
HAL Id: hal-01818585
https://hal.inria.fr/hal-01818585

Submitted on 19 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FIFO Recovery by Depth-Partitioning is Complete on
Data-aware Process Networks

Christophe Alias

To cite this version:
Christophe Alias. FIFO Recovery by Depth-Partitioning is Complete on Data-aware Process Networks.
[Research Report] RR-9187, INRIA Grenoble - Rhone-Alpes. 2018. <hal-01818585>

https://hal.inria.fr/hal-01818585
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
91

87
--

FR
+E

N
G

RESEARCH
REPORT
N° 9187
Juin 2018

Project-Team Cash

FIFO Recovery by
Depth-Partitioning is
Complete on Data-aware
Process Networks
Christophe Alias





RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

FIFO Recovery by Depth-Partitioning is
Complete on Data-aware Process Networks

Christophe Alias∗

Project-Team Cash

Research Report n° 9187 — version 1 — initial version Juin 2018 —
revised version Juin 2018 — 17 pages

Abstract: Computing performances are bounded by power consumption. The trend is to offload
greedy computations on hardware accelerators as GPU, Xeon Phi or FPGA. FPGA chips combine
both flexibility of programmable chips and energy-efficiency of specialized hardware and appear as
a natural solution. Hardware compilers from high-level languages (High-level synthesis, HLS) are
required to exploit all the capabilities of FPGA while satisfying tight time-to-market constraints.
Compiler optimizations for parallelism and data locality restructure deeply the execution order
of the processes, hence the read/write patterns in communication channels. This breaks most
FIFO channels, which have to be implemented with addressable buffers. Expensive hardware is
required to enforce synchronizations, which often results in dramatic performance loss. In this
paper, we build on our algorithm to partition the communications so that most FIFO channels can
be recovered after a loop tiling, a key optimization for parallelism and data locality. We describe a
class of process networks where the algorithm can recover all the FIFO channels. We point out the
limitations of the algorithm outside of that class. Experimental results confirm the completeness
of the algorithm on the class and reveal good performance outside of the class.
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Sur la complétude du partitionnement par profondeur
pour réparer les FIFO des réseaux de processus DPN

Résumé : Les performances des ordinateurs sont limitées par la consommation électrique.
La tendance est de déléguer les calculs gourmands en ressources à des accélérateurs matériels
comme les GPU, les Xeon Phi ou les FPGA. Les circuits FPGA allient la flexibilité d’un cir-
cuit programmable et l’efficacité énergétique d’un circuit spécialisé et apparaissent comme une
solution naturelle. Des compilateurs de matériels à partir d’un langage haut-niveau sont requis
pour exploiter au mieux les FPGA tout en remplissant les contraintes de mise sur le marché. Les
optimisations de compilateur restructurent profondement les calculs et les schémas de commu-
nication (ordre de lecture/écriture). En conséquence, la plupart des canaux de communication
ne sont plus des FIFOs et doivent être implémentées avec un tableau adressable, ce qui nécessite
du matériel supplémentaire pour la synchronisation. Dans ce rapport, nous montrons que notre
algorithme de partitionnement des communications par profondeur est complet sur les réseaux
DPN: toutes les FIFO peuvent être retrouvées après un tuilage de boucles. Nous montrons
l’incomplétude de notre algorithme sur des réseaux de processus polyédrique plus généraux. Ces
résultats théoriques sont ensuite confirmés par des résultats expérimentaux.

Mots-clés : Synthèse de circuit haut-niveau, parallélisation automatique, modèle polyédrique,
synchronisation
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1 Introduction

Since the end of Dennard scaling, the performance of embedded systems is bounded by power
consumption. The trend is to trade genericity (processors) for energy efficiency (hardware ac-
celerators) by offloading critical tasks to specialized hardware. FPGA chips combine both flex-
ibility of programmable chips and energy-efficiency of specialized hardware and appear as a
natural solution. High-level synthesis (HLS) techniques are required to exploit all the capa-
bilities of FPGA, while satisfying tight time-to-market constraints. Parallelization techniques
from high-performance compilers are progressively migrating to HLS, particularly the models
and algorithms from the polyhedral model [7], a powerful framework to design compiler opti-
mizations. Additional constraints must be fulfilled before plugging a compiler optimization into
an HLS tool. Unlike software, the hardware size is bounded by the available silicon surface. The
bigger a parallel unit is, the less it can be duplicated, thereby limiting the overall performance.
Particularly, tricky program optimizations are likely to spoil the performances if the circuit is
not post-optimized carefully [5]. We believe that source-level optimizations (directly on the
source program) should be avoided in HLS, and moved to middle-end level, on an intermediate
representation closed to the final circuit. Process networks are such a natural and convenient
intermediate representation for HLS [4, 12, 13, 18]. A sequential program is translated to a pro-
cess network by partitioning computations into processes and flow dependences into channels.
Then, the processes and buffers are factorized and mapped to hardware.

In this paper, we focus on the translation of the buffers to hardware. We propose an algorithm
to restructure the buffers so they can be mapped to inexpensive FIFOs. Most often, a direct
translation of a regular kernel – without optimization – produces to a process network with FIFO
buffers [15]. Unfortunately, data transfers optimization [3] and generally loop tiling reorganizes
deeply the computations, hence the read/write order in channels (communication patterns).
Consequently, most channels may no longer be implemented by a FIFO. Additional circuitry
is required to enforce synchronizations. This results in larger circuits and causes performance
penalties [4, 19, 14, 16]. This a major lock which prevents, so far, to incorporate fine-grain
polyhedral loop optimizations on the middle-end of HLS tools. In this paper, we build on
our algorithm presented in [1] to reorganize the communications between processes so that more
channels can be implemented by a FIFO after a loop tiling. We make the following contributions:

� We prove the completeness of our algorithm on Data-aware process networks (DPN) [4]:
on a DPN, our algorithm can recover all the FIFO after a loop tiling. This feature is a
step towards enabling polyhedral optimizations in HLS at middle-end level.

