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1 Introduction
Tiling is a well known program transformation, typi-
cally applied to loop programs, used to reorder the com-
putation with many different goals: exploiting locality
in the memory hierarchy, adapting the granularity of
computation to data transfers, and/or exposing coarse-
grain parallelism, to name just a few. The tiling trans-
formation, T : ‡ 7→ 〈‡t, ‡l〉 maps a point z in the itera-
tion space to a tile zt and to a local index zl within a tile.
The computation performed at the new, reordered itera-
tion, 〈zt, zl〉 is identical to that performed at the original
point z. We view such a tiling as a purely “syntactic”
tiling. All previous research on tiling has adopted this
view. In particular, for every dependence edge z→ z′ in
the original computation, there is a corresponding edge
T (z)→ T (z′) in the transformed computation.

In this paper, we explore an alternative view, called
semantic tiling. It is first and foremost a tiling transfor-
mation, in the sense that we use a function T to map the
original iterations to the transformed ones. However, it
may not be true that the intermediate results computed
by the transformed program are identical to those in the
original. Alternatively, the transformation may make
use of semantic properties of the computations in or-
der to derive the tiled program. We illustrate our ideas
with some examples from dense linear algebra, where
“blocked” versions of the standard algorithms are well
known in the mathematical literature.

Consider the forward substitution problem. Let A be
a n×n be a lower triangular matrix and b a vector of size
n. The conventional program that solves the equation
A.x = b uses the following steps:

(1) Compute x0 = b0/A0,0.

(2) Compute xi =

bi −

i−1∑
j=0

Ai, j × x j

 /Ai,i, for i =
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1 . . . n − 1,

Let us break the matrix A into m × m sub-matrices
of size B × B, and let us index it such that Â[α, β] is the
〈α, β〉th submatrix of A. After transforming b into b̂, the
following program also solves the equation A.x = b by
manipulating matrices and vectors of size B:

(1) Compute x̂[0] = ForwSubst
(
Â[0, 0] , b̂[0]

)
.

(2) Compute, for i = 1 . . .m − 1,

x̂[i] = ForwSubst
(
Â[i, i],

(
b̂[i]	

i−1⊕
j=0

Â[i, j]⊗ x̂[ j]
))

where 	 and ⊗ are respectively the vector subtraction
and the matrix-vector multiplication, and

⊕
is vector

addition “summation.”
Notice that the structure of both program is the same,

with the exception that the first one manipulates scalars
and the second one matrices and vectors. Also, scalar
operations are replaced by the corresponding blocked
operations, and a recursive call to a scalar instance of
“ForwSubst” is used instead of scalar division.

One class of semantic tiling is a transformation that
takes the scalar version of a program as an input, and
which returns such a blocked version. This blocked
version has the same structure than the scalar version,
however it manipulates matrix and vectors instead of
scalars. The algebraic operators used are also trans-
formed into their corresponding higher-order operators.

This program transformation exploits associativity
and commutativity. In our example, we changed the
order of summation in the accumulation, by regrouping
the terms by groups of size B. Thus, we used the asso-
ciativity of addition and the intermediate data computed
by the blocked program may not be the same as in the
scalar program.

Moreover, solving the problem at the block level, we
need a recursive call to the scalar program on a smaller
problem instance. Thus, we have a divide-and-conquer
scheme in the semantic tiled version of a program.

1



Semantic tiling can be viewed as a kind of data
tiling [4] in which the tiles are manipulated as matri-
ces, yielding the same locality benefits as a conven-
tional tiling. As opposed to conventional tiling, se-
mantic tiling does not consider dependences (and might
modify them through semantic properties). Thus, se-
mantic tiling may be effective on some example where
the conventional tiling does not work [2].

However, its range of application is limited: indeed,
we need the notions of matrices and vectors, so this
forces an algebraic structure such as a s ring or a semi-
ring on the underlying data (which is the case for linear
algebra and graph theory).

We now present our early results about the formaliza-
tion of semantic tiling, and the different issues raised.

2 Formalizing semantic tiling
We are exploring several approaches to formalize se-
mantic tiling.

• The first approach is to find a set of rewriting rules
to transform a scalar program into its semantic
tiled version. These rules are based on algebraic
properties and ensure the correctness of the de-
rived semantic tiled program.

• The alternative is to hypothesize a form of the
semantic tiled program from the structure of the
scalar program, then to prove its validity by check-
ing the equivalence of both programs.

We have investigated the second approach. We de-
compose the problem into 3 subproblems:

• Deriving a tiling of the input and output data, then
of the temporary data.

• Deriving the semantic tiled program from the
scalar version.

• Deriving the equivalence between the guessed pro-
gram and the original scalar program.

The main issue in the data tiling step is to set the
tiling to make matrix operations coherent (e.g., ensuring
that we do not multiply two matrices of incompatible
size). Moreover, some properties on the inputs might
force us to constraint this tiling even more (e.g, if a ma-
trix is lower triangular, we need to have square tiles).

On the second problem, one issue is the higher-order
operator selection: we might have several candidates

for the same scalar operator. For example, when the
inputs to a scalar program are transformed to vectors, a
scalar multiplication may transform into either a scalar
product, or a convolution in the blocked program. A
similar issue arises when determining which operators
in the scalar program to replace by a recursion.

The problem of equivalence of two programs was
studied by Barthou and al. [1]. In their work, they man-
aged to reduce the program equivalence problem into
a problem of reachability on a Memory State Automa-
ton. This problem is undecidable in general, but several
heuristics exist for it. However, they do not consider
semantic properties of operators, which are needed on
our case. We integrate the commutativity/associativity
properties over a parametric number of terms [3]. These
properties allow us to cover many equivalences in ex-
amples drawn from dense linear algebra.

3 Conclusion

Semantic tiling is a generalization of conventional tiling
where we exploit semantic properties such as associa-
tivity, commutativity, and other algebraic in order to
systematically tile programs in ways that is not pos-
sible with purely “syntactic tiling.” We have applied
it successfully by hand on several examples, including
LU decomposition, Cholesky, forward substitution and
sub-problems of APP (such as shortest path on a graph).
Semantic tiling might also be useful for high-level hard-
ware synthesis. Indeed, it can be used to get operations
of bigger-grain, which allows a better optimization of
the data path.
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