
DISSERTATION

DETECTION OF LINEAR ALGEBRA OPERATIONS IN POLYHEDRAL PROGRAMS

Submitted by

Guillaume IOOSS

Department of Computer Science, Colorado State University

Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure de Lyon

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2016

Doctoral Committee:

Advisors: Sanjay Rajopadhye, Christophe Alias, Alain Darte

Philippe Clauss

Sriram Sankaranarayanan

Stephan Thomassé

Jennifer Mueller

Hamid Chitsaz

Copyright by Guillaume Iooss 2016

All Rights Reserved

ABSTRACT

DETECTION OF LINEAR ALGEBRA OPERATIONS

IN POLYHEDRAL PROGRAMS

Writing a code which uses an architecture at its full capability has become an increasingly

difficult problem over the last years. For some key operations, a dedicated accelerator or a

finely tuned implementation exists and delivers the best performance. Thus, when compiling a

code, identifying these operations and issuing calls to their high-performance implementation is

attractive. In this dissertation, we focus on the problem of detection of these operations. We

propose a framework which detects linear algebra subcomputations within a polyhedral program.

The main idea of this framework is to partition the computation in order to isolate different

subcomputations in a regular manner, then we consider each portion of the computation and

try to recognize it as a combination of linear algebra operations.

We perform the partitioning of the computation by using a program transformation called

monoparametric tiling. This transformation partitions the computation into blocks, whose shape

is some homothetic scaling of a fixed-size partitioning. We show that the tiled program remains

polyhedral while allowing a limited amount of parametrization: a single size parameter. This

is an improvement compared to the previous work on tiling, that forced us to choose between

these two properties.

Then, in order to recognize computations, we introduce a template recognition algorithm. This

template recognition algorithm is built on a state-of-the-art program equivalence algorithm. We

also propose several extensions in order to manage some semantic properties.

Finally, we combine these two previous contributions into a framework which detects linear

algebra subcomputations. A part of this framework is a library of template, based on the BLAS

specification. We demonstrate our framework on several applications.

ii

RÉSUMÉ

RECONNAISSANCE D’OPÉRATIONS D’ALGÈBRE LINÉAIRE

DANS UN PROGRAMME POLYÉDRIQUE

Durant ces dernières années, Il est de plus en plus compliqué d’écrire du code qui utilise une

architecture au mieux de ses capacités. Certaines opérations clefs ont soit un accélérateur dédié,

ou admettent une implémentation finement optimisée qui délivre les meilleures performances.

Ainsi, il est intéressant d’identifier ces opérations pendant la compilation d’un programme, et

de faire appel à une implémentation optimisée.

Nous nous intéressons dans cette thèse au problème de détection de ces opérations. Nous

proposons un procédé qui détecte des sous-calculs correspondant à des opérations d’algèbre

linéaire à l’intérieur de programmes polyédriques. L’idée principale de ce procédé est de découper

le programme en sous-calculs isolés, et essayer de reconnâıtre chaque sous-calculs comme une

combinaison d’opérateurs d’algèbre linéaire.

Le découpage du calcul est effectué en utilisant une transformation de programme appelée tuilage

monoparamétrique. Cette transformation partitionne le calcul en tuiles dont la forme est un

agrandissement paramétrique d’une tuile de taille constante. Nous montrons que le programme

tuilé reste polyédrique tout en permettant une paramétrisation limitée des tailles de tuile. Les

travaux précédents sur le tuilage nous forçaient à choisir l’une de ces deux propriétés.

Ensuite, afin d’identifier les opérateurs, nous introduisons un algorithme de reconnaissance de

template, qui est une extension d’un algorithme d’équivalence de programme. Nous proposons

plusieurs extensions afin de tenir compte des propriétés sémantiques communément rencontrées

en algèbre linéaire.

Enfin, nous combinons les deux contributions précédentes en un procédé qui détecte les sous-

calculs correspondant à des opérateurs d’algèbre linéaire. Une de ses composantes est une

iii

librairie de template, inspirée de la spécification BLAS. Nous démontrons l’efficacité de notre

procédé sur plusieurs applications.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thanks the members of my committee, Philippe Clauss, Sriram

Sankaranarayanan, Hamid Chitsaz, Stéphan Thomassé and Jennifer Mueller, for accepting to

review my work and providing helpful feedback during the proposal defense exam and the writing

of the dissertation. I was particularly impressed by the depth of comprehension their questions

shown, even on topics outside of their usual domain. New ideas and trails to investigate were

almost literally bouncing from everywhere during the defense. On a side note, I will also try to

avoid any more typos on page 12 in the future.