� We exhibit a counter-example which prove that our algorithm is no longer complete when
the process network does not comply with the DPN process/channel partitioning scheme.
Also, we discuss the criteria to be fullfilled by the kernel so all the FIFO can be recovered.

� Experimental results on Polybench/C kernels confirm the completeness of the algorithm on
DPN. For non-DPN process networks, we show that the algorithm can recover a significant
amount of FIFO.

The remainder of this paper is structured as follows. Section 2 introduces polyhedral process
network, data-aware process networks and discusses how communication patterns are impacted
by loop tiling, Section 3 recalls our algorithm to reorganize channels, prove the completeness
of our algorithm on DPN and points-out the limitations of our algorithm on non-DPN process
networks. Section 4 presents experimental results. Finally, Section 5 concludes this paper and
draws future research directions.

1
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4 Alias

2 Preliminaries

This section defines the notions used in the remainder of this paper. Sections 2.1 and 2.2
introduce the basics of compiler optimization in the polyhedral model and defines loop tiling.
Section 2.3 defines polyhedral process networks (PPN), shows how loop tiling disables FIFO
communication patterns and outlines a solution. Finally Section 2.4 presents data-aware process
networks (DPN), the particular kind of PPN on which our algorithm is proven to be complete.

for i := 0 to N + 1
• load(a[0, i]);
for t := 1 to T
for i := 1 to N

• a[t, i] := a[t− 1, i− 1] + a[t− 1, i]+
a[t− 1, i+ 1];

for i := 1 to N
◦ store(a[T, i]);
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(a) Jacobi 1D kernel (b) Flow dependences (c) Polyhedral process network

Figure 1: Motivating example: Jacobi-1D kernel. (a) depicts a polyhedral kernel, (b) gives the
polyhedral representation of loop iterations (•: load, •: compute, ◦: store) and flow dependences
(red arrows), then (c) gives a possible implementation as a polyhedral process network: each
assignement (load, compute, store) is mapped to a different process and flow dependences (1 to
7) are solved through channels.

2.1 Polyhedral Model at a Glance

Translating a program to a process network requires to split the computation into processes and
flow dependences into channels. The polyhedral model focuses on kernels whose computation
and flow dependences can be predicted, represented and explored at compile-time. The control
must be predictable: only for loops and if with conditions on loop counters are allowed. Data
structures are bounded to arrays, pointers are not allowed. Also, loop bounds, conditions and
array accesses must be affine functions of surrounding loop counters and structure parameters
(typically the array size). This way, the computation may be represented with Presburger sets
(typically approximated with convex polyhedra, hence the name). This makes possible to reason
geometrically about the computation and to produce precise compiler analysis thanks to integer
linear programming: flow dependence analysis [8], scheduling [7] or code generation [6, 11] to
quote a few. Most compute-intensive kernels from linear algebra and image processing fit in this
category. In some cases, kernels with dynamic control can even fit in the polyhedral model after
a proper abstraction [2]. Figure 1.(a) depicts a polyhedral kernel and (b) depicts the geometric
representation of the computation for each assignment (• for assignment load, • for assignment
compute and ◦ for assignment store). The vector~i = (i1, . . . , in) of loop counters surrounding an
assignment S is called an iteration of S. The execution of S at iteration~i is denoted by 〈S,~i〉. The
set DS of iterations of S is called iteration domain of S. The original execution of the iterations
of S follows the lexicographic order� over DS . For instance, on the statement C: (t, i)� (t′, i′)
iff t < t′ or (t = t′ and i < i′). The lexicographic order over Zd is naturally partitioned by depth:

Inria
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�=�1 ] . . .] �d where (u1 . . . ud) �k (v1, . . . , vd) iff
(
∧k−1i=1 ui = vi

)
∧ uk < vk. This property

will be exploited by the partitioning algorithm. We now explain how producer/consumer relations
are extracted from a polyhedral kernel and represented.

Dataflow Analysis On Figure 1.(b), red arrows depict several flow dependences (read after
write) between executions instances. We are interested in flow dependences relating the produc-
tion of a value to its consumption – not only a write followed by a read to the same location. These
flow dependences are called direct dependences. Direct dependences represent the communication
of values between two computations and drive communications and synchronizations in the final
process network. They are crucial to build the process network. Direct dependences can be com-
puted exactly in the polyhedral model [8]. The result is a relation→ relating each producer 〈P,~i〉
to one or more consumers 〈C,~j〉. Technically, → is a Presburger relation between vectors (P,~i)
and vectors (C,~j) where assignments P and C are encoded as integers. For example, dependence
5 is summed up with the Presburger relation: {(•, t − 1, i) → (•, t, i), 0 < t ≤ T ∧ 0 ≤ i ≤ N}.
Presburger relations are computable and efficient libraries allow to manipulate them [17, 9]. In
the remainder, direct dependence will be referred as flow dependence or dependence to simplify
the presentation.

