
Optimizing Affine Control with Semantic Factorizations

CHRISTOPHE ALIAS∗, CNRS/ENS-Lyon/Inria/UCBL/Université de Lyon, France
ALEXANDRU PLESCO, XtremLogic SAS, France

Hardware accelerators generated by polyhedral synthesis techniques make an extensive use of affine expres-

sions (affine functions and convex polyhedra) in control and steering logic. Since the control is pipelined,

these affine objects must be evaluated at the same time for different values, which forbids aggressive reuse of

operators. In this paper, we propose a method to factorize a collection of affine expressions without preventing

pipelining. Our key contributions are (i) to use semantic factorizations exploiting arithmetic properties of

addition and multiplication and (ii) to rely on a cost function whose minimization ensures a correct usage of

FPGA resources. Our algorithm is totally parametrized by the cost function, which can be customized to fit a

target FPGA. Experimental results on a large pool of linear algebra kernels show a significant improvement

compared to traditional low-level RTL optimizations. In particular, we show how our method reduces resource

consumption by revealing hidden strength reductions.

CCS Concepts: • Hardware→ High-level and register-transfer level synthesis; • Computer systems
organization→ Reconfigurable computing;

Additional Key Words and Phrases: High-level synthesis, FPGA, Polyhedral Synthesis

ACM Reference Format:
Christophe Alias and Alexandru Plesco. 2017. Optimizing Affine Control with Semantic Factorizations. ACM
Transactions on Architecture and Code Optimization 1, 1 (December 2017), 22 pages. https://doi.org/0000001.

0000001

1 INTRODUCTION
Since the end of Dennard scaling, computer architects are striving to build energy efficient comput-

ers. The trend is to trade generality for energy efficiency by using specialized hardware accelerators

such as GP-GPU or Xeon-Phi [18] to quote a few. Recently, reconfigurable FPGA circuits [10] have

appear to be a competitive alternative [35]. With FPGAs, the program is the circuit: genericity is

ultimately traded for energy efficiency. However, designing a circuit is far more complex than writ-

ing a C program. Disruptive compiler technologies are required to generate automatically a circuit

configuration from an algorithmic description, while finding an appropriate trade-off between par-

allelism and I/O bandwidth. Polyhedral compilation techniques have a long term history of success

in automatic parallelization for HPC [17]. Roughly, loop iterations are represented with polyhedra

(hence the name), then code optimizations are specified with geometric operations and integer

linear programming. Polyhedral analysis enables reasoning about massively parallel computations

with a compact representation. Powerful analysis were designed for extracting parallelism [11],

scheduling pipelined circuits [3], resizing optimally the buffers [1] or tuning I/O requirements to fit

∗
The corresponding author

Authors’ addresses: Christophe Alias, Christophe.Alias@ens-lyon.fr, CNRS/ENS-Lyon/Inria/UCBL/Université de Lyon, 46,

Allée d’Italie, Lyon, 69364, France; Alexandru Plesco, XtremLogic SAS, Lyon, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

XXXX-XXXX/2017/12-ART $15.00

https://doi.org/0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

:2 Christophe Alias and Alexandru Plesco

memory bandwidth [2, 27] to quote a few. Polyhedral analysis are used successfully in high-level

circuit synthesis [4, 31]. The result is a high-level description of the circuit whose control logic

involves a large collection of piecewise affine (PWA) functions. Minimizing the resource usage of

affine control while guaranteeing the throughput is a major challenge in polyhedral synthesis.

Pretty few approaches address low-level affine control synthesis in the context of polyhedral

circuit synthesis. Actually, most of the research effort in the polyhedral model has focused on

source-level transformations. For instance, Alias et al. [2] propose a source-level approach at C

level before high-level synthesis to produce an optimized I/O system for a circuit. Zuo et al. [38]

optimize the control structure at source-level on a C program before using VivadoHLS. In this paper,

we will not follow the same guidelines. Rather, we show how, for a given control, and without

any attempt to optimize its structure, we can produce a dedicated hardware machinery which

outperforms by 30% the generic optimizations applied on RTL by a state-of-the-art synthesis tool.

To do so, we rely on semantic factorizations, a generalization of common subexpression elimination,

which proves to be particularly effective on affine control. Semantic factorizations take profit of

associativity and commutativity of addition and multiplication to simplify the control. Note that

semantic transformations are not new in the polyhedral model. To quote a few, semantic properties

of operators are already exploited to recognize algorithms [22] or to extract instruction patterns

at source-level [37]. As far as we know, this is the first time that semantic factorizations are used

to optimize affine control, while keeping it exact. However, when approximation is allowed, the

complexity of the controller can be reduced [19, 23] and control algorithms can be simplified [6, 29].

In our case, this would not apply: control has to be exact, no approximation is allowed.

In this paper, we propose a technique to compact a collection of affine objects (affine expressions

and affine constraints) by exploiting semantic properties of addition and multiplication. More

specifically:

• The compaction is driven by a cost function whose minimization ensures a proper usage of

FPGA resources. The cost can be customized to target a given FPGA.

• The result is a DAG pipelinable at will and ready to be mapped on the FPGA, whose resource

usage minimize the cost function.

• Experimental results show that our algorithm outperforms significantly the low-level opti-

mizations applied on RTL by a state-of-the-art synthesis tool.

This paper is structured as follows. Section 2 gives a short introduction to polyhedral synthesis

and introduces the concepts used in the remaining of the paper. Section 3 presents our compaction

algorithm. Section 4 presents the experimental results. Section 5 reviews the related work. Finally,

Section 6 concludes this paper and draws perspectives.

2 PRELIMINARIES
This section presents the basic math concepts required to understand the notion of affine con-

trol (convex polyhedra, piecewise affine functions). Then, polyhedral control synthesis is briefly

introduced. In the remaining of this section, n,p and q are positive natural integers: n,p,q ∈ N− {0}.

2.1 Convex polyhedra
Given a linear form a∗ : Rn → R and a scalar α ∈ R, the set H≥ (a

∗,α) = {x ∈ Rn , a∗ (x) ≥ α } is
said to be a closed half-space. A convex polyhedron P is a finite intersection of closed half spaces:

P = ∩
q
i=1H≥ (a

∗
i ,αi). If a

∗
i (x) = τi ·x ,A is the matrix whose rows are τ1, . . . ,τq and b = (α1, . . . ,αq)

T
,

the matrix representation of P is:

P = {x ∈ Rn ,Ax ≥ b}

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :3

The interior of P is the biggest open set int P included in P. With the matrix representation,

int P = {x ∈ Rn ,Ax > b}.
An integer polyhedron is the set of integral points lying in a convex polyhedron P, ˆP = P ∩ Zn .

More generally, a Z-polyhedron is the set of points from a lattice L ⊂ Zn lying in a convex

polyhedron P, L ∩ P. In polyhedral synthesis, we often use integer polyhedra and sometimes

Z-polyhedra.

2.2 Piecewise affine functions
Given D ⊂ Rn , a mapping ϕ : D → Rp is said to be piecewise affine if there exists a subdivision of

D in convex polyhedra D = P1 ∪ . . . ∪ Pq such that int Pi ∩ int Pj = ∅ for i , j and a collection

of affine mappings ui : R
n → Rp for i = 1, . . . ,q such that:

ϕ (x) = ui (x) if x ∈ Pi for i = 1, . . . ,q

Since the pieces are closed, a piecewise affine mapping ϕ is always continuous. Indeed, ϕ should

share the same value on the common facets of two adjacent convex polyhedra.

An integer piecewise affine mapping ˆϕ :
ˆD → Rp is defined over a partition of

ˆD into integer

polyhedra:
ˆD = ˆP1 ⊎ . . . ⊎ ˆPq , each piece being provided with an affine mapping ui : R

n → Rp for

i = 1, . . . ,q:
ˆϕ (x) = ui (x) if x ∈ ˆPi for i = 1, . . . ,q

Remark that an integer piecewise affine mapping
ˆϕ is not necessarily continuous. Some results on

piecewise affine mappings, for instance lattice-based representation [28], may no longer apply.

2.3 Polyhedral synthesis
A parallelizing compiler analyzes the input program and maps the computation to a parallel

architecture. The new execution order must reproduce the original computation: each operation

must be fedwith the same data, the original data-dependencesmust be respected. However, checking

data dependence between two operations is undecidable. Even the sequence of operations executed

on a given input – the execution trace – is undecidable. Usually, compiler analysis over-approximates

the execution trace as well as the data dependences. However, the approximation made is usually

rough and the compiler may miss many opportunities of parallelization. Another approach is to

restrict the compiler analysis to programs whose execution trace and data dependences are input

invariant and can be expressed with decidable sets.