I would also like to thank my two PhD advisors, Sanjay Rajopadhye and Christophe Alias.

Both of them complement each other nicely both scientifically and their work methodologies.

Also, managing a PhD, in cotutelle, with long distances involved is very technical to manage, for

example when trying to explain a complicated notion by videoconference when only a notepad

and a camera are available, or when trying to appease the requirements of both administrations

involved. I firmly believe that I could have not done this work without the involvement of both

of them, and that they both did a wonderful job.

My PhD years were split between two locations: ENS Lyon in France and the Computer Science

department in the Colorado State University. I would like to thanks the members of the team

Compsys in Lyon: Alexandre, fellow coworker who is always eager to discuss and try out new

crazy ideas, Laure, Paul, Alain and Fabrice. I would also like to thanks the members of the

team Mélange in Fort Collins: Tomofumi, Yun, Waruna, Nirmal, Revathy, Swetha, Daniel,

Louis, Yohann, and many others for all the time spent discussing ideas and sharing problems

over our numerous meetings and coffee breaks.

A huge thanks to the members of both administrations for their infinite patience. It was

sometimes complicated to complete some administrative procedures from across the ocean, or

when some documents were due on one side before being available, because of deadlines on the

v

other side. Évelyne, our team administrative assistant at Lyon, and the third cycle office at

the ENS are living proof that the administration can be nice, understanding and competent.

I would like to thanks Daniel Hirschkoff and David Coeurjolly for letting me supervise their

lab session of their class, during my years in Lyon, and provide me some valuable teaching

experience.

I would like to thanks all the people who supported me personally and morally, Agathe, Damien,

Margeaux, Arthur, Jonathan, Elie, Alice, Etienne, Robin, Thomas, Nimé, Apeiron, Solenn,

Elvire, Imryss, Elro, Camille, Rev, Xavier, maki, Etienne, Sto, Jonas, Ophélia, Mikael, Mickael,

Laetitia, Benjamin, Alexandre, Alexandre, Benoit, Elodie, and many many others. A large

thanks to the people who though about the concept of the foyer, where you could get some

fresh air and cold fruit juice during the summer, whereas our office was facing south without

air conditioning.

I would like to thanks my family for always being supportive, wherever I was. I understand

that it is hard for a non-scientist to have an idea of what I am doing, but I still hope to find

a way to explain what I am doing in more details than just a vague “mathematics applied on

computers to make them work better”.

Finally, on the Colorado side, this work was partially supported by NSF grants CCF-0917319

and CNS-1240991, AFOSR grant FA9550-13-1-0064, and DoE grant DE-SC0014495.

