first; while(ptr!=NULL)

{ BLOCK(ptr); ptr=next(ptr); }
Pointers We assume the program to be pointer-free. In C, the use of point-

ers complicate the data-dependence analysis, hence the slicing (because of
reaching definitions) and the invariant analysis. On the following program:
p = &a; q = &a; *p=1; *q=2; x = a; The reaching definition of a in x=a

should be RDx=a(a) = *q=2. Also, the invariant of x=a should implies
x = 2. To make these analysis possible, the interferences must be analyzed
carefully, thanks to pointer analysis [3]. However, the data-dependences
are over-approximated, thus this will affect the size of slices. As for the
invariant computation, the obtained data-dependencies should be analyzed
carefully to produce an integer interpreted automaton leading to correct
invariants. This analysis is not trivial and is left for future work.

6 Experimental results

We implemented our method as a driver over WTC, written in C++. The
total number of LOC is 3000 for the driver itself, and 150 additional lines for
statistics. The code intensively uses the source-to-source compiler infrastruc-
ture Rose ([12]) : functions for parsing, constructing flow graphs, searching in
the code structure, pretty printing and instrumenting C codes.

Table 1 give an extract of the experiments we made with our tool SToP (the
entire benchmark is available on http://compsys-tools.ens-lyon.fr/stop.

10

http://compsys-tools.ens-lyon.fr/stop

Andrieu and Alias and Gonnord

Benchmark #Progs LoCB LoCA Regressions WTC(s) SToP(s)

WTC1 50 28 21 3 0.92 2.45

WTC2* 6 55 39 0 3.66 3.52

Table 1
WTC1 and WTC2 denote middle-sized benchmarks taken from our previous experiments in [2].
WTC2 consist on a bench of 8 sorting functions from the literature, and WTC1 are also classical

codes including sipmamergesort,our motivating example. For each benchmark, we give its
number of programs, the average number of lines of codes before(LoCA) and after (LoCB) slicing,
Regressions denote the number of regressions (examples that were proven OK with WTC and for

which SToP now answers DK). We also give average execution times of each method.

The experiments were done on a Dual Core 2Ghz. As we expected, the
execution times on middle-sized examples are much larger with SToP than
WTC, mainly because of the cost of slicing and producing intermediate files. In
future versions of SToP , we will investigate the opportunity of calling WTC on
larger subprograms (some nested loops can be handled with a unique call to
WTC). For sorting functions, the method shows it pertinence in terms of timing
results and in terms of precision (it handles sipmamergesort in 22 seconds,
but we had to manage the very last step by hand by providing a coarser
abstraction for loop5). Thus SToP is able to deal with larger programs than
WTC and seems to scale well. More experiments remains nevertheless to be
done.

7 Related works

As far as we know, this is the first tentative of proving termination of C
programs in a modular way. Previous papers prove terminations of kernels,
and other papers such as [4] use what they call “C abstractors” to make
benchmarks but no general algorithm is given. Our algorithm is a driver built
upon WTC, a previous toolchain to prove the termination of (little) C codes.
To improve its precision, we could use (instead of WTC) other methods and
tools to prove fragments of code :
• The methods described in previous papers on termination such as [5],

[11] or more specialised methods for other kinds of programs such as
lists or trees ([10]). In these last cases, the numerical invariants that we
precompute may not be precise enough, though.

• Instead of testing if a given code fragment terminates under a given over-
approximation of its context, we can use the method described in [6] to
compute (sufficient) termination preconditions, and check if these pre-
conditions are satisfied under the given context.

As proving termination is undecidable, all these methods may positive results
when other ones timeout or give DK answer, thus they could be used as “on-
demand” back-ends.

11

Andrieu and Alias and Gonnord

8 Conclusion and Future works

In this paper we have presented a framework for proving the termination of C
programs in a modular way. We used WTC as a tool for proving termination of
simple loops, but the method is fully adaptable to other termination engines.
The preliminary experimental results show that they are relatively few regres-
sion cases comparing to the previous work published in [2], and we are able
to deal with larger programs such as sipmamergesort in reasonable time.

Future work include more tests to improve the reliability of our tool suite
with respect to C variants, and on much bigger programs such as linux drivers
and image processing codes. In particular, the size of the sub-programs gen-
erated by SToP expresses a trade-off execution time/precision which needs to
be investiguated.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986-2006.

[2] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional Rankings, Program
Termination, and Complexity Bounds of Flowchart Programs. In 17th International Static
Analysis Symposium, SAS’10, Perpignan, France, September 2010.

[3] W. Amme and E. Zehendner. Data dependence analysis in programs with pointers. Parallel
Computing, 24(3–4):505–525, May 1998.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability. In
17th International Conference on Computer Aided Verification (CAV), volume 3576 of Lecture
Notes in Computer Science, pages 491–504. Springer Verlag, July 2005.

[5] Michael A. Colón and Henny B. Sipma. Practical methods for proving program termination. In
14th International Conference on Computer Aided Verification (CAV), volume 2404 of Lecture
Notes in Computer Science, pages 442–454. Springer Verlag, January 2002.

[6] Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly Sagiv. Proving
conditional termination. In Proceedings of the 20th international conference on Computer
Aided Verification, CAV ’08, pages 328–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of
a program. In 5th ACM Symposium on Principles of Programming Languages (POPL’78),
Tucson.

[8] P. Feautrier and L. Gonnord. Accelerated Invariant Generation for C Programs with Aspic
and C2fsm. In Workshop on Tools for Automatic Program AnalysiS, TAPAS’10, Perpignan,
France, September 2010.

[9] Robert W. Floyd. Assigning meaning to programs. In Symposium on Applied Mathematics,
volume 19, pages 19–32. A.M.S., 1967.

[10] Peter Habermehl, Radu Iosif, Adam Rogalewicz, and Tomas Vojnar. Proving termination of
tree manipulating programs. In Automated Technology for Verification and Analysis, volume
4762 of Lecture Notes in Computer Science, pages 145–161. 2007.

[11] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Verification, Model Checking, and Abstract Interpretation (VMCAI’03),
volume 2937 of Lecture Notes in Computer Science, pages 239–251. Springer Verlag, 2004.

[12] D. J. Quinlan. Rose: Compiler support for object-oriented frameworks. Parallel Proc. Letters,
2000.

[13] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 1995.

12

	Introduction
	Motivating example
	Preliminaries
	Grammar for intraprocedural analysis
	Summaries

	Intraprocedural modular termination
	Step 1. Termination-Specific Slicing
	Step 2. Scalable Termination

	Extensions
	Interprocedural analysis
	Extensions to ``full'' C

	Experimental results
	Related works
	Conclusion and Future works
	References

