
Rank: A Tool to Check Program Termination and
Computational Complexity (Extended Abstract)

Christophe Alias∗, Alain Darte∗, Paul Feautrier∗, and Laure Gonnord†
∗Compsys, LIP, UMR 5668 CNRS, INRIA, ENS-Lyon, UCB-Lyon

Email: firstname.lastname@ens-lyon.fr
†LIFL, Université Lille I, Email: Laure.Gonnord@lifl.fr

Introduction. Proving the termination of a flowchart program
can be done by exhibiting a ranking function, i.e., a function
from the program states to a well-founded set that strictly
decreases at each program step. In a previous paper 1, we
proposed an algorithm to compute multidimensional affine
ranking functions for flowcharts of arbitrary structure. Our
method, although greedy, is provably complete for the class
of rankings we consider. The ranking functions we generate
can also be used to get upper bounds for the computational
complexity (number of transitions) of the source program. This
estimate is a polynomial, which means that we can handle
programs with more than linear complexity. This abstract aims
at presenting RANK, the tool that implements our algorithm.

Our tool. RANK starts from a C program, translated as an
integer interpreted automaton with state invariants. RANK
tries to prove the termination of the program by computing
(multidimensional affine) ranking functions. Two cases arise:

• In case of success, RANK computes the worst-case
computational complexity (WCCC) of the program.

• In case of failure, RANK tries to exhibit an input that
causes non-termination.

The termination part requires to solve large ILP programs. This
is achieved thanks to Piplib (http://www.piplib.org/). Some
tricks must be applied to avoid a complexity blow-up. For
example, by construction, many useless variables are intro-
duced (as a result of the application of Farkas lemma). Some
of them can be eliminated by Fourier-Motzkin elimination.

The non-termination part consists in detecting infinite loops

with ILP as well. Usually, the ILPs involved are reasonably
small and can be solved directly. This feature appears to be
very useful and helps us to debug some of our test programs
which were unexpectedly non-terminating (example of “bug”:
precondition p, q ≥ 0 missing in gcd(p, q)).

The WCCC part requires counting the number of integer
points in a polyhedron. This is done thanks to Polylib (http:
//icps.u-strasbg.fr/polylib). The result is a set of Ehrhart poly-
nomials, guarded by affine predicates on program parameters.

RANK is available through a web demonstrator at the url:
http://compsys-tools.ens-lyon.fr/rank

It has been tested successfully on examples collected from the
literature and provided on the web page too.
Discussion. All in all, RANK is bounded by (i) the cost of ILP
and (ii) the precision of state invariants. Surprisingly, (ii) was
accurate enough to solve most of our termination problems.
Most of the failures come from the approximations made while
translating the program to an integer interpreted automaton,
when control structures involve non-affine expressions. Some
properties could be inferred, such as the non-negativity of a
square. The impact of (i) can be reduced by analyzing the
program in a modular fashion. The program can be split into
slices, which can be analyzed separately. Such an approach
can explore the trade-off between the size of the slices (im-
pacting (i)), and the precision of the invariants (impacting (ii)).

1C. Alias et al. Multi-Dimensional Rankings, Program Termination, and
Complexity Bounds of Flowchart Programs. In SAS’10, pages 117–133, 2010.