Affine control loops. The polyhedral model focuses on kernels with affine control loops manipulat-

ing arrays [17]. The control is exclusively made of for loops, if and sequence. Data types allowed

are arrays, structures and scalar variables (seen as dimension 0 arrays), there are no pointers. Also,

loop bounds, conditions and array indices must be affine functions of surrounding loop counters and

structure parameters (e.g. array size). This ensures that execution trace may always be expressed as

a union of integer polyhedra. Most linear algebra and signal processing kernels can fit into this

model. Figure 1.(a) depicts such a kernel computing iteratively the heat equation on a 1D mesh

[21] stored in the array u0. α is a rational constant depending on discretization parameters and

β = 1−2α . With this program model, the execution of a single assignment S is always controlled by

a nest of affine for loops guarded by affine conditions. Such an iteration is uniquely represented by

the vector of surrounding loop counters i⃗ . The execution of S at iteration i⃗ is denoted by ⟨S , i⃗⟩. The
set DS of iteration vectors is called the iteration domain of S . By construction, the iteration domain

DS is always an integer polyhedron, hence the name of the framework. The original execution order

is given by the lexicographic order≪ over DS , which is also computable. Figure 1.(b) depicts the

iteration domains for the different assignments of the heat-1D kernel. As mentioned on the code (a),

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:4 Christophe Alias and Alexandru Plesco

for i := 0 to N
init(u0[i]); //•

//Heat-1D kernel

for t := 0 to M − 1
for i := 1 to N − 1
u1[i] := αu0[i − 1] + βu0[i] + αu0[i + 1]; //•
for i := 0 to N
if i = 0 then u0[i] := 0; //⊗

if 1 ≤ i ≤ N − 1 then u0[i] := u1[i]; //×
if i = N then u0[i] := 0; //⊙

for i := 0 to N
use(u0[i]); //◦

i i

t

i

0

1

2

3

4

N = 5

0 1 2 3 M = 4

⊗ ⊗ ⊗ ⊗

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

� � � �

i i

t

i

0

1

2

3

4

N = 5

0 1 2 3 M = 4

⊗ ⊗ ⊗ ⊗

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

� � � �

(a) Heat-1D kernel (b) Data dependences (c) Scheduling

Fig. 1. Heat-1D kernel, execution trace (iteration domains) and data dependences

the initialization iterations are represented with •; the kernel iterations with •, ⊗ and ⊙; and the

use iterations with ◦. Red arrows represent data dependences, as discussed in the next paragraph.

Data dependences. With the polyhedral model, execution traces can be summarized exactly

with integer polyhedra. This make possible to build precise compiler analysis (data dependences,

scheduling, data/computation allocation, etc) thanks to integer linear programming and geomet-

ric operations [1, 2, 11, 15, 16]. For instance, array dataflow analysis [15] computes exact data

dependences. That is, a function hS,r , called source function, which maps each read r of each

assignment execution ⟨S , i⃗⟩ to the assignment execution defining the read value hS,r (⃗i). On the

running example:

h•,u0[i−1] (t ,i) =

t = 0 : ⟨•,i − 1⟩
t ≥ 1 ∧ i = 1 : ⟨⊗,t − 1,0⟩
t ≥ 1 ∧ i ≥ 2 : ⟨×,t − 1,i − 1⟩

Source functions are always integer piece-wise affine modulo the encoding of assignments •,⊗,×
with integers and the padding of iteration vectors so they have the same dimension. In polyhedral

HLS, source functions are often used to multiplex the data for each read of each assignment and

to handle synchronizations and communications between parallel units [4, 31]. The complexity

of the source function hS,r (number of clauses, number of affine constraints per clause) may

increase exponentially with the dimension of the iteration domainDS . Hence, efficient compaction

techniques are required.

Scheduling and code generation. Provided the data dependences, the next step is to change the

execution order to improve quality criteria (parallelism, data reuse, etc). This is done by computing

a scheduling function θS which maps each execution ⟨S , i⃗⟩ to a timestamp θS (⃗i). In the polyhedral

model, we seek for affine schedules θS (⃗i) = A⃗i + b, the timestamps θS (DS) being vectors ordered
by their lexicographic order. In a way, θS : Rn → Rp translates a nest of n loops to a target

nest of p loops, each component of (t1, . . . ,tp) = θS (i1, . . . ,in) being the iteration of the operation

⟨S ,i1, . . . ,in⟩ in the transformed loop nest. A simple criterion to maximize parallelism is to minimize

p, so a maximum number of operations will share the same date [16] (and thus will be scheduled

to be executed in parallel). Once the schedule is found, it remains to generate the control which

executes the assignments in the order prescribed by the schedule. Many approaches were developed

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :5

[5, 12]. The best approach for HLS is to produce a control automaton per assignment S which issues

a new iteration vector i of S at each clock cycle [12]. Two integer piecewise affine functions are

required. A function FirstS , which issues the first iteration of S w.r.t θS (initial state) and a function

NextS which maps each iteration of S to the next iteration of S to be executed w.r.t. θS (transition

function). On the running example, we would have:

First• (N ,M) =
{
N ≥ 0 ∧M ≥ 0 : (0,0)

Next• (t ,i) =

i ≤ N − 2 : (t ,i + 1)
i = N − 1 ∧ t ≤ M − 2 : (t + 1,0)
i = N − 1 ∧ t = M − 1 : stop

To improve reuse, affine scheduling is usually combined with affine partitioning (or tiling) [11].

Each relevant iteration domain DS is partitioned into parallelepipeds by translating a collection

of cutting hyperplanes ϕ1S , . . . ,ϕ
n
S . Then, the new iteration domain DT

S is indexed with vectors

(Φ1, . . .Φn ,i1, . . . in), (Φ1, . . .Φn) being the coordinates of the partition containing the original

iteration vector (i1, . . . in). Again, the resulting domain DT
S is an integer polyhedron which can be

scheduled thanks to affine scheduling. However, affine partitioning highly complexifies the control

on the generated program. Figure 1.(c) gives an example of affine partitioning.D•,D×,D⊗ andD⊙

are partitioned with cutting hyperplans ϕ1 : t + i = 2Φ1 and ϕ
2
: t = 2Φ2 with partition coordinates

Φ1 = 0,3 andΦ2 = 0,1. The affine schedule found is θ• (i) = (1,i), θ• (Φ1,Φ2,t ,i) = (2,Φ1,Φ2,t+i,t ,0)
θ⊗ (Φ1,Φ2,t ,i) = θ⊙ (Φ1,Φ2,t ,i) = θ× (Φ1,Φ2,t ,i) = (2,Φ1,Φ2,t + i,t ,1) and θ◦ (i) = (3,i). The final
execution order is depicted with grey arrows. For the assignment •, the functions First• () and Next•
are:

First• (N ,M) = { N ≥ 0 ∧M ≥ 0 : (0, 0, 0, 1)

Next• (Φ1,Φ2,t ,i) =

−t + 2Φ1 ≥ 0 ∧ −1 − t + 2Φ2 ≥ 0∧

126 − t ≥ 0 :

(t − Φ1, Φ2, 1 + t, −1 + i)
−t − i + 2Φ2 ≥ 0∧

126 − t − i + 2Φ1 ≥ 0 :

(Φ1, t + i − Φ2, 2Φ1, 1 + t + i − 2Φ1
126 − Φ2 ≥ 0 ∧ 63 + Φ1 − Φ2 ≥ 0∧

62 + Φ1 − Φ2 < 0 :

(−63 + Φ2, 1 + Φ2, −125 + 2Φ2, 127)
62 + Φ1 − Φ2 ≥ 0 :

(Φ1, 1 + Φ2, 2Φ1, 2 − 2Φ1 + 2Φ2)
62 − Φ1 ≥ 0 :

(1 + Φ1, 1 + Φ1, 2 + 2Φ1, 1)

Remark that this Next function is simplified to avoid the exponential blow-up of clauses. When

several domains overlap, the first clause is chosen. It is another reason why techniques to simplify

generic piecewise affine functions do not apply here. All in all, the multiplexing and the control

involved in this example have a total of 669 affine constraints and 137 affine expressions. Clearly, they

should be compacted before being mapped to an FPGA. This paper provides an efficient algorithm

to compact several integer piecewise affine functions, provided as a pool of affine constraints and

expressions, as a DAG using efficiently FPGA resources.