vi

TABLE OF CONTENTS

Abstract ii

Résumé iii

Acknowledgements v

1 Introduction 1

1.1 Architecture evolution and high-performance libraries 1

1.2 Using high-performance libraries automatically 3

1.3 Contributions . 4

1.4 Outline of the dissertation . 5

2 Background 8

2.1 The polyhedral model . 8

2.2 Program representation . 11

2.3 Program transformation . 19

2.4 Program equivalence and template recognition 22

3 Monoparametric Partitioning 29

3.1 Hyperrectangular Monoparametric partitioning 31

3.1.1 Monoparametric partitioning of polyhedra 31

3.1.2 Monoparametric partitioning of affine functions 41

3.2 Hyperrectangular monoparametric partitioning program transformation 48

3.2.1 Monoparametric partitioning program transformation 48

3.2.2 Derivation of the partitioning . 50

vii

3.2.3 Experimental validation . 56

3.3 General monoparametric partitioning . 61

3.3.1 General monoparametric partitioning of polyhedra 62

3.3.2 General monoparametric partitioning of affine functions 65

3.3.3 General monoparametric partitioning program transformation 69

3.4 Discussion . 71

4 From Partitioning to Tiling 76

4.1 Hierarchical programs . 77

4.2 Monoparametric tiling without reduction . 80

4.2.1 Example - Smith Waterman . 81

4.2.2 Preprocessing - Preparing for the outlining 85

4.2.3 Tile group . 89

4.2.4 Monoparametric Tiling with outlining without reduction 92

4.3 Monoparametric tiling with reduction . 97

4.3.1 Monoparametric partitioning with reductions 98

4.3.2 Tile groups and reduction . 101

4.3.3 Monoparametric Tiling with reductions 108

4.4 Experimental Validation . 113

5 Template Recognition 119

5.1 Barthou’s equivalence algorithm . 120

5.2 Adapting the equivalence algorithm into a template algorithm 120

5.3 Examples . 125

5.4 Managing semantic properties . 136

5.5 Experimental validation . 141

5.6 Discussion . 142

6 Recognizing subcomputations 147

6.1 Template library . 147

6.2 Linear algebra operation recognition framework 154

viii

6.3 Applications . 159

6.3.1 Dense Linear algebra applications . 160

6.3.2 Applications outside of dense linear algebra 165

6.4 Discussion . 171

7 Related Work 173

7.1 Tiling transformation and code generation . 173

7.2 Program equivalence and template recognition 176

7.2.1 Program equivalence . 176

7.2.2 Template recognition . 178

7.3 Dense linear algebra algorithm derivation . 180

8 Conclusion 183

8.1 Conclusion . 183

8.2 Future directions . 184

8.2.1 Monoparametric tiling transformation . 185

8.2.2 Template recognition algorithm . 186

8.2.3 Template recognition framework . 188

A Résumé du travail de thèse 189

ix

Chapter 1

Introduction

Writing a code which uses an architecture at its full capability has become an increasingly dif-

ficult problem over the last years. For some key operations, a dedicated accelerator or a finely

tuned implementation exists and delivers the best performance. Thus, when compiling a pro-

gram, identifying these operations and issuing calls to their high-performance implementation

is attractive. In this dissertation, we focus on the problem of detecting these operations. We

propose a framework which recognizes dense linear algebra operations as the subcomputations

of a program.

1.1 Architecture evolution and high-performance libraries

Moore’s law [55, 72] predicted that the number of transistors on chip has been doubling every

18 months. At the same time, because of Dennard scaling [20], the dynamic power consumed

by a Central Processing Unit had remained constant, thereby directly translating the density

increase into a performance gain. Thus, the processing power of a chip was doubling every year

and a half, without having to change the architecture. However, about ten years ago, Dennard

scaling ended, because the leakage power became a significant portion of the consumed power

and could no longer be ignored. Thus, power has become a critical issue in the design of an

1

architecture and manufacturers reacted by increasing the complexity of their circuits, such as

introducing multicore architectures.

Architectures have become more and more hierarchical, especially their memories. For example,

the number of levels of cache have increased in CPU, due to the memory wall: having small

private memory which can prefetch data, thus can be accessed quickly and efficiently in term

of energy, and can communicate with higher level of memories which are shared, is attractive.

Also, because of the size of the main memory, several layers of memories, with increasing

capacity is interesting. Another example of hierarchy is the number of logical level present

when implementing on a GPU (grid, thread block, warp and thread).

Architectures have also become more and more heterogeneous. Accelerators tend to migrate on

chip, such as the Floating Point Unit in the past, because of the number of transistors available

on a CPU increases. We can probably expect the same to happen for Graphics Process Unit

(which is a Single Instruction Multiple Data (SIMD) architecture and can manage efficiently

coalesced memory accesses and vectorized code), and for other accelerators. Because we will

end up in the near future with more transistors that can be powered at once (because of thermal

issues) [21, 74], we will probably have some parts of a chip which implements specific operations

and can be powered-on when needed [17, 51, 59].

Therefore, architectures have become and will become much more complex, making their ex-

ploitation at their full capabilities extremely challenging. For several core computations, their

most efficient implementations are hand-written and can be found in high-performance libraries

(such as BLAS [46] or LAPACK [6] for the dense linear algebra domain). These implementations

were carefully tuned, either by hand, or through dedicated generator, such that a functional

equivalent code generated through a general-purpose compiler does not reach the same level of

performance [88].

Hence, we have a set of highly efficient operations which are hard-coded inside a dedicated

accelerator or admit an highly efficient implementation, and whose performance is not reachable

by a generated code. Now, let us see if we can improve automatically the performance of a given

code by using these implementation.