2.2 Scheduling and Loop Tiling

Compiler optimizations change the execution order to fulfill multiple goals such as increasing the
parallelism degree or minimizing the communications. The new execution order is specified by
a schedule. A schedule θS maps each execution 〈S,~i〉 to a timestamp θS(~i) = (t1, . . . , td) ∈ Zd,
the timestamps being ordered by the lexicographic order �. In a way, a schedule dispatches
each execution instance 〈S,~i〉 into a new loop nest, θS(~i) = (t1, . . . , td) being the new iteration
vector of 〈S,~i〉. A schedule θ induces a new execution order ≺θ such that 〈S,~i〉 ≺θ 〈T,~j〉 iff
θS(~i)� θT (~j). Also, 〈S,~i〉 �θ 〈T,~j〉 means that either 〈S,~i〉 ≺θ 〈T,~j〉 or θS(~i) = θT (~j). When a
schedule is injective, it is said to be sequential: each execution is scheduled at a different time.
Hence everything is executed in sequence. In the polyhedral model, schedules are affine functions.
They can be derived automatically from flow dependences [7]. On Figure 1, the original execution
order is specified by the schedule θload(i) = (0, i), θC(t, i) = (1, t, i) and θstore(i) = (2, i), where
C denotes the compute statement. The lexicographic order ensures the execution of all the load
instances (0), then all the compute instances (1) and finally all the store instances (2). Then, for
each statement, the loops are executed in the specified order.

Loop tiling is a transformation which partitions the computation in tiles, each tile being exe-
cuted atomically. Communication minimization [3] typically relies on loop tiling to tune the ratio
computation/communication of the program beyond the ratio peak performance/communication
bandwidth of the target architecture. Figure 2.(a) depicts the iteration domain of compute and
the new execution order after tiling loops t and i. For presentation reasons, we depict a domain
bigger than in Figure 1.(b) (with bigger N and M) and we depict only a part of the domain. In
the polyhedral model, a loop tiling is specified by hyperplanes with linearly independent normal
vectors ~τ1, . . . , ~τd where d is the number of nested loops (here ~τ1 = (0, 1) for the vertical hyper-
planes and ~τ2 = (1, 1) for the diagonal hyperplanes). Roughly, hyperplanes along each normal
vector ~τi are placed at regular intervals bi (here b1 = b2 = 4) to cut the iteration domain in
tiles. Then, each tile is identified by an iteration vector (φ1, . . . , φd), φk being the slice number
of an iteration ~i along normal vector ~τk: φk = ~τk ·~i ÷ bk. The result is a Presburger iteration
domain, here D̂C = {(φ1, φ2, t, i), 4φ1 ≤ t < 4(φ1 + 1)∧ 4φ2 ≤ t+ i < 4(φ2 + 1)}: the polyhedral
model is closed under loop tiling. In particular, the tiled domain can be scheduled. For instance,
θ̂C(φ1, φ2, t, i) = (φ1, φ2, t, i) specifies the execution order depicted in Figure 2.(a)): tile with
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6 Alias

point (4,4) is executed, then tile with point (4,8), then tile with point (4,12), and so on. For
each tile, the iterations are executed for each t, then for each i.

2.3 Polyhedral Process Networks

We derive a polyhedral process network by partitioning iterations domains into processes and the
flow dependence relation into channels. Figure 1.(c) depicts a possible PPN from the Jacobi 1D
kernel given on Figure 1.(a). For this example, we choose a canonical partition of the computation
(one process per statement) and a partition of flow dependences such that there is single channel
per couple producer/read reference, as motivated later. More formally, a polyhedral process
network is a couple (P, C) such that:

� Each process P ∈ P is specified by an iteration domain DP and a sequential schedule θP
inducing an execution order ≺P over DP . Each iteration ~i ∈ DP realizes the execution
instance µP (~i) in the program. The processes partition the execution instances in the
program: {µP (DP ) for each process P} is a partition of the program computation.

� Each channel c ∈ C is specified by a producer process Pc ∈ P, a consumer process Cc ∈ P
and a dataflow relation →c relating each production of a value by Pc to its consumption
by Cc: if ~i→c

~j, then execution ~i of Pc produces a value read by execution ~j of Cc. →c is
a subset of the flow dependences from Pc to Cc and the collection of →c for each channel
c between two given processes P and C, {→c, (Pc, Cc) = (P,C)}, is a partition of flow
dependences from P to C.

The goal of this paper is to find out a partition of flow dependences for each producer/consumer
couple (P,C), such that most channels from P to C can be realized by a FIFO.

On Figure 1.(c), each execution 〈S,~i〉 is mapped to process PS and executed at process
iteration ~i: µPS

(~i) = 〈S,~i〉. For presentation reason the compute process is depicted as C.
Dependences depicted as k on the dependence graph in (b) are solved by channel k. To read
the input values in parallel, we use a different channel per couple producer/read reference, hence
this partitioning. We assume that, locally, each process executes instructions in the same order
than in the original program: θload(i) = i, θcompute(t, i) = (t, i) and θstore(i) = i. Remark that the
leading constant (0 for load, 1 for compute, 2 for store) has disappeared: the timestamps only
define an order local to their process: ≺load, ≺compute and ≺store. The global execution order is
driven by the dataflow semantics: the next process operation is executed as soon as its operands
are available. The next step is to detect communication patterns to figure out how to implement
channels.