3 OUR ALGORITHM
In this section, we present our algorithm to turn a collection of affine expressions and affine

constraints to a compact DAG. Section 3.1 discusses the cost function to be minimized. Then,

Section 3.2 defines the semantic factorizations considered to optimize the control: expression

factorization and constraint factorization. Section 3.3 explains how all possible combinations of

semantic factorizations (expression and constraint) can be summarized with a graph. Finally, Section

3.4 shows how to select the best composition with respect to the cost function.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:6 Christophe Alias and Alexandru Plesco

3.1 Cost Model
Our algorithm leverages a cost function to derive a resource efficient DAG from a pool of affine

control functions. Our algorithm is fully parametrized by the cost function, which could be cus-

tomized at will to fit a given target. In this section, we provide an example of cost function, which

happens to be relevant for FPGA targets.

Cost of a DAG. An FPGA consists of reconfigurable building blocks with lookup tables, 1 bit adders

and 1 bit registers (ALM with Altera, CLB with Xilinx). In addition, RAM blocks and DSP blocks are

usually provided. Our DAGs use only integer operators (integer addition, integer multiplication by

an integer constant) which require an amount of building blocks proportional to the bitwidth of the

result. Hence, the resource usage of a DAG D = (N ,E) can be modeled as a simple weighted sum:

|D| =
∑
n∈N

w(n) · bw(n)

Where bw(n) denotes the bitwidth of the result computed by the operator n of the DAG and w(n)
denotes, roughly, the number of building blocks required by n to compute 1 bit of result. bw is

simply computed for each node of the DAG by a bottom-up application of the rules bw(x + y) =
1 + max(bw(x),bw(y)) and bw(x ∗ y) = bw(x) + bw(y) starting from the bitwidth of the input

variables. Furthermore, w can be customized at will to fit a target FPGA. In the following, we

will assume w(+) = 1 and w(∗) = 100. With that choice, our algorithm will tend to decompose

affine expressions with multiplications by a power of 2. Note that the cost model is not intended

to reflect the actual resources requirement. Rather, it should be viewed as an objective function

whose minimization leads to desired properties.

This model is refined to handle two special cases: (i) |a ∗x | = 0 if a is 0, 1 or a power of 2. (ii) when
n is a multiplication by a negative constant. In the latter case, the extra cost of complement-by-2

must be taken into account. With a > 0, −a ∗ x = a ∗ x + a, where x denotes the logic complement

of x . The cost is:

| − a ∗ x | = bw(x) + (bw(a) + bw(x)) ·w(∗) + (bw(a) + bw(x) + 1) ·w(+)

The first term is the cost of the logic complement x , the second term is the cost of the multiplication

(when a is 1 or a power of 2, this term is removed), and the third term is the cost of the addition.

Affine Forms. Our algorithm builds the DAG by adding affine forms incrementally, and needs

an upper bound on the cost of the sub-DAG computing an affine form. Consider an affine form

u =
∑n

i=1 aixi + b where the xi are integer variables and the coefficients ai and b are integer

constants. In the worst case, the term aixi (or b) with the largest bitwidth is evaluated first, each

addition increasing the size of the result of 1 bit. Hence, the worst possible bitwidth for the result

of u is bwworst (u) = n − 1 +max{b} ∪ {w(ai) +w(xi), i ∈ J1,nK}. Therefore, an upper bound for

|u | is:

⌈u⌉ = n · bwworst (u) ·w(+) +
n∑
i=1

|ai ∗ xi |

Again, the cost function |.| is a parameter of our algorithm. It could perfectly be refined/redefined

to fit a different target.

3.2 Motivating Examples
Consider affine expressions E1 = i + 2j +k and E2 = 5i + 2j + 3k where i , j and k are input variables.

Common subexpression elimination would produce the DAG sketched in Figure 2.(a). The resources

used are 4 adders, 2 multipliers by a constant and 1 shifter. Now remark that E2 = E1 + 4i + 2k . This

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :7

5i+ 3k 2j i+ k

+ +

< 0 < 0

E1 E2

i+ 2j + k 4i+ 2k

< 0

E1

+

< 0

E2

(a) Common subexpression elimination (b) Expression factorization

4i+ 3j

< 0

C1

−5i− 3j − 1

< 0

C2

4i+ 3j i

< 0 +

< 0

¬

C1

C2

(c) Common subexpression elimination (d) Constraint factorization

Fig. 2. Affine expression and constraint factorization

leads to the DAG in Figure 2.(b). With that expression factorization, the resources required are now

4 adders and 3 shifters, which is better than the first solution.

A similar factorization scheme can be applied to affine constraints. Consider the normalized

affine constraints C1 : 4i + 3j < 0 and C2 : −4i − 3j + 1 < 0. Writing C2 : 4i + 3j ≥ 0, it is easy to

detect that C2 = ¬C1. Now, consider the affine constraint C2 : −5i − 3j − 1 < 0. There is no direct

connexion with C1. But if we write C2 : 5i + 3j ≥ 0, the affine expression of C2 (5i + 3j) can be

obtained from the affine expression of C1 (4i + 3j), giving the improved DAG depicted in Figure

2.(d). With that constraint factorization, the resources used are reduced to 2 adders, 1 multiplier by

a constant and 1 shifter.

Expression and constraint factorization rise several issues which must be handle carefully:

• Expression factorization is not always beneficial. If one tries to derive E1 from E2, with
E1 = E2 + (−4i − 2k), the resource usage would be worse than the direct solution (4 adders

and 5 multipliers by a constant). A best combination of factorizations must be found among

all the possible combinations.

• Constraint factorization (C2 from C1) is a terminal transformation. Indeed, the expression

of C2 (e2 s.t C2 : e2 < 0) is never computed. Hence, subsequent factorizations involving the

expression e2 are not possible. For this reason, expression factorizations will be preferred

over constraint factorizations.

This paper proposes a unified way to represent the possible sequence of factorizations of affine

expressions and constraints and to select combination of factorizations minimizing the resource

consumption.

3.3 Realization Graph
All the possible combination of semantic factorizations will be summarized in a realization graph

Gr . Basically, the nodes of Gr are affine expressions and constraints, and an edge u
∆
−→ v means that

v can be realized from u with a cost of ∆. Intuitively, a rooted path in Gr would give a realization

of the reached nodes. Depending on the factorization (expression or constraint) a specific edge is

issued, as explained in the following sections.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:8 Christophe Alias and Alexandru Plesco

Expression Factorization. Given a DAG node computing an expression u, an expression v can

be computed by applying the factorization rule v = u + (v − u). In that case, we would add to the

DAG the following components:

• A sub-DAG computing v − u (to be optimized as well)

• An adder taking the output nodes of u and v − u.

The additional resource cost would then be the cost of the operator + plus the cost of the affine form

v −u: ∆ = (1 +max{bwworst (u),bwworst (v − u)}) ·w(+) + ⌈v −u⌉. We register this possible design

choice to a realization graph Gr , whose nodes are expressions and constraints to be computed and

whose edges u
∆
−→ v express that v can be computed from u with an additional resource cost of

∆. When the target node is a constraint v < 0, the edge has the same meaning. In general, the

incoming edge with the smallest cost u
∆
−→ v will be preferred to design v .

Constraint Factorization. Given a DAG node computing an affine constraint normalized as u < 0,

the constraintv < 0 can be derived fromu < 0with a simple logic negation whenv < 0 ≡ ¬(u < 0),
which means: v < 0 ≡ −u − 1 < 0 or more simply: u + v = −1. This gives a first simple

test to detect negations. Otherwise, remark that (u + (−1 − u − v)) + v = −1. This means that

v < 0 ≡ ¬(u + (−1 − u − v) < 0). Hence v < 0 can be computed from u by adding the following

components to the DAG:

• A sub-DAG computing −1 − u −v (to be optimized)

• An adder taking the output nodes of u and −1 − u −v .
• The result of the adder is checked by connecting the most significant bit (to have < 0) to a

negation.

The additional resource cost would then be the cost of the operator +, plus the cost of the affine

form −1 −u −v : ∆ = (1 +max{bwworst (u),bwworst (−1 − u −v)}) ·w(+) + ⌈−1 −u −v⌉. We add a

negation edge u < 0

∆
−→¬ v < 0 to the realization graph.