2

1.2 Using high-performance libraries automatically

In many applications, we can find portions of their code which correspond to an operation from

a high-performance library. In this case, this portion of code can be substituted by a call to the

highly-tuned implementation, instead of relying on a compiler. Several experiments [3, 52] show

that this substitution is beneficial for the performance of a code. However, such opportunity

might be missed, either because the operation was not identified (for example, because it was

not exposed in the computation), or the existence of a corresponding tuned implementation was

unknown.

The next step would be to make the compiler generate the library call automatically, but we

first need to detect the occurrences of such operation in a program. We focus on this problem in

this dissertation, in the context of polyhedral program, and for dense linear algebra operations.

We emphasis the fact that even if the program is not a linear algebra computation, it can still

contain several linear algebra subcomputations.

To the best of our knowledge, this problem was only partially solved. For example, Menon and

Pingali [52] focus on detecting instances of matrix multiplication and matrix vector multiplica-

tion in a Matlab code. Alias [3] can detect a larger class of operations, but these operations are

forced to have at most one occurrence of an input in its computation (which preclude computa-

tions such as TRSM [46], i.e., C = L−1.B where L is a lower triangular matrix). We overcome

these limitations in our work.

In order to solve this problem, we have to face several underlying challenges. First, if we want to

replace parts of a computation by a function call, we should avoid overlaps between recognized

subcomputations. The alternative implies introducing some extra work. Then, because we

detect linear algebra operations, we have to manage the common semantic properties found

in linear algebra. In particular, many linear algebra operations involve a summation over a

parametric number of terms (e.g., Ci,j =
∑

k Ai,k × Bk,j for matrix multiplication). Hence the

associativity and commutativity property of the sum operation has to be considered during the

recognition process. Finally, if the number of linear algebra operations we aim to recognize

3

is important, we have to be careful about the scalability of our recognition process. This

dissertation addresses all of these issues.

1.3 Contributions

Our strategy toward the recognition of dense linear algebra computation is the following. In

order to avoid overlappings between the recognized subcomputation, we partition the compu-

tation into blocks beforehand, and we consider each block independently. We focus on linear

algebra operations which manipulate matrices and vectors, thus the data used by such opera-

tions should be contained in rectangle regions of data (corresponding to its input matrices or

vectors). Thereby, if we partition the data of a program into rectangular blocks and isolate the

computation according to which block of data is used, we should be able to recognize some of

them as a composition of different linear algebra operations. Our main contributions are the

following.

Monoparametric tiling transformation In order to split the computation according to

the block of data touched, we use a tiling transformation. Usually, this tiling transformation

is a fixed-size tiling (the size of a tile is a constant, but cannot be changed after compilation),

or a parametric tiling (the size of a tile is a program parameter, but the transformed program

is not polyhedral, which means that we cannot apply any polyhedral analysis after this trans-

formation). We introduce a novel kind of tiling called monoparametric tiling, in which the tile

sizes are multiples of a single parameter. We prove that the monoparametric tiling transforma-

tion is polyhedral, while allowing limited parametrization. This is an improvement compared

to the previous works on tiling, which forced us to choose between these two properties. We

also present how to obtain a structured program through this transformation, in which we

have a finite non-parametric number of subprograms, and each subprogram correspond to the

computation of a tile.

4

Template recognition algorithm We extend a program equivalence algorithm introduced

by Barthou [8] into a template recognition algorithm. This means that instead of comparing

two programs in order to prove that the computations they perform are identical, we compare

a program with a template (i.e., a pattern of computation) in order to prove that the program

fits the pattern. We also show how to manage some semantic properties commonly found in

linear algebra computations.

Framework to recognize linear algebra subcomputations We use the two previous con-

tributions to build a framework which detects linear algebra subcomputations. More precisely,

we first apply the monoparametric tiling transformation to obtain a list of subprograms. Then,

we consider each subprogram independently and try to recognize it as a combination of linear

algebra template (i.e., program pattern). These template come from a template library, inspired

by the BLAS specification.

1.4 Outline of the dissertation

This dissertation describes the different elements needed by our strategy, in order to recognize

dense linear algebra subcomputations. The details of our core contributions are found from

Chapter 3 to Chapter 6, and can be divided into two parts. The first part consists of Chapter 3

and 4, describes the monoparametric tiling transformation, and should be read in that order.