Communication Patterns A channel c ∈ C might be implemented by a FIFO iff the consumer
Cc reads the values from c in the same order than the producer Pc writes them to c (in-order)
and each value is read exactly once (unicity) [13, 15]. The in-order constraint can be written:

in-order(→c,≺P ,≺C) :=
∀x→c x

′,∀y →c y
′ : x′ ≺C y′ ⇒ x �P y

The unicity constraints can be written:

unicity(→c) :=
∀x→c x

′,∀y →c y
′ : x′ 6= y′ ⇒ x 6= y

Notice that unicity depends only on the dataflow relation→c, it is independent from the execution
order of the producer process ≺P and the consumer process ≺C . Furthermore, ¬in-order(→c

Inria
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,≺P ,≺C) and ¬unicity(→c) amount to check the emptiness of a convex polyhedron, which can
be done by most LP solvers.

Finally, a channel may be implemented by a FIFO iff it verifies both in-order and unicity
constraints:

fifo(→c,≺P ,≺C) :=
in-order(→c,≺P ,≺C) ∧ unicity(→c)

When the consumer reads the data in the same order than they are produced but a datum may
be read several times: in-order(→c,≺P ,≺C) ∧ ¬unicity(→c), the communication pattern is said
to be in-order with multiplicity: the channel may be implemented with a FIFO and a register
keeping the last read value for multiple reads. However, additional circuitry is required to trigger
the write of a new datum in the register [13]: this implementation is more expensive than a single
FIFO. Finally, when we have neither in-order nor unicity: ¬in-order(→c,≺P ,≺C)∧¬unicity(→c),
the communication pattern is said to be out-of-order with multiplicity: significant hardware
resources are required to enforce flow- and anti- dependences between producer and consumer
and additional latencies may limit the overall throughput of the circuit [4, 19, 14, 16].

Consider Figure 1.(c), channel 5, implementing dependence 5 (depicted on (b)) from 〈•, t−1, i〉
(write a[t, i]) to 〈•, t, i〉 (read a[t − 1, i]). With the original sequential schedule, the data are
produced (〈•, t− 1, i〉) and read (〈•, t− 1, i〉) in the same order, and only once: the channel may
be implemented as a FIFO. Now, assume that process compute follows the tiled execution order
depicted in Figure 2.(a). The execution order now executes tile with point (4,4), then tile with
point (4,8), then tile with point (4,12), and so on. In each tile, the iterations are executed for
each t, then for each i. Consider iterations depicted in red as 1, 2, 3, 4 in Figure 2.(b). With the
new execution order, we execute successively 1,2,4,3, whereas an in-order pattern would have
required 1,2,3,4. Consequently, channel 5 is no longer a FIFO. The same hold for channel 4 and
6. Now, the point is to partition dependence 5 and others so FIFO communication pattern hold.
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Figure 2: Impact of loop tiling on the communication patterns. (a) gives the execution
order of the Jacobi-1D main loop after a loop tiling, (b) shows how loop tiling disables the FIFO
communication pattern, then (c) shows how to split the dependences into new channels so FIFO
can be recovered.

Consider Figure 2.(c). Dependence 5 is partitioned in 3 parts: red dependences crossing tiling
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8 Alias

hyperplane φ1 (direction t), blue dependences crossing tiling hyperplane φ2 (direction t+ i) and
green dependences inside a tile. Since the execution order in a tile is the same as the original
execution order (actually a subset of the original execution order), green dependences will verify
the same FIFO communication pattern as in the non-tiled version. As concerns blue and red
dependences, source and target are executed in the same order because the execution order is the
same for each tile and dependence 5 happens to be short enough. In practice, this partitioning
is effective to reveal FIFO channels. In the next section, we recall our algorithm to find such a
partitioning. The next subsection presents the Data-aware process networks, the particular kind
of PPN on which the algorithm is complete.

2.4 Data-aware Process Networks

There are as many polyhedral process networks as possible partitions of the computations (pro-
cesses) and dependences (channels) of the input kernel. A data-aware process network [4] is a
process/channel partition template which allows, given a relevant loop tiling, to control the data
transfers volume and the parallelism degree at the same time.

Figure 3 gives a possible DPN partition (b) from a loop tiling (a) on the motivating example.
Given a loop tiling DS 7→ D̂S for each statement S, we consider the execution order induced by
the schedule θ̂S(φ1, . . . , φn,~i) = (φ1, . . . , φn,~i): for each (φ1, . . . , φn−1), we execute the sequence
of tiles (φn,~i) such that (φ1, . . . , φn,~i) ∈ D̂S . The set of executions 〈S,~i〉 given (φ1, . . . , φn−1) is
called a band and written B(φ1, . . . , φn−1). On Figure 3.(a), B(1) is the set of tiles surrounded
by thick red lines. First, band B(0) (with 0 ≤ t < 4) is executed tile by tile, then band B(1)
is executed tile by tile, and so on. On DPN, a band acts as a reuse unit. This means that
incoming dependences (here 1,2,3) are loaded and outcoming dependences (here 13,14,15) are
stored to an external storage unit. Dependences inside a band are resolved through channels
(here 4 to 12). Inside a band, the computations may be split in parallel process thanks to
surrounding hyperplanes (~τ1, . . . , ~τn−1). On Figure 3.(a), each band is split in two sub-bands
separated by a dotted line, thanks to hyperplane ~τ1 = (1, 0). Each sub-band is implemented by
a separate process on Figure 3.(b): C1 for the left sub-band, C2 for the right sub-band. The
DPN partitioning allows to tune the arithmetic intensity (A.I.) by playing on the band width b
(here A.I. = 2 × bN/2N = b) and to select the parallelism independently Each parallel process

is identified by its coordinate ~̀ = (`1, . . . , `n−1) along surrounding hyperplanes. Assuming p
parallel instances along each surrounding hyperplanes we have 0 ≤ `k < p. The parallel instance
of C of coordinate ~̀, for 0 ≤ `k < p is written C~̀ (here we have parallel instances C0 and C1).
We distinguish between i/o dependences, (→i/o source or target outside of the band e.g. 1, 2, 3
or 13, 14, 15), local dependences to each parallel process (→local, source and target on the same
parallel process e.g. 4, 5, 6) and synchronization dependences between parallel process (→synchro,
source and target on different parallel process e.g. 7, 8, 9). For each array a loaded/stored through
→i/o, a load (resp. store) process Loada (resp. Storea) is created. For each i/o dependence