Final Algorithm. Figure 3 depicts our algorithm to build the realization graph Gr from a pool of

expressions E and constraints C. Expressions and constraints are inserted incrementally in the

graph Gr (lines 3–7), constraint nodes are marked to be distinguished from expression nodes (line

6). Finally, a special node initial_node is added to the graph Gr (line 8) and connected to each

node u with an expression factorization edge labeled by |u | (lines 9–10). initial_node will serve
as a starting point to select the best realization as explained in the next section. Indeed, edges

initial_node

|u |
−−→ u suggest a direct realization of u whereas edges u

∆
−→ v suggest that v can be

realized from u with a cost ∆.
Each expression is inserted with procedure insert (lines 11–14). Prior to inserting the expression

e , the maximal strict subexpression with each node n of Gr is inserted. This ensures a maximal

subexpression factorization beetween the expressions of E and C. Indeed, expression factorization is

not able to factor strict subexpressions, only cases whereu is a subexpression ofv are detected: ifu =
3i+j andv = 3i+j+5k thenv is naturally expressed asu+5k . However, ifu = 3i+j+4k ,v = 3i+j+k
then the best solution is a factorization by the strict subexpression 3i+ j which does not appear with

pure expression factorization. Then, expression factorization edges are inserted between each pair of

nodes whenever it is beneficial (lines 15–23) using the rule described above. For presentation reason,

we use the notation ϕ (u,v) for (1 +max{bwworst (u),bwworst (−1 − u −v)}) · w(+). Expression
factorization is beneficial when the circuitry added for v is strictly less expensive than computing

v directly (line 19). Then, the symmetric case (computing u from v) is considered for completeness.

Each constraint e < 0 is inserted in the graph Gr (lines 5–7). The expression e is inserted as

described above (line 6). Then, negation edges between e < 0 and constraint nodes of Gr are added

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :9

(line 7) by using procedure insert_neg_edge (lines 24–32). For each constraint node u < 0 of Gr
(line 25) without expression factorization edge to e = v < 0 (line 26), the negation edge is added

whenever constraint factorization is beneficial. For presentation reason, we use the notationψ (u,v)
for (1 +max{bwworst (u),bwworst (−1 − u −v)}) ·w(+). Cases with expression factorization edge

are preferred, as expression factorization is always more beneficial than constraint factorization

(see discussion in section 3.2). As for expressions, constraint factorization is beneficial when the

circuitry added forv < 0 is strictly less expensive than computing v < 0 directly (line 27). Similarly,

the symmetric case (computing u < 0 from v < 0) is considered for completeness.

Example. Consider the affine constraintsC depicted in the following tablewith the input bitwidths

bw(i) = 2 and bw(j) = bw(k) = 8. build_realization_graph(∅,C) produces the graph depicted

in figure 4.(a). Common subexpression between constraints 1 and 2 (inserted at line 13) produces

the node 2j depicted in white. Constraint factorization edges are dashed. Each edge is labeled by its

cost ∆ computed according to the rules given in section 3.1. Again, these rules can be parametrized

to fit the target. Consider constraints 1 and 2 and there nodes in Gr . Gr suggests that constraint

1 can be realized either directly with cost 22 (edge from initial_state), or from subexpression 2j
with a cost 19. In turn, 2j can serve as a basis to realize other expressions as constraint 3 with cost

19 (edge from 2j to 4i + 3j). Constraint 3 can be used to realize constraint 4 thanks to a negation

factorization of cost 12. This shows that choices need to be done on Gr to find the best combination

of factorization. This is the purpose of the next section.

C :

Id Constraint

1 i + 2j + k < 0

2 5i + 2j + 3k < 0

3 4i + 3j < 0

4 −5i − 3j − 1 < 0

3.4 Finding an Efficient Realization

An expression factorization edge u
∆
−→ v of the realization graph Gr means that expression of v (if

v is a constraint e < 0, the expression is e) may be realized from the expression of u with a cost

∆. For instance, the edge i + 2j + k
18

−−→ 5i + 2j + 3k in Figure 4.(a) means that v = 5i + 2j + 3k
might be realized from u = i + 2j + k with an expression of cost 18. Note that u and v might be

realized directly with cost 22 and 122 respectively (see edges from initial_node). u and v might also

be realized fromw = 2j. In that case, we choose edges initial_node
0

−→ w ,w
15

−−→ u andw
117

−−→ v for

a total cost of 0 + 15 + 117 = 132. From this observation, we may conclude that a realization of

u and v is a subtree of Gr rooted at initial_node and including the nodes u and v to be realized.

More generally, a valid realization of v is a path:

initial_node
∆1

−−→ u1 . . .
∆n
−−→ un

∆
−→ v

Each ui being realized from ui−1 at cost ∆i . The total cost is ∆1 + . . . + ∆n + ∆. If v and un are

constraints, then v may be realized with a constraint factorization edge from un :

initial_node
∆1

−−→ u1 . . .
∆n
−−→ un

∆
−→¬ v

In that case, the expression of v would not be available. Indeed, v < 0 would be evaluated without

computing v . Then, no realization could start from v : the negation edges are terminal. Also, nodes

along the path can be used to compute others nodes of Gr . However, each node must have a single

predecessor in the obtained subgraph, which is then a tree. These remarks lead to the following

definition.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:10 Christophe Alias and Alexandru Plesco

1 build_realization_graph(E,C)

2 Gr := empty_graph();
3 for each expression e ∈ E
4 insert(e);
5 for each constraint (e < 0) ∈ C
6 insert(e); mark(e); //e < 0

7 insert_neg_edge(e);
8 Add node initial_node to Gr ;

9 for each node u ∈ Gr − {initial_node}

10 Add edge initial_node

|u |
−−−→ u to Gr ;

11 insert(e)
12 for each node n ∈ Gr
13 insert_edge(common_sub_expr(e ,n));
14 insert_edge(e);

15 insert_edge(v)
16 if v ∈ Gr return;
17 Add node v to Gr ;

18 for each node u ∈ Gr
19 if ϕ (u,v) + |v − u | < |v | //v from u

20 Add edge u
ϕ (u,v)+ |v−u |
−−−−−−−−−−−−→ v to Gr ;

21 //Symmetric case

22 if ϕ (v,u) + |u −v | < |u |

23 Add edge v
ϕ (v,u)+ |u−v |
−−−−−−−−−−−−→ u to Gr ;

24 insert_neg_edge(v)
25 for each marked node u ∈ Gr //u < 0

26 if ∃u
∆
−→ v ∈ Gr continue;

27 ifψ (u,v) + | − 1 − u −v | < |v |

28 Add edge u
ψ (u,v)+ |−1−u−v |
−−−−−−−−−−−−−−−−→¬ v to Gr ;

29 //Symmetric case

30 if ∃v
∆
−→ u ∈ Gr continue;

31 ifψ (v,u) + | − 1 −v − u | < |u |

32 Add edge v
ψ (v,u)+ |−1−v−u |
−−−−−−−−−−−−−−−−→¬ u to Gr ;

Fig. 3. Algorithm for constructing the realization graph Gr

Definition 3.1 (Realization). Let Gr be the realization graph of expressions E and constraints C.

A realization is a subgraph T ⊆ Gr which satisfies the following conditions:

(1) Each expression/constraint is realized correctly: T is a tree rooted at initial_node, and T

spans E ∪ C.

(2) No useless common subexpression is computed: the leaves of T belong to E ∪ C.

(3) Negation edges are terminal.

In other words, a realization is a particular spanning tree of Gr . The condition 2) avoid useless

computation of common subexpressions (see white nodes in figure 4.(a)): common subexpressions

are forced to be intermediate results in the final realization. The cost of a realization is the sum of

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :11

(i+(2*j))+k

((5*i)+(2*j))+(3*k)

22

(4*i)+(3*j)

89

(-1+(-5*i))+(-3*j)

49

143

2*j

19

163

19

154

12

143

13

initial_node

22

164

0

111

190 (i+(2*j))+k

((5*i)+(2*j))+(3*k)

22

(4*i)+(3*j)

89

(-1+(-5*i))+(-3*j)

49

143

2*j

19

163

19

154

12

143

13

initial_node

22

164

0

111

190

(a) (b)

i

>>2 +

+

j

>>1

+

k

>>1

++

+ +<0, tag=1

<0, tag=3 <0, tag=2

<0

NOT, tag=4

>>1

+, tag=3

k i, tag=4 i

+, tag=1

ki

>>2

+, tag=2

j

(c) (d)

Fig. 4. (a) Realization graph Gr obtained from C, (b) Resource-efficient realization tree T in Gr (in red), (c)
Resource-efficient DAG from realization tree T in Gr , (d) Recursive compaction of fresh expressions Enew

the weights ∆ on its edges. Hence, finding an efficient realization amounts to compute a minimal

spanning tree of Gr , under the constraints specified in definition 3.1.