The second part consists of Chapter 5 and 6, describes the template recognition algorithm and

its application to find linear algebra subcomputation, and can be read independently. These

two parts are fairly independent, thus can be read independently.

Chapter 2 This chapter describes the preliminary notion we will need in the rest of the

document. We start by introducing the polyhedral model, then we describe the program repre-

sentation and some program transformations which will be used in the rest of this document.

Then, we summarize a state-of-the-art program equivalence algorithm, which will be adapted

in Chapter 5.

5

The next two chapters describe how we divide the computation according to the data touched.

This is done through a new transformation called monoparametric tiling. This transformation is

introduced in two parts: the first part of this transformation (called monoparametric partitioning

and covered in Chapter 3) is just a reindexing transformation, which replaces the original indices

of a program into those used for tiling. The second part of this transformation (covered in

Chapter 4) distributes the computation into different subprograms.

Chapter 3 This chapter focuses on the first part of the monoparametric tiling transformation.

The first half of this chapter discusses about the case where the tile shape is a multidimensional

rectangle (i.e., hyperrectangular). We first show how to transform polyhedra and affine func-

tions, before showing how to transform a full polyhedral program. In particular, we present

an algorithm which derives the missing tile shapes (called ratio for the hyperrectangular case)

while still obtaining a polyhedral program. Then, we generalize this work to any polyhedral tile

shape.

Chapter 4 This chapter presents the monoparametric tiling transformation, which is built

on top of the monoparametric partitioning transformation. The monoparametric tiling split the

computation of a program into a finite number of separated subprograms (called subsystems)

which communicate through a main system. The main intuition is that each subsystem might

correspond to a combination of linear algebra operations. We describe this transformation when

the original program does not contain any reduction, then we consider the general case.

The next two chapters focus on the problem of template recognition, i.e., recognizing specific

pattern of computation in a program.

Chapter 5 This chapter describes our template recognition algorithm, as an extension of

the program equivalence algorithm described in Chapter 2. We adapt it in order to manage

semantic properties commonly found in linear algebra.

6

Chapter 6 This chapter presents our framework to detect linear algebra subcomputations.

We first describe the library of templates, based on BLAS [46], and the various optimizations

performed to this library. Then, we combine the previously introduced pieces into a single

framework: we consider each subsystem generated by the monoparametric tiling transformation

independently, and apply recursively our template recognition algorithm, using our template

library. We evaluate our framework (in term of compile time and efficiency) on linear algebra

and bioinformatic applications.

Chapters 7 and 8 This dissertation ends with a review of the related work about how the

tiling transformation is managed in a compiler, program equivalence, template recognition and

the existing frameworks linked to dense linear algebra derivation, before concluding our work.

7

Chapter 2

Background

2.1 The polyhedral model

Program analysis is the automatic study of programs in order to extract properties about its

behavior. Such properties might be used in various ways, such as gaining a better understanding

of the program (by checking its correctness, or its robustness, or some other safety properties).

They can also be used to modify a program, for example to improve its performance, to reduce

the resources spent during the execution or to adapt its computation to another model of

execution.

Two kinds of program analysis exist: static and dynamic. Static analysis study the program

during the compilation phase, thus before its execution. At this point, the execution trace

of a program (i.e., the list of states a program goes through during its execution) cannot be

determined precisely, because it might depend on the input provided to the program right

before executing it. However, because we are at compile time, the benefit of an analysis can

counterbalance its possibly large amount of time taken to perform such analysis.

In the case of dynamic program analysis, the program is analyzed during its execution. The

analysis has an immediate access to the trace of execution, which provides them with more

information than at static time and allows them to react to certain events. However, because

8

the program is running at the same time, such analysis is limited in term of resources (typically

the additional time and memory taken), which limits its complexity and might prevent certain

aggressive modification of the program (such that changing non-locally the order of execution

of the instructions of a program). In the rest of this document, we will consider static analysis.

Another issue is that some problems of obtaining certain properties (such as deciding the ter-

mination of a program, branch prediction or checking the equivalence between two of them)

are unfortunately undecidable. Thus, we have a choice between the precision of the analysis

(relying on approximation instead of exact informations) and the expressiveness of the class of

program considered. The former choice is made in polyhedral compilation, for which the class

of program is restricted to affine computation.