(P~̀, φ1, . . . , φn,~i) →i/o (C~̀′ , φ
′
1, . . . , φ

′
n,~j), assuming the data written by P~̀ is a[u(~i)] and the

data read by C~̀′ is a[v(~j)], the dependence is removed and replaced by a dependence flowing

to Storea: (P~̀, φ1, . . . , φn,~i) →i/o (Storea, φ1, . . . , φn, u(~i)), and by a dependence flowing from

Loada: (Loada, φ1, . . . , φn, v(~j)) →i/o (C~̀′ , φ
′
1, . . . , φ

′
n,~j) (on Figure (b), these processes are

simply named Load/Store). Dependence →i/o and processes Loada and Storeb can be further
optimized to improve data reuse through the band [4]. Finally each channel c of the original PPN
is partitioned in such a way that each new channel c′ connects a single producer process and
consumer process (here original PPN channel 4 is split into DPN channels 4, 7, 10). We keep track
of the original PPN channel with the mapping µ: µ(c′) := c (here µ(4) = µ(7) = µ(10) = 4).

Inria



FIFO Recovery by Depth-Partitioning is Complete on Data-aware Process Networks 9

The DPN partitioning will be denoted by (L,P ′,S, C′) where L is the set of Load process, P ′ is
the set of parallel processes, S is the set of store processes Store and C′ is the set of channels.
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Figure 3: Data-aware process network (DPN) for the Jacobi-1D kernel. (a) computa-
tions are executed per band (between red thick lines), tile per tile. Incoming dependences (1,2,3)
are loaded, outcoming dependences (13,14,15) are stored, internal dependences (4 to 12) are
solved through local channels depicted in (b). Parallelization is derived by splitting a band with
tiling hyperplanes (here the dotted line). With this scheme, arithmetic intensity and parallelism
can be tuned easily.

3 The Partitioning Algorithm

In this section, we recall our algorithm presented in [1] to restructure the channels so FIFO
channels can be recovered after a loop tiling. Then, we present the contributions of this paper.
Section 3.1 proves that the algorithm is complete on DPN. Then, Section 3.2 points out the
limits of the algorithm on general PPN without the DPN partitioning.

Figure 4 depicts the algorithm for partitioning channels given a polyhedral process network
(P, C) (line 5). For each channel c from a producer P = Pc to a consumer C = Cc, the channel
is partitioned by depth along the lines described in the previous section (line 7). DP and DC
are assumed to be tiled with the same number of hyperplanes. P and C are assumed to share a
schedule with the shape: θ(φ1, . . . , φn,~i) = (φ1, . . . , φn,~i). In other words, the execution of a tile
follow the order as in the original program. This case arises frequently with tiling schemes for
I/O optimization [4]. If not, the next channel →c is considered (line 6). The split is realized by
procedure split (lines 1–4). A new partition is built starting from the empty set. For each depth
(hyperplane) of the tiling, the dependences crossing that hyperplane are filtered and added to the
partition (line 3): this gives dependences→1

c , . . . ,→n
c . Finally, dependences lying in a tile (source

and target in the same tile) are added to the partition (line 4): this gives→n+1
c . θP (x) ≈n θC(y)

means that the n first dimensions of θP (x) and θC(y) (tiling coordinates (φ1, . . . , φn)) are the
same: x and y belong to the same tile.
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1 split(→c,θP ,θC)
2 for k := 1 to n
3 add(→c ∩{(x, y), θP (x)�k θC(y)});
4 add(→c ∩{(x, y), θP (x) ≈n θC(y)});

5 fifoize((P, C))
6 for each channel c
7 {→1

c , . . . ,→n+1
c } := split(→c,θPc ,θCc);

8 if fifo(→k
c ,≺θPc

,≺θCc
) ∀k

9 remove(→c);
10 insert(→k

c ) ∀k;

Figure 4: Our algorithm for partitioning channels [1]. The algorithm split produces the
dependence partition described on Figure 2.(c), for each depth k of the producer schedule θP
and the consumer schedule θC . The dependence partition is kept if each set of the dependence
partition has a FIFO pattern.

Consider the PPN depicted in Figure 1.(c) with the tiling and schedule discussed above:
process compute is tiled as depicted in Figure 2.(c) with the schedule θcompute(φ1, φ2, t, i) =
(φ1, φ2, t, i). Since processes load and store are not tiled, the only channels processed by the
algorithm are 4,5 and 6. split is applied on the associated dataflow relations →4, →5 and →6.
Each dataflow relation is split in three parts as depicted in Figure 2.(c). For →5: →1

5 crosses
hyperplane t (red), →2

5 crosses hyperplane t + i (blue) and →3
5 stays in a tile (green). Each of

these new dataflow relations →1
5, →2

5 ,→3
5 exhibit a FIFO communication pattern w.r.t. θ. The

total space occupied by these new FIFO is almost the same as the original channel plus a small
overhead as discussed in [1].