The algorithm for finding a minimum realization is given in figure 5. The algorithm proceeds into

two steps. First, a minimum spanning tree rooted on initial_node is found among the expression

factorization edges of Gr by using a variant of Prim’s greedy heuristic (lines 4–7). The search

is stopped once all expression/constraint nodes are covered. Second, constraint factorization is

considered for orphan constraints (lines 8–15). An orphan constraint v is neither factorized (father

is initial_node) nor involved in an expression factorization (leaf) (lines 9–10) nor involved in a

previous constraint factorization (line 11). A best local constraint factorization is found for v and

added to the realization (lines 12–13). As mentioned above, constraint factorizations are terminal.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:12 Christophe Alias and Alexandru Plesco

1 build_realization_tree(Gr ,E,C)

2 T := ({initial_node},∅);
3 O := E ∪ C;

4 while O , ∅

5 Find u
∆
−→ v s.t. u ∈ T , v < T with ∆ minimum;

6 Add to T ;

7 if (v ∈ O) O := O − {v};
8 to_evaluate := ∅;

9 for each initial_node

∆
−→ v ∈ T s.t. v is a leaf in T

10 if (v < C) continue;
11 if (v ∈ to_evaluate) continue;

12 Find u
∆
−→¬ v with ∆ minimum;

13 Add to T ;

14 to_evaluate := to_evaluate ∪ {u};

15 Remove edge initial_node

∆
−→ v from T ;

Fig. 5. Algorithm for finding a minimal realization T in Gr

This is enforced by excluding the sourceu from the nodes to be considered for subsequent constraint

factorizations (line 14). Edge from initial_node to v is removed from the realization, as v is now

realized from u with a constraint factorization (line 15).

We choose to restrict constraint factorization to orphan constraints, since constraint factorization

is always less beneficial than expression factorization: it is terminal and the gain for the constraint

is likely to be comparable to an expression factorization. Hence constraints involved in expression

factorization (thus non-orphan) are excluded.

Example (cont’d). Figure 4.(b) depicts the realization tree T obtained from the realization graph

of figure 4.(a). The edges chosen for the realization tree are in red. The total cost of the design

(72) is greatly improved compared to direct realization (487) (only arcs from initial_node, no

factorization at all) and compared to common subexpression factorization (391) (edges from node

2j and direct realization of −5i − 3j − 1). Among the 4 factorization edges of T (edges not coming

from initial_node), there are 3 expression factorizations (labeled by costs 19, 19 and 22), and 1

constraint factorization (dashed edge labeled by 12). Among the two expression factorizations 1 is

a subexpression factorization (targeting i + 2j + k), the two others are not (targeting 4i + 3j and
5i + 2j + 3k). The two latter are said to be semantic: they are obtained by playing on semantic

properties of addition and multiplication and could not be found by subexpression factorization.

Constraint factorization (dashed edge labeled by 12) is also semantic: it could not be found directly

on the negation with subexpression factorization. All in all, this example show the important role

played by semantic factorization for expression and constraints in reducing the resource cost of set

of constraints.

3.5 Building the DAG
Figure 6 depicts our algorithm to build the DAG from the realization tree found in Gr . The inputs

are: the realization tree T and the set of expressions E and constraints C to be realized. They are

not specified to simplify the presentation. The output is the DAG and a mapping node[.] linking

expressions/constraints of E and C to there implementation in the DAG. The algorithm is a recursive

depth traversal of T . Each time an edge of T is traversed, the DAG is updated accordingly. Two

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :13

additional inputs are used to traverse T (t) and to build the DAG (d). The invariant is: when calling

build_dag(t ,d), t is already realized in the DAG, and realization root in the DAG is pointed by d . If
t is an expression of E, node[.] is updated with d (line 3). If t is the expression of a constraint c ∈ C,
the circuitry to check t < 0 is added to the DAG, and the root is linked to c (lines 4–6). The recursive
traversal is handled in the remaining lines. Initially, build_dag is called with t = initial_node

and d = null. A DAG dag(u) is built for each target node u. Its root serves as starting point for

the traversal (lines 7–10). The circuitry is added to the DAG for selected expression factorizations

(lines 11-12) and constraint factorizations (lines 13-20) by following the rules described in section

3.3. Since constraint factorization is terminal, no recursive call is required. Consequently, node[.]

should be updated in that place (lines 16 and 20).

Rules for expression and constraint factorization produces a pool of new expressions Enew in the

DAG (u − t for expression factorization line 12, −1 − t − u for constraint factorization line 19). In

turn, these new expressions may be further optimized. Then, our algorithm is applied recursively

on Enew. The output of the new DAG are used in the current DAG in place of the expressions of

Enew. Notice that recursive calls are optional. The recursive depth can be used as a tuning knob to

customize the degree of reuse in the DAG.

Example (cont’d). Figure 4.(b) depicts the DAG obtained from the realization tree T . Prior to

building the DAG, the expressions Enew are collected and compacted with a recursive call. They are:

i+k from edge 2j
19

−−→ i+2j+k , 4i+j from edge 2j
19

−−→ 4i+3j , 4i+2k from edge i+2j+k
22

−−→ 5i+2j+3k

and i from edge 4i + 3j
12

−−→¬ −5i − 3j − 1. The recursive call on Enew gives the result depicted in

Figure 4.(d). For the sake of clarity, we have tagged realization roots in the DAG. i + k has tag 1,

4i + j had tag 2, 4i + 2k has tag 3 and i has tag 4. Here, the compaction has detected that 4i is a
common subexpression. Multiplications by a power of 2 are represented by shifts (≫ 1 for ×2 and

≫ 2 for ×4). These realizations serve as building blocks for the final DAG on Figure 4.(c). Again,

the nodes has been tagged for the sake of clarity. Here, the tags are the ranks of constraints C given

in section 3.3.

4 EXPERIMENTAL EVALUATION
In this section, we present the results obtained by applying our algorithm on a large benchmark

of applications, with and without polyhedral optimization. Section 4.1 describes the experimental

setup. Then, Section 4.2.1 presents synthesis results on FPGA. Section 4.2.2 discusses the semantic

factorizations found in the benchmarks. Finally, Section 4.2.3 presents statistics on the behavior of

our algorithm (execution time, recursive depth).

4.1 Experimental setup
We have applied our algorithm to simplify the affine control generated for the kernels of the

benchmark suite PolyBench/C v3.2 [26]. Table 1 depicts the kernels and the synthesis results

obtained on FPGA.

For each kernel, a DPN process network is generated using the Dcc tool [4]. Dcc optimizes

the data transfers and the pipeline execution with an affine schedule based on a loop tiling [2, 3].

The execution order is deeply restructured and the affine control per process (control automa-

ton,mux/demux) can be quite complex. Before deriving the DAGs, we simplify the control polyhedra

with various heuristics including gist and integer set coalescing [32]. Then, for each process, we

collect the affine control and we apply our algorithm to produce a DAG. Table 1 presents the sum

of the criteria collected for each process. #dags is the total number of DAG produced, #C is the

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:14 Christophe Alias and Alexandru Plesco

1 build_dag(t ,d)
2 //Link DAG nodes to inputs E and C

3 if (t = e ∈ E) node[e] := d ;
4 if ((t < 0) = c ∈ C)
5 Add edges for ineq_node := d < 0;

6 node[c] := ineq_node;

//Base case

7 if t = initial_node

8 for each edge t
∆
−→ u ∈ T

9 build_dag(u,dag(u))
10 return;

//Expression factorization

11 for each edge t
∆
−→ u ∈ T

12 build_dag(u, +(d , (E(V(u) − V(t)))))

//Constraint factorization

13 for each edge t
∆
−→¬ u ∈ T

14 if (V(t) + V(u) = −1) //direct negation?
15 Add edges for neg_node := ¬(d < 0);
16 node[u < 0] := neg_node;

17 else
18 Add edges for:

19 neg_node := ¬(+(d ,E(−1 − V(t) − V(u))) < 0);
20 node[u < 0] := neg_node;

Fig. 6. Algorithm for building a DAG from a realization T

total number of affine constraints. #E is the total number of affine expressions. All in all, we have

produced and analyzed a total of 261 DAGs from 4990 constraints and 2464 expressions.

The main innovation of this work is to explore semantic factorizations for simplification. Indeed

the expression 3i + j could be factorized by 2i + j because of semantic properties of addition
and multiplication, whereas common-subexpression factorization 3i + j would be restricted to

syntactic subterms 3i , j and 3i + j. The latter is also referred as non-semantic factorization. The
factorizations found by our algorithm are either semantic or not, depending on the arcs chosen by

build_realization_tree. Thus, we want to make sure that through a FPGA synthesis tool, a DAG

optimized with semantic factorization will effectively use less resources. This would ensure that

semantic factorizations allow a significant improvement compared to the optimizations applied by

an industrial tool.