Affine computation An affine expression of a set of indices i1, i2, . . . is a expression of the

form (a1.i1 +a2.i2 + · · ·+ b), where the ai and b are scalar. An affine computation is a sequence

of operations which can be described by a combination of:

• Loop nests (for (i) ...) whose boundaries are affine expressions of the surrounding

loop indices

• Assignment statements (S: A[u(~i)] = f(B1[v1(~i)], ..., Bk[vk(~i)])), whose array ac-

cesses functions (u(~i), v1(~i), . . . vk(~i)) are affine expressions of the surrounding loop indices.

• Sequence of statements (S1; S2)

• Branching conditions on the indices (if (u(~i ≤ v(~i)) then S1; else S2;), whose con-

dition is an affine constraints on the surrounding loop indices

In addition to the surrounding loop indices, the affine expressions can also use program parame-

ters, i.e. symbolic variables which are constant during the program execution, and whose value

is passed by the user. Typically, a program parameter can be the size of an array.

For example, the following program corresponds to an affine computation (which is a matrix

multiplication between two square matrices), where N is a parameter:

9

for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

for (int k=0; k<N; k++)

S(i,j,k): C[i,j] = C[i,j] + A[i,k] * B[k,j];

Indirect array accesses (such as A[B[i]]) or non-affine conditions (such as for (int i=0; i<N;

i++) { for (int j=0; j<sqrt(i); j++) S; }), are not allowed inside affine computations.

Polyhedral model In order to represent such computation, we rely on a mathematical model

called the polyhedral model. Two mathematical objects are used to represent aspects of such a

computation: polyhedra (a set of integer points satisfying affine constraints) and affine functions.

As an example of utilization of such objects, we use a polyhedron (called the iteration domain)

to represent the set of instances of a statement inside a loop nest (a point of this set corresponds

to one execution of the loop body). An affine function (called dependence function) can be used

to represent the producer-consumer relationship between two statement instances.

This model allows us to summarize precisely the trace of execution of a program, whose size

is parametric and generally huge, through a finite non-parametric number of mathematical

objects. It allows many analyses (called polyhedral analysis) to derive many useful informations

about the program (such as loops which can be parallelized, or a better order of execution of

the statements of a loop).

Polyhedra and affine function have several stability properties, which ensures that we keep

having union of polyhedra and affine functions while we manipulate them. Union of polyhedra

are stable by intersection, union, difference and preimage by an affine function. The image of

an union of polyhedra is still an union of polyhedra if the affine function is unimodular (i.e., its

determinant is 1 or −1). In general, taking the image of a polyhedron (such as {i|0 ≤ i < N})

by a non-unimodular affine function (such as (i 7→ 2i)) might not give an union of polyhedra

(2Z ∩ {i|0 ≤ i < 2N}, because of the holes introduced). Other mathematical objects (such as

Presburger sets) can be used to represent such results.

10

For example, if we consider the matrix multiplication program presented above, the iteration

domain of this loop is the polyhedron {i, j, k | 0 ≤ i < N ∧ 0 ≤ j < N ∧ 0 ≤ k < N}.

We can represent the dependences between the different instances of S by the following affine

function: (i, j, k 7→ i, j, k − 1) (which means that the statement instance S(i,j,k) depends on

the statement instance S(i,j,k-1)). Notice that this dependence exists only of the instances

of S(i, j, k) for which k > 0.

Matricial representation Later in the document (cf Chapter 3), we will use the matricial

representation of affine functions and polyhedra. Mathematically, an affine function can be

represented by a matrix A and a vector ~c: f : (~i 7→ A~i+ ~c). If the program has parameters, we

differentiate them from the indices, and use an additional matrix: f : (~i 7→ A~i+B~p+ ~c).