Consider the DPN depicted in Figure 3. This DPN is derived from the PPN in Figure 1.(c),
with the tiling described above. The dependences are pre-split into channels to fit with the DPN
execution model: load/store dependences (red and black), intra-process dependences for each
parallel process C1 and C2 (blue for C1, yellow for C2) and communication between parallel
processes (green dependences). Dependence 4 and 5 lead to the same faulty communication
pattern as in Figure 2.(b). Our algorithm will split them between dependence instances crossing
the t + i hyperplane (as on the figure) and dependence instances with source and target inside
the same tile. Here, each split gives a FIFO. Similarly, the same splitting occurs for process C2.
Communication dependences (7,8,9, green) can be implemented directly by a FIFO: no split is
required on this example. Finally, all the compute-to-compute channels (4 to 12) can be turned
to FIFO. Load/Store dependences are not considered for splitting because load and store buffers
are usually not FIFOs. Indeed, each loaded data will usually be read several times as DPN are
tuned for a maximal data reuse. Also, the store process will read the data to prepare burst data
transfers. Hence, the store read order is generally not the write order of the producer process
(here process C2).

3.1 Completeness on DPN partitioning

The algorithm always succeeds to recover all the FIFO on PPN with the DPN execution schema:
if a PPN channel c is a FIFO before tiling, then, after tiling and turning the PPN into a DPN,
the algorithm can split each DPN channel c′ created from the PPN channel c (c′ = µ(c)) in such
a way that we get FIFOs. We say that the splitting algorithm is complete over DPN. This is an
important enabling property for DPN: essentially, it means that DPN allow to implement the
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tiling transformation while keeping FIFO channels, which is necessary (though not sufficient)
to map it to hardware. In the next section, we will show that general PPN (without DPN
partitioning) are not complete. This shows that DPN is an important subset of PPN.

We start by a fundamental lemma, asserting that if a dependence relation → can be imple-
mented with a FIFO w.r.t. a given schedule then any subset of → with the same schedule can
also be implemented by a FIFO:

Lemma 3.1 Consider a PPN (P, C) and a channel c ∈ C. If →′⊂→c and fifo(→c, θPc
, θCc

)
then: fifo(→′, θPc

, θCc
).

Proof: Any counter example →′⊂→c such that ¬fifo(→′, θPc
, θCc

) would imply that ¬fifo(→c

, θPc
, θCc

): if ¬in-order(→′, θPc
, θCc

)) then ¬in-order(→c, θPc
, θCc

)), also: if ¬unicity(→′) then
¬unicity(→c). This contradicts the hypothesis. q.e.d.

With this lemma, we can prove the completeness of the algorithm on any DPN partitioning:

Property 3.2 Consider a PPN (P, C) and a DPN partitioning (L,P ′,S, C′) w.r.t. a tiled sched-
ule. Then, for each channel c′ ∈ C′ of the DPN: if the original channel in the PPN c = µ(c′) is
a FIFO, then the split of c′ will be a FIFO as well.

Proof: Since we only consider channels between compute processes of P ′, we can exclude the
case →c′⊂→i/o (load source or store target). Hence we have to consider the remaining cases
→c′⊂→local and →c′⊂→synchros.

Assume →c′⊂→local. This is the case for dependences 4, 5, 6 and 10, 11, 12. First, remark
that dependences of →local can only cross the last tiling hyperplane (~τ2 on figure 3.(a)). Indeed,
the dependences crossing the remaining hyperplanes are all gathered in →i/o by construction.
Also, dependences between parallel processes are all gathered in →synchro by construction. If
the last tiling hyperplane does not break the fifo communication pattern, no splitting is required.
Else, the splitting ends-up with a new dependence (and channel) partition: →c′=→last

c′ ] →tile
c′ .

→last
c′ being the dependence instances crossing the last tiling hyperplane and →tile

c′ being the
dependence instances lying inside a tile. Since in a tile, the schedule induces the same execution
order as in the original DPN,→tile

c′ ⊂→c, and c is a FIFO with the original execution order, then
→tile
c′ gives a FIFO channel (lemma 3.1). Similarly, →last

c′ links iterations from a producer tile
(tile in the example) to the next consumer tile (tile on the example). Since →last

c′ ⊂→c and
fifo(→c, θPc

, θCc
), then fifo(→last

c′ , θPc
, θCc

) by lemma 3.1. To conclude that →last
c′ gives a FIFO

in the DPN, we need to check that the execution order on the producer side of →last
c′ is a subset

of ≺θPc
and that the execution order on the consumer side of→last

c′ is a subset of ≺θCc
. Provided

the tile size is big enough, we can assume that starting from a given tile, the targets of →last
c′

belong the same tile (typically the next tile in the execution). By hypothesis, the execution order

on a tile is a subset of the original execution order (θ̂S(φ1, . . . , φn,~i) = (φ1, . . . , φn,~i) for each
statement S). In particular, the execution order of the producers (resp. consumers) of→last

c′ is a
subset of ≺θPc

(resp. ≺θCc
). Hence the splitting ends-up with FIFO channels. This is a general

apparatus which will be used to prove the next case.
Assume →c′⊂→synchro. On the example, this happens for dependences 7, 8, 9. Remark that

→c′ hold dependences from a producer tile (here tile 3) to tiles mapped to the same consumer
process (here 4 and 6) by construction. Data sent to several consumer processes cannot flow
through the same channel. Hence the only hyperplane which can separate consumer iteration
is again the last tiling hyperplane. Either all the consumer iterations belong to the same tile
(here 9), and we directly have a FIFO by lemma 3.1. Either consumer iterations are split by
the last tiling hyperplane: →c′=→last

c′ ] →tile
c′ (here 7,8). The same reasoning as in the previous

paragraph allow to conclude that both cases can be implemented by a FIFO. Hence the splitting
ends-up with FIFO channels.