4.2 Experimental results
This section analyzes the results obtained on Polybench/C according to two criteria defined in the

experimental setup. Section 4.2.1 presents synthesis results on a FPGA and show the effectiveness

of our approach. Then, Section 4.2.2 discusses the semantic factorizations found in the benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :15

Kernel #dags #C #E
SEM+Quartus Quartus

Gain

ALM Regs ALM Regs

2mm 15 250 161 1011 612 1430 596 29%

3mm 18 369 206 1775 946 2528 922 30%

atax 12 134 83 628 328 900 321 30%

bicg 11 112 69 500 278 715 278 30%

correlation 27 356 205 1609 1129 2567 909 37%

covariance 16 243 143 1221 708 1872 618 35%

doitgen 9 145 124 393 280 607 268 35%

fdtd-2d 13 502 167 2339 1713 3293 1603 29%

gemm 10 125 93 672 270 851 270 21%

gemver 20 187 137 847 459 1102 438 23%

gesummv 14 95 84 456 245 549 227 17%

heat-3d 8 734 175 3545 1194 5667 2559 37%

jacobi-1d 8 134 64 628 556 912 520 31%

jacobi-2d 8 370 111 1660 1204 2547 1144 35%

lu 7 213 87 1116 666 1469 628 24%

mvt 11 118 70 550 290 758 290 27%

seidel-2d 5 226 63 1161 1464 1758 1291 34%

symm 13 213 116 1011 471 1540 465 34%

syr2k 10 135 90 721 290 944 281 24%

syrk 9 118 81 636 246 828 246 23%

trisolv 9 93 56 474 218 632 213 25%

trmm 8 118 79 549 262 806 253 32%

Table 1. Synthesis results on Polybench/C v3.2

Finally, Section 4.2.3 shows how often our algorithm is applied recursively and presents the

execution times.

4.2.1 Synthesis results. We have implemented a VHDL generator for our DAGs and a direct

generator which puts the affine expressions in VHDL and let the synthesis tool do the optimiza-

tions – typically common subexpression elimination and boolean optimizations. This way, we can

compare our approach to the optimizations applied by the synthesis tool. The DAGs are generated

using the hierarchical approach. Both direct and optimized designs are pipelined at ALM level by

adding a sufficient number of registers to the outputs. This way, the synthesis tool will perform

low level logic optimizations and retiming to redistribute the registers through the design. The

synthesis was performed using Quartus Prime TM 16.1.2 from Intel on the platform on the Arria

10 10AX115S2F4I1SG FPGA with default synthesis options (optimization level - balanced). Intel

Quartus Prime is capable of applying highly advanced optimizations automatically including com-

mon subexpression factorization and many other advanced boolean optimizations. The DAGs were

tested using GHDL simulation tool over uniformly distributed random stimuli.

The synthesis results are presented in the table 1. The synthesis results for our DAGs are provided

in the column SEM+Quartus (semantic factorizations + quartus). The synthesis results for the direct

implementation are given in the column Quartus (quartus only). The gain in ALMs compared to the

direct implementation is given in the columnGain. Both implementations run at themaximum FPGA

frequency of 645.16 MHz. The frequency is limited by the target MAX delay limited by the signal

hold timing and other physical constraints. Both versions use a significant amount of 5-6 inputs

ALMs, thus achieving higher compression ratio. There is no ALM overhead because of registers, as

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:16 Christophe Alias and Alexandru Plesco

for all the examples they are entirely packed inside the ALMs containing logic. Experimental results

show a significant gain in ALM, compared to the direct implementation optimized by Quartus

(common subexpression elimination). The average gain is 30%, with a deviation of 5%. Remark

that the kernel gesummv shows slightly less gain than the other kernels. The kernel gesummv has
many simple polyhedra with small bitwidths in the computations. In that case, low-level boolean

optimizations are more effective than semantic factorizations: arithmetic operations are merged

with boolean ∧ operations from the polyhedra using large (up to 7 bit) LUT. For the DAGs parts

involved, this results in 3 to 4 times less ALMs than the optimized dags. The optimized dags can

benefit less from these optimizations, as the bitwidth of the operations increases through the

computations. Nonetheless, even for that kernel the benefit of semantic factorizations is significant.

The synthesis results confirms the validity of our models and approach. Semantic factorization

appears to complement nicely the optimization applied by quartus, and may be used profitably as

an optimizing preprocessing for affine control.

4.2.2 Distribution of semantic factorizations. Figure 7.(a) depicts the ratio of semantic factor-

izations (blue and red) vs non-semantic – common subexpression – factorizations (brown) for

each kernel. Non-semantic expression factorizations u
∆
−→ v are such that u is a subterm of v . Non-

semantic constraint factorizations u
∆
−→¬ v are such that v < 0 iff ¬(u < 0): negation recognition is

not considered as a semantic factorization. Table 2 provides the actual number of factorizations

(arcs) found for each kernel. Column #e-arcs gives the number of expression factorizations. The

next column #sem give the number of semantic expression factorizations. The same goes for

constraints: column #c-arcs gives the number of constraint factorizations and the next column

#sem gives the number of semantic constraint factorizations. Figure 7.(b) depicts the proportion

of semantic factorizations u → v which replace v by an expression with less multiplications and

more multiplications with a power of 2. These factorizations produce a strength reduction. With

our cost model, our algorithm tends to maximize these factorizations. Table 2 gives the number of

such factorizations for each kernel (columns #pow2). Again, we distinguish between expression

factorizations and constraints factorizations. We observe that 12% of the factorizations (36% of

the semantic factorizations) enable a strength reduction. In general, strength reductions are very

effective to reduce hardware resources

Among the numerous combinations of semantic factorizations found in the examples, a frequent

pattern is a semantic factorization with a strength reduction u → v producing a term v used by

several terms wi . Factorizations v → wi are often non-semantic. Here is an example from the

kernel gesummv: u = −17 + t , v = −15t + c , w1 = −14 − 15t + c (non-semantic factorization),

w2 = −15 − 15t + c (non-semantic factorization). Kernels gemm, gemver, gesummv, and doitgen
are dominated by semantic factorizations (see Figure 7.(a)). The two third of the terms are very

simple (e.g. −1 ∗ c , c − 1, t − 1 for gesummv) and do not exhibit factorization opportunities. They

are derived directly, without factorization. The remaining third contains more complex terms with

factorization opportunities. For these terms, the interesting factorizations are semantic. In contrast,

kernels heat3d and fdtd2d are dominated by non-semantic factorizations. These are kernels with

a large number of constraints. We found many occurrences of our factorization pattern where

constraintswi differ only by a constant shiftv → wi = v+λ and can be produced by a non-semantic

factorization.

4.2.3 Recursive calls and execution time. Semantic factorizations applied by our algorithm

produces fresh expressions (denoted by Enew in section 3.5), which are in turn optimized by applying

our algorithm recursively. Column rec-depth of Table 3.(a) provides the maximum number of nested

recursive calls for each kernel. Many kernels need one recursive call: semantic factorizations were

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :17

0 20 40 60 80 100

trmm
trisolv
syrk

syr2k
symm

seidel-2d
mvt
lu

jacobi-2d
jacobi-1d
heat-3d

gesummv
gemver
gemm

fdtd-2d
doitgen

covariance
correlation

bicg
atax
3mm
2mm

Factorization arcs (%)

expression factorizations

constraint factorizations

non-semantic factorizations (cse)

0 20 40 60 80 100

Factorization arcs (%)

strength reductions (×± 2n)

other semantic factorizations

non-semantic factorizations (cse)

(a) Distribution of semantic factorizations (b) Distribution of strength reductions (× ± 2n)

Fig. 7. Semantic factorizations

applied, producing fresh expressions Enew, in turn optimized with our algorithm. Quarter of the

kernels even require two recursive calls: the semantic factorizations required by Enew produce fresh

expressions Enewnew
in turn optimizedwith our algorithm.We have run our algorithm on a Intel Core

i5 CPUM 540@ 2.53GHz with 3072 KB L2 cache and 3GB RAM, which is a pretty light configuration

compared to the usual requirements of circuit synthesis. Table 3.(a) provides the execution time

in seconds for the construction of the realization graph Gr (build_realization_graph, column

insert-time) and for the computation of the best realization, the generation of the DAG and the

subsequent recursive calls (build_realization_tree; build_dag, column dag-time). Most of the

time is spent in the construction of the realization graph Gr , the significant operation being the

insertion of an affine expression (insert, fig. 3). Even with this light configuration, the overall

execution time tends to be small with a median execution time of 3 seconds.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:18 Christophe Alias and Alexandru Plesco