Likewise, a polyhedron can be represented by two matrices (Q,R) and a vector (~q): P =

{~i | Q~i+R~p+~q ≥ ~0}. This representation is enough to express equalities and strict inequalities:

equalities Qk~i + Rk~p + qk = 0 can be represented as the conjunction of the two inequalities

Qk~i+Rk~p+ qk ≥ 0 and Qk~i+Rk~p+ qk ≤ 0, and strict inequalities Qk~i+Rk~p+ qk > 0 can be

replaced by Qk~i+Rk~p+ (qk − 1) ≥ 0

For example, given a triangle T = {i, j | i ≥ 0 ∧ j ≥ 0 ∧ N − i − j ≥ 0} where N is a

parameter, its matricial representation is:

T =

i, j |


1 0

0 1

−1 −1

 .

i
j

+


0

0

1

 .(N) +


0

0

0




2.2 Program representation

Several ways of representing an affine computation have been introduced in the literature. In this

subsection, we will present two of them (Affine Control Loop and System of Affine Recurrence

Equations). Then, we will present another program representation as a middle ground, which

11

will be used in the rest of this document. Finally, we will enrich our program representation by

introducing reductions.

Affine Control Loop One of the most commonly used polyhedral program representation

is called Affine Control Loop (ACL). An informal definition was introduced in the previous

section, when introducing the notion of affine computation. A formal definition is the following:

Definition 2.1. An ACL is a program P (~p, ()) of the form:

P (~p,~i) = for (k = lb(~p,~i); k < ub(~p,~i); k++){P (~p, (~i, k));}

|| P1(~p,~i); P2(~p,~i)

|| if (Cond(~p,~i)) then P1(~p,~i); else P2(~p,~i);

|| A[u(~p,~i)] := f(. . . , Bk[vk(~p,~i)], . . .)

where:

• ~p are the program parameters

• lb(~p,~i) and ub(~p,~i) are affine expressions of the program parameter and the surrounding

loop indices

• Cond(~p,~i) is an affine constraint on the program parameter and the surrounding loop

indices

• u(~p,~i) and the vk(~p,~i) are affine expressions

• f is an arbitrary function

• A and the Bk are arrays

An example of ACL has been given in the previous subsection, corresponding to a matrix

multiplication C = A * B.

We notice that, in addition to describing a computation, a ACL provides an order of execution

of the statements (called schedule, and given by the for loops) and a memory allocation (in

12

this example, all the elements computed by S(i,j,k) are stored in the same location C[i,j],

independent of k and erasing the previous value when computed). The original schedule and

memory allocation of an ACL might interfere with and complicate some polyhedral analysis.

For example, when we list the set of dependences of a program, we need to deal with dataflow

dependences (the result of a statement is used by another statement), output dependences (the

result of a statement is stored at the same location of the result of another statement) and

anti-dependences (the result of a statement must be used before it is overwritten). The last two

types of dependences are related to the memory allocation and the schedule which are provided,

and are not inherent to the computation itself.

System of Affine Recurrence Equations Another commonly used polyhedral program

representation is called System of Affine Recurrence Equation (SARE) [37, 63, 64]. The idea is

to represent the computation itself by a list of affine equations, without any information about

the schedule or the memory allocation. Therefore, only the dataflow dependences remain. The

formal definition is the following:

Definition 2.2. A SARE is a list of equations of the form

Var[~i] =


. . .

~i ∈ Dk : Exprk

. . .

where the Dk are disjoint, and where:

• Var is a variable, is defined over a polyhedral domain D and is either an input, an output

or a local variable

• Expr is an expression, and can be either:

– A variable Var[f(~i)] where f is an affine function

– A constant Const,

– An affine function of the indices f(~i)

13

– An operation Op(Expr1, ..., Exprk) of arity k (i.e., the operation has k arguments)

Moreover, we assume that Expr depends strictly on all of its arguments (i.e., the value of each

of the argument impacts the value of Expr).

For example, the SARE corresponding to a matrix multiplication computation is the following:

C[i,j] = Temp[i,j,N-1];

Temp[i,j,k] =

 Temp[i,j,k-1] + A[i,k] * B[k,j]; if k>0

A[i,0] * B[0,j]; if k=0

where C is an output variable defined over {i, j | 0 ≤ i, j < N}, Temp is a local variable defined

over {i, j, k | 0 ≤ i, j, k < N} and A and B are input variables defined over {i, j | 0 ≤ i, j < N}.

The Alpha language [27] is an extension of this representation which allows more kinds of

expression on the right-hand side of an equation.

Compared to an ACL, the SARE program representation does not have implicit schedule or

memory allocation. An ACL can be transformed into a SARE, using in particular an analysis

called Array Dataflow Analysis [22, 24]. The opposite is true only if the SARE is computable [37,

70] (i.e. the SARE admits a schedule), and code generation algorithms [5, 10, 61, 62, 84] can

be used to do the translation.