This shows the completeness of the algorithm on DPN partitioning schema. q.e.d.
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Figure 5: Counter example on general PPN. When dependences are too long, target itera-
tions reproduce the tiling pattern ; hence breaking the FIFO pattern.

3.2 Limitations on general PPN

When the PPN does not follow the DPN partitioning, there is no guarantee that the algorithm
will always succeed to recover FIFO. Figure 5 gives a counter example. We modify the kernel
given on Figure 1.(a) to observe a single dependence (t, i) 7→ (t+2, i−1) on the compute domain
(•) and we keep the same loop tiling. The resulting PPN is almost like in (c) but with a single
compute buffer (4 is kept to solve the dependence, 5, 6 are removed). The algorithm will split
the dependence in three parts: the dependences crossing the t hyperplane (partially depicted,
in green), the dependences crossing the t + i hyperplane (not depicted) and the dependence
totally inside a tile (not depicted). In tile 2, iteration (4, 11) is executed before iteration (5, 7):
(4, 11) ≺θ̂ (5, 7). But the dependence target of iterations (4, 11) and (5, 7) are not executed in
the same order because (5, 7) targets tile 5 and (4, 11) targets tile 6 (the next tile in the execution
order). Hence the in-order property is not verified and the channel cannot be realized by a FIFO.

We observe that the algorithm works pretty well for short uniform dependences. However,
when dependences are longer, the target operations reproduce the tile execution pattern, which
prevents to find a FIFO. The same happens when the tile hyperplanes are “too skewed”. Indeed,
skewed hyperplanes can be viewed as orthogonal hyperplanes modulo a change of basis. When
the hyperplanes are too skewed, the change of basis enlarge the dependence size which produce
the same effect as in the counter-example. To summarize, the dependences must be uniform
~i 7→ ~i + ~d and reasonably short (small ‖~d‖). This means that tiling hyperplanes should not be
too skewed. Indeed, skewed hyperplanes can always be viewed as orthogonal hyperplanes modulo
a change of basis in the iteration space. The more skewed the hyperplanes are, the longer the
dependence will be after the change of basis, thereby causing the same issue than on the counter
example. The next section will, in particular, assess the capabilities of our algorithm to recover
FIFO on general PPN.
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4 Experimental Evaluation

This section presents the experimental results obtained on the benchmarks of the polyhedral
community. We check the completeness of the algorithm on DPN process networks. Then, we
assess the performances of the algorithm on PPN without DPN partitioning scheme. Finally, we
show how much additional storage is produced by the algorithm.

Experimental Setup We have run the algorithm on the kernels of PolyBench/C v3.2 [10].
We have checked the completeness of the algorithm on PPN with DPN partitioning (Table 1),
study the behavior of the algorithm on general PPN, without DPN partitioning (Table 2). Each
kernel is tiled to reduce I/O while exposing parallelism [4] and translated both to a PPN and
a DPN using our research compiler, Dcc (DPN C Compiler). On the DPN, the process are
parallelized with a degree of p = 2 on each band dimension: for a kernel with a loop tiling of
dimension n, each compute process is split in 2n−1 parallel processes.

Completeness on DPN Table 1 checks the completeness of our algorithm on PPN with
DPN partitioning. For each kernel, column #buffers gives the total number of channels after
applying our algorithm, column #fifos gives the total number of FIFO among these channels,
the next columns provide the total size of FIFO channels and the total size of channels (unit:
datum). Then, the next column assess the completeness of the algorithm. To do so, we recall
the number of FIFO c in the original PPN before DPN partitioning and without tiling (#fifo
basic). After tiling and DPN partitioning, each FIFO c is partitioned into several buffers c′

(µ(c′) = c). Column #fifo passed gives the number of original FIFO c such that all target buffers
c′ are directly FIFO: #{c | ∀c′ : µ(c′) = c ⇒ c′ is a FIFO}. No splitting is required for these
buffers c′. Column #fifo fail gives the number of original FIFO c such that at least one target
buffer c′ is not a FIFO: #{c | ∃c′ : µ(c′) = c ∧ c′ is not a FIFO}. If all the failing buffers c′ can
be split into FIFO by the algorithm, we say that c has been restored. The column #fifo restored
count the restored FIFO c. Since the algorithm is complete, we expect to have always #fifo fail
= #fifo restored. The last column gives the proportion of FIFO c not restored. We expect it
to be always 0. As predicted, the results confirm the completeness of the algorithm on DPN
partitioning: all the FIFO are restored.