Kernel #dags #C #E #arcs #e-arcs #sem #pow2 #c-arcs #sem #pow2

2mm 15 250 161 164 138 51 15 26 20 6

3mm 18 369 206 293 270 67 21 23 15 4

atax 12 134 83 83 68 27 7 15 8 1

bicg 11 112 69 63 52 23 6 11 9 1

correlation 27 356 205 208 187 65 21 21 18 12

covariance 16 243 143 153 142 46 14 11 9 5

doitgen 9 145 124 73 57 34 5 16 15 7

fdtd-2d 13 502 167 530 507 94 62 23 10 0

gemm 10 125 93 68 52 34 3 16 15 1

gemver 20 187 137 91 77 44 13 14 12 3

gesummv 14 95 84 40 28 22 5 12 10 0

heat-3d 8 734 175 1025 996 91 54 29 7 3

jacobi-1d 8 134 64 104 94 25 13 10 5 3

jacobi-2d 8 370 111 407 386 53 35 21 10 4

lu 7 213 87 177 167 28 15 10 3 0

mvt 11 118 70 69 60 25 10 9 7 0

seidel-2d 5 226 63 277 270 39 18 7 3 1

symm 13 213 116 129 115 43 19 14 8 0

syr2k 10 135 90 74 69 27 12 5 4 1

syrk 9 118 81 66 61 24 9 5 4 1

trisolv 9 93 56 58 51 19 10 7 4 0

trmm 8 118 79 62 57 26 12 5 5 0

Table 2. Semantic factorizations: detailed results

Kernel #dags #C #E insert-time (s) dag-time (s) Rec-depth

2mm 15 250 161 3.5 3.1 2

3mm 18 369 206 11.4 8.5 3

atax 12 134 83 0.8 0.7 2

bicg 11 112 69 0.5 0.5 2

correlation 27 356 205 6.4 5.4 2

covariance 16 243 143 2.7 2.6 2

doitgen 9 145 124 0.8 1.9 2

fdtd-2d 13 502 167 37.2 20.3 3

gemm 10 125 93 0.6 0.8 2

gemver 20 187 137 1.0 1.1 2

gesummv 14 95 84 0.2 0.3 2

heat-3d 8 734 175 502.6 249.8 3

jacobi-1d 8 134 64 2.2 1.3 2

jacobi-2d 8 370 111 37.3 19.6 3

lu 7 213 87 4.4 3.9 2

mvt 11 118 70 0.6 0.6 2

seidel-2d 5 226 63 38.2 15.4 3

symm 13 213 116 2.2 2.5 2

syr2k 10 135 90 0.8 1.3 2

syrk 9 118 81 0.6 0.8 2

trisolv 9 93 56 0.4 0.4 2

trmm 8 118 79 0.8 0.9 2

Table 3. Recursive calls and execution time

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

Optimizing Affine Control with Semantic Factorizations :19

5 RELATEDWORK
Pretty few approaches address the mapping of affine control in the context of polyhedral circuit

synthesis. With Compaan/Laura, the control frequently executed is synthesized as a DAG with

common subexpression factorization [14], the control less frequently executed being left to a

sequential controller. This generates bubbles at each start of the innermost loop. When loops are

restructured in such a way that innermost loops have often a few iterations [11], this limits the

throughput of the controller. For instance, high-degree stencils often used in HPC require very sharp

tiles whose corner have a few innermost loop iterations. Also, the sequential controller requires

a microprogram to be stored in a ROM. As storage resources are limited on FPGAs, this would

limits the control, hence the parallelism and finally the performances of the circuit. The authors

also propose a runtime distance approach, which splits the iteration domain into phases where the

multiplexing is constant (variant domains). The iterations spent in each phase are counted thanks

to polyhedral analysis [13], then the control iterates through the phases with a counter. As far as we

know, this approach was not evaluated. However, the amount of clock cycles is usually expressed

with a piecewise affine pseudo-polynomial which is usually far more complex than the original

control. Also, it requires full multipliers (variable times variable), which are also quite limited on

today’s FPGA (DSP units). Again, this approach would limit the parallelism of the application.

Sometimes, the control can involve integer divisions by a constant [15], it is then said to be quasi-

affine. Zissulescu et al. [36] propose a set of recipes to get rid of integer divisions and modulos

(emulated by integer divisions). Among the recipes, strenght reduction adds data dependences

which may hinder parallelism. Also additional (but light) control is required. However, this is an

important optimization which could be profitably used in complement to our approach. Zuo et al.

[38] propose several source-level transformations to simplify the control for affine loop nests in

front of an HLS tool. This approach is relevant when the outcome of a polyhedral optimization is a

single unperfect loop nest with all the program statements. As stated in section 2, our front-end

polyhedral optimizations splits the control between processes communicating through channels.

This way, the control per process is simpler – a simple perfect loop nest, and does not require such

optimizations. This approach complements ours: we are not optimizing the control structure, we

derive an optimized hardware structure for a given affine control.

Piecewise affine functions received a lot of attention in the control community since Bemporad

et al. [9] show that explicit solutions of Model Predictive Control (MPC) can be expressed with

piecewise affine functions. Since then, many approaches were designed to map piecewise affine

functions to FPGA using binary search trees [25, 30], lattice-based representation [24, 28], mix

thereof [8] or hash functions [7]. Explicit solutions to MPC can be approximated to reduce the

complexity of piece-wise affine controllers [19, 23]. Also, search algorithms can be simplified

and give an approximate solution [6, 29]. In our case, this would not apply: control has to be

exact, no approximation is possible. Tondel et al. [30] relies on a binary search tree to seek the

right affine function to apply. The construction minimizes the depth of the tree by grouping

in the same branch domains sharing the same affine function. Then, the circuit walks through

the tree by using a sequential controller [25]. However, the sequential controller is not directly

pipelinable. This leads to throughputs of several cycles per iteration, which is not desirable for

our purpose. Also, storage resources are required to store the tree. This limits the duplication of

these units, hence the parallelism of the final circuit. Lattice-based representation [20, 28, 33] is

an alternative representation of piecewise affine functions as a min of max of elementary affine

functions f (x) = min1≤i≤k maxj ∈Ii ai j (x), each min term representing a convex part of f . Wen

[34] provides an algorithm for generating the lattice based representation of an affine function.

Then, the lattice-based representation can be mapped directly on the FPGA [24] or mixed with

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

:20 Christophe Alias and Alexandru Plesco

an improved binary search tree [8]. The direct mapping leads to a throughput of 5 cycles per

point on a Links Spartan 3 FPGA, which is not sufficient for our purpose (we expect 1 cycle per

point). Also, it is not clear that the min/max representation would be more compact than our DAGs.

Anyway, lattice-based representation assumes piecewise affine functions (hence continuous), which

is generally not the case for affine control as explained in section 2. Bayat et al. [7] uses a hash

function to locate the affine function to be applied. Basically, the function domain is subdivided in

cells with a grid. The hash function maps each cell to the intersecting function clauses. Then, a few

iteration finds out the relevant clauses. The trade-off is: the bigger is the cell, the smaller is the

storage requirement, the bigger are the cycles per point (throughput). The throughput can only be

increased at the price of a bigger storage. As mentioned previously, using storage resources of the

FPGA is not desirable to implement affine control.

6 CONCLUSION
In this paper, we have proposed an efficient algorithm to compact a collection of affine constraints

and expressions by exploiting semantic properties of addition and multiplication. The compaction

is driven by a customizable cost function whose minimization ensure a proper usage of FPGA

resources. The result is a DAG ready to be mapped on the target FPGA. Synthesis results on FPGA

show that our approach complements very well the optimizations applied by Quartus, and can

be used as a preprocessing step. We also show that, according to our cost model, our method is

significantly better than the classical common subexpression factorization.

So far, the technique has been used to optimize the control at the process level, each process

running in parallel. If we try to optimize the control involved in all processes as a single DAG,

the control would be serialized and we would miss the benefit of parallelization. In the future,

we plan to extend this technique to factorize the control common to processes without hindering

the parallelism. Our method is bounded to affine control, but polyhedral control may include

integer divisions. In addition to a preprocessing, new rules and patterns can be defined. Also, our

method deals with constraints with inequalities only. When equalities are explicitly stated, other

factorizations may apply. Finally, nothing forces strenght reductions, they occur only when the pool

of affine expressions happens to allow it. We believe that special expressions could be systematically

added to allow more strength reductions.

REFERENCES
[1] Christophe Alias, Fabrice Baray, and Alain Darte. 2007. Bee+Cl@k: An Implementation of Lattice-Based Array

Contraction in the Source-to-Source Translator Rose. In ACM Conf. on Languages, Compilers, and Tools for Embedded
Systems (LCTES’07).

[2] Christophe Alias, Alain Darte, and Alexandru Plesco. 2013. Optimizing Remote Accesses for Offloaded Kernels:

Application to High-Level Synthesis for FPGA. In ACM SIGDA Intl. Conference on Design, Automation and Test in
Europe (DATE’13). Grenoble, France.

[3] Christophe Alias, Bogdan Pasca, and Alexandru Plesco. 2012. FPGA-Specific Synthesis of Loop-Nests with Pipeline

Computational Cores. Microprocessors and Microsystems 36, 8 (November 2012), 606–619.

[4] Christophe Alias and Alexandru Plesco. 2015. Data-aware Process Networks. Research Report RR-8735. Inria - Research

Centre Grenoble – Rhône-Alpes. 32 pages. https://hal.inria.fr/hal-01158726

[5] Cédric Bastoul. 2003. Efficient Code Generation for Automatic Parallelization and Optimization. In 2nd International
Symposium on Parallel and Distributed Computing (ISPDC 2003), 13-14 October 2003, Ljubljana, Slovenia. 23–30.

[6] Farhad Bayat, Tor A Johansen, and Ali A Jalali. 2011. Combining truncated binary search tree and direct search for

flexible piecewise function evaluation for explicit MPC in embedded microcontrollers. IFAC Proceedings Volumes 44, 1
(2011), 1332–1337.

[7] Farhad Bayat, Tor Arne Johansen, and Ali Akbar Jalali. 2011. Using hash tables to manage time-storage complexity in

point location problem: Application to Explicit MPC. Automatica 47, 3 (2011), 571–577.
[8] Farhad Bayat, Tor Arne Johansen, and Ali Akbar Jalali. 2012. Flexible piecewise function evaluation methods based

on truncated binary search trees and lattice representation in explicit MPC. IEEE Transactions on Control Systems

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

https://hal.inria.fr/hal-01158726

Optimizing Affine Control with Semantic Factorizations :21

Technology 20, 3 (2012), 632–640.

[9] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos. 2002. The explicit linear quadratic

regulator for constrained systems. Automatica 38, 1 (2002), 3 – 20. https://doi.org/10.1016/S0005-1098(01)00174-1

[10] Michaela Blott. 2016. Reconfigurable future for HPC. In High Performance Computing & Simulation (HPCS), 2016
International Conference on. IEEE, 130–131.

[11] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral

parallelizer and locality optimizer. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008. 101–113. https://doi.org/10.1145/1375581.1375595

[12] Pierre Boulet and Paul Feautrier. 1998. Scanning Polyhedra without Do-loops. In IEEE International Conference on
Parallel Architectures and Compilation Techniques (PACT’98). 4–9.

[13] Philippe Clauss. 1996. Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials:

Applications to Analyze and Transform Scientific Programs. In Proceedings of the 10th international conference on
Supercomputing, ICS 1996, Philadelphia, PA, USA, May 25-28, 1996. 278–285.

[14] Steven Derrien, Alexandru Turjan, Claudiu Zissulescu, Bart Kienhuis, and Ed F Deprettere. 2008. Deriving efficient

control in process networks with compaan/laura. International Journal of Embedded Systems 3, 3 (2008), 170–180.
[15] Paul Feautrier. 1991. Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20,

1 (1991), 23–53. https://doi.org/10.1007/BF01407931

[16] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time.

International journal of parallel programming 21, 6 (1992), 389–420.

[17] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. In Encyclopedia of Parallel Computing. 1581–1592.
[18] Al Geist and Daniel A Reed. 2015. A survey of high-performance computing scaling challenges. International Journal

of High Performance Computing Applications (2015), 1094342015597083.
[19] BAG Genuit, Liang Lu, and WPMH Heemels. 2011. Approximation of PWA control laws using regular partitions: An

ISS approach. IFAC Proceedings Volumes 44, 1 (2011), 4540–4545.
[20] Valentin V. Gorokhovik and Oleg I. Zorko. 1994. Piecewise affine functions and polyhedral sets. Optimization 31, 2

(1994), 209–221.

[21] R.L. Herman. 2014. Numerical Solution of 1D Heat Equation. Applied Analytical Methods, course notes. (Nov. 2014).

[22] Guillame Iooss, Sanjay Rajopadhye, and Christophe Alias. 2013. Semantic Tiling. InWorkshop on Leveraging Abstractions
and Semantics in High-performance Computing (LASH-C’13). Shenzhen, China.

[23] Colin N Jones and Manfred Morari. 2010. Polytopic approximation of explicit model predictive controllers. IEEE Trans.
Automat. Control 55, 11 (2010), 2542–2553.

[24] Macarena C Martínez-Rodríguez, Iluminada Baturone, and Piedad Brox. 2011. Circuit implementation of piecewise-

affine functions based on lattice representation. In Circuit Theory and Design (ECCTD), 2011 20th European Conference
on. IEEE, 644–647.

[25] Alberto Oliveri, Andrea Oliveri, Tomaso Poggi, and Marco Storace. 2009. Circuit implementation of piecewise-affine

functions based on a binary search tree. In Circuit Theory and Design, 2009. ECCTD 2009. European Conference on. IEEE,
145–148.

[26] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL: http://www. cs. ucla. edu/˜
pouchet/software/polybench/[cited July,] (2012).

[27] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. 2013. Polyhedral-based Data Reuse Optimization

for Configurable Computing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’13). ACM, New York, NY, USA, 29–38. https://doi.org/10.1145/2435264.2435273

[28] JM Tarela and MV Martinez. 1999. Region configurations for realizability of lattice piecewise-linear models. Mathe-
matical and Computer Modelling 30, 11-12 (1999), 17–27.

[29] Petter Tondel, Tor Arne Johansen, and Alberto Bemporad. 2002. Computation and approximation of piecewise affine

control laws via binary search trees. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on, Vol. 3.
IEEE, 3144–3149.

[30] Petter Tøndel, Tor Arne Johansen, and Alberto Bemporad. 2003. Evaluation of piecewise affine control via binary

search tree. Automatica 39, 5 (2003), 945–950.
[31] Alexandru Turjan. 2007. Compiling Nested Loop Programs to Process Networks. Ph.D. Dissertation. Universiteit Leiden.
[32] Sven Verdoolaege. 2015. Integer set coalescing. In 5th International Workshop on Polyhedral Compilation Techniques

(IMPACT’15).
[33] Valentin V.Gorokhovik. 2007. Geometrical and analytical characterizations of piecewise affine mappings. Proceedings

of Institute Mathematics (The National Academy of Sciences of Belarus) 15, 1 (2007), 22–32. in Russian.

[34] Chengtao Wen, Xiaoyan Ma, and B Erik Ydstie. 2009. Analytical expression of explicit MPC solution via lattice

piecewise-affine function. Automatica 45, 4 (2009), 910–917.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/10.1016/S0005-1098(01)00174-1
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/BF01407931
https://doi.org/10.1145/2435264.2435273

:22 Christophe Alias and Alexandru Plesco

[35] Chen Zhang, DiWu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong. 2016. Energy-Efficient CNN Implementation

on a Deeply Pipelined FPGA Cluster. In Proceedings of the 2016 International Symposium on Low Power Electronics and
Design. ACM, 326–331.

[36] Claudiu Zissulescu, Bart Kienhuis, and Ed Deprettere. 2005. Expression synthesis in process networks generated by

LAURA. In 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors (ASAP’05). IEEE,
15–21.

[37] Julien Zory and Fabien Coelho. 1998. Using Algebraic Transformations to Optimize Expression Evaluation in Scientific

Codes. In Proceedings of the 1998 International Conference on Parallel Architectures and Compilation Techniques, Paris,
France, October 12-18, 1998. 376–384.

[38] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and Jason Cong. 2013. Improving polyhedral

code generation for high-level synthesis. In 2013 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). 1–10. https://doi.org/10.1109/CODES-ISSS.2013.6659002

Received May 2017; revised October 2017; accepted November 2017

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/10.1109/CODES-ISSS.2013.6659002

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Convex polyhedra
	2.2 Piecewise affine functions
	2.3 Polyhedral synthesis

	3 Our Algorithm
	3.1 Cost Model
	3.2 Motivating Examples
	3.3 Realization Graph
	3.4 Finding an Efficient Realization
	3.5 Building the DAG

	4 Experimental Evaluation
	4.1 Experimental setup
	4.2 Experimental results

	5 Related Work
	6 Conclusion
	References