Limits on PPN without DPN partitioning Table 2 shows how the algorithm can recover
FIFO on a tiled PPN without the DPN partitioning. The columns have the same meaning as the
table 1: columns #buffers and #fifos gives the total number of buffers (resp. fifos) after applying
the algorithm. Column #fifo basic give the number of FIFO in the original untiled PPN: we
basically want to recover all these fifos. Among these FIFO buffers: column #fifo passed gives
the number of buffers which are still a FIFO after tiling and column #fifo fail gives the number
of FIFO buffer broken by the tiling. These are the FIFO which need to be recovered by our
algorithm. Among these broken FIFO: column #fifo restored gives the number of FIFO restored
by the algorithm and column % fail gives the ratio of broken FIFO not restored by the algorithm.
Since our algorithm is not complete on general PPN, we expect to find non-restored buffers. This
happens for kernels 3mm, 2mm, covariance, correlation, fdtd-2d, jacobi-2d, seidel-2d and
heat-3d. For kernels 3mm, 2mm, covariance and correlation, failures are due to the execution
order into a tile, which did not reproduce the original execution order. This is inherently due to
the way we derive the loop tiling. It could be fixed by imposing the intra tile execution order
as prerequisite for the tiling algorithm. But then, other criteria (buffer size, throughput, etc)
could be harmed: a trade-off needs to be found. For the remaining kernels: fdtd-2d, jacobi-2d,
seidel-2d and heat-3d, failures are due to tiling hyperplanes which are too skewed. This fall
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into the counter-example described in Section 3.2, it is an inherent limitation of the algorithm,
and it cannot be fixed by playing on the schedule. The algorithm succeed to recover the all FIFO
channels on a significant number of kernels (14 among 22): it happens that these kernels fulfill
the conditions expected by the algorithm (short dependence, tiling hyperplanes not too skewed).
Even on the “failing” kernels, the number of FIFO recovered is significant as well, though the
algorithm is not complete: the only exception is the heat-3d kernel.

Kernel #buffers #fifos total fifo size total size #fifo basic #fifo passed #fifo fail #fifo restored %fail
trmm 12 12 516 516 2 1 1 1 0
gemm 12 12 352 352 2 1 1 1 0

syrk 12 12 8200 8200 2 1 1 1 0
symm 30 30 1644 1644 6 5 1 1 0

gemver 15 13 4180 4196 4 3 1 1 0
gesummv 12 12 96 96 6 6 0 0 0

syr2k 12 12 8200 8200 2 1 1 1 0
lu 45 22 540 1284 3 0 3 3 0

trisolv 12 9 23 47 4 3 1 1 0
cholesky 44 31 801 1129 6 4 2 2 0
doitgen 32 32 12296 12296 3 2 1 1 0

bicg 12 12 536 536 4 2 2 2 0
mvt 8 8 36 36 2 0 2 2 0

3mm 53 43 5024 5664 6 3 3 3 0
2mm 34 28 1108 1492 4 2 2 2 0

covariance 45 24 542 1662 7 4 3 3 0
correlation 71 38 822 2038 13 9 4 4 0

fdtd-2d 120 120 45696 45696 12 5 7 7 0
jacobi-2d 123 123 10328 10328 10 2 8 8 0
seidel-2d 102 102 60564 60564 9 2 7 7 0
jacobi-1d 23 23 1358 1358 6 2 4 4 0

heat-3d 95 95 184864 184864 20 2 18 18 0

Table 1: Detailed results on PPN with DPN execution scheme. The algorithm is complete on
DPN: all the FIFO were recovered (%fail = 0)

5 Conclusion

In this paper, we have studied an algorithm to reorganize the channels of a polyhedral process
network to reveal more FIFO communication patterns. Specifically, the algorithm operates
channels whose producer and consumer iteration domain has been partitioned by a loop tiling.
We have proven the completeness of the algorithm on the DPN partitioning scheme. Also, we
pointed out limitations of the algorithm on general PPN. Experimental results confirms the
completeness of the algorithm on DPN as well as the limitations on general PPN. Even in that
case, in a significant number of cases, the algorithm allows to recover the FIFO disabled by loop
tiling with almost the same storage requirement. This means that our algorithm enables DPN
as an intermediate representation for middle-end level polyhedral optimizations.

In the future, we plan to design a channel reorganization algorithm provably complete on
general PPN with tiling, in the meaning that a FIFO channel will be recovered whatever the
dependence size and the tiling used. Finally, we observed that FIFO failures can be avoided by
playing with the intra-tile schedule. This may hinder other criteria (buffer size, throughput). We
plan to study the trade-offs involved and to investigate how to constrain the scheduling algorithm
while keeping acceptable trade-offs.

Inria



FIFO Recovery by Depth-Partitioning is Complete on Data-aware Process Networks 15

Kernel #buffers #fifos total fifo size total size #fifo basic #fifo passed #fifo fail #fifo restored %fail
trmm 3 3 513 513 2 1 1 1 0
gemm 3 3 304 304 2 1 1 1 0

syrk 3 3 8194 8194 2 1 1 1 0
symm 9 9 821 821 6 3 3 3 0

gemver 8 7 4147 4163 4 2 2 2 0
gesummv 6 6 96 96 6 6 0 0 0

syr2k 3 3 8194 8194 2 1 1 1 0
lu 11 6 531 1091 3 0 3 3 0

trisolv 6 5 20 36 4 3 1 1 0
cholesky 12 9 789 1077 6 3 3 3 0
doitgen 4 4 12289 12289 3 2 1 1 0

bicg 6 6 532 532 4 2 2 2 0
mvt 4 4 34 34 2 0 2 2 0

3mm 10 6 1056 2848 6 2 4 2 50%
2mm 6 4 784 1296 4 2 2 1 50%

covariance 12 8 533 1317 7 4 3 2 33%
correlation 22 15 810 1642 13 9 4 3 25%

fdtd-2d 20 14 10054 36166 12 0 12 6 50%
jacobi-2d 12 4 1153 8385 10 0 10 2 80%
seidel-2d 12 6 803 49955 9 0 9 3 66%
jacobi-1d 13 13 1178 1178 6 1 5 5 0

heat-3d 20 0 0 148608 20 0 20 0 100%

Table 2: Detailed results on PPN. The algorithm is not complete on general PPN: some FIFO
were not recovered (for some kernels, %fail 6= 0).
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