Polyhedral Reduced Dependence Graph One of the first steps performed by a polyhedral

compiler (such as Pluto [15]) consists on building the Polyhedral Reduced Dependence Graph

(PRDG). Its definition is the following.

Definition 2.3. A PRDG is a graph such that:

• Each node correspond to a statement (resp. variable) of the program, and is labeled by

its iteration domain (resp. domain of the variable).

• Each edge between two nodes correspond to a dependence between two statements S1 and

S2 (resp. variables). The source of the edge S1 depends on the destination of the edge S2.

14

C

Temp

A B

{i, j|0 ≤ (i, j) < N}

{i, j, k|0 ≤ (i, j, k) < N}

{i, j|0 ≤ (i, j) < N} {i, j|0 ≤ (i, j) < N}

(i, j 7→ i, j,N − 1) for {i, j|0 ≤ (i, j) < N}

(i, j, k 7→ i, k) for {i, j, k|0 ≤ (i, j, k) < N} (i, j, k 7→ k, j) for {i, j, k|0 ≤ (i, j, k) < N}

(i, j, k 7→ i, j, k − 1) for

{i, j, k|0 ≤ (i, j) < N ∧ 0 < k < N}

Figure 2.1: Polyhedral Reduced Dependence Graph of a matrix multiplication

1 It is labeled by a dependence polyhedron {~i1, ~i2| . . . } which specifies which instances ~i1

of S1 depends on which instances ~i2 of S2.

It is possible to replace the dependence polyhedron of each edges by the dependence function

(~i1 7→ ~i2) and a polyhedron specifying which instances of ~i1 is concerned.

This graph subsumes all the information about the dependences of a program, thus is a useful

intermediate representation before searching at a new schedule function [25] or legal tiling

hyperplanes [15]. For example, the PRDG of our matrix multiplication example is described in

Figure 2.1.

If we start from a ACL, we have to use the Array Dataflow Analysis [24] to figure out which

statements depend on which other statements, and the set of instances which are involved in

this dependence. This information is not exposed in a ACL if we have multiple statements

writing on the same memory location. In the case of a SARE, these informations are already

exposed.

1In the literature, we also find this definition where the edges are of the opposite direction. In that case, the
dependences are said to be dataflow. However, in the rest of this document, we will not consider the dataflow
direction, but the true dependence direction

15

Chosen Representation As a middle-ground between the previously introduced, the pro-

gram representation we will use in the rest of this document will be close to the notion of

PRDG:

Definition 2.4 (Program Representation). A polyhedral program can be abstracted as a set

of operations, each of which is described as follows:

~i ∈ D : S[~i] = Expr(S1[u1(~i)], . . . , Sd[ud(~i)])

where ~i is the iteration vector for the statement S, ~D is a subset of the domain for statement

S, the expression Expr depends strictly on its d arguments and each argument is a result of a

statement, and for k = 0 . . . d, uk is a dependence function. For every variable S, the associated

domain D must be disjoint.

The expression Expr can be either:

• A variable: S[u(~i)]

• An operation: op(Expr1, . . . , Exprk) where k is the arity of the operation. When the arity

is 0, this expression is a constant.

• An affine expression of the indices f(~i)

This representation can be seen as a PRDG in which the dependence edges originating from the

same operation are regrouped into hyperedges. Moreover, these hyperedges are labeled by the

operation performed Expr. The program inputs are represented as special “dummy statements”

which are sink nodes in the PRDG. A similar program representation was used by Saouter [70].

For example, the matrix multiplication computation can be expressed as:

(∀i, j, 0 ≤ i, j < N) C[i,j] = Temp[i,j,N-1];

(∀i, j, k, 0 ≤ i, j, k < N) Temp[i,j,k] = Temp[i,j,k-1] + A[i,k] * B[k,j];

(∀i, j, k, 0 = k ≤ i, j < N) Temp[i,j,k] = A[i,0] * B[0,j];

The corresponding graphical representation is shown in Figure 2.2.

16

C

Temp

A B

••

Figure 2.2: Graphical representation of our program representation for the matrix multipli-
cation. We have in total 3 hyperedges, corresponding to the 3 equations needed to describe the
computation

As an abuse of notation and to save space, we will often write (∀0 ≤ i, j < N) instead of

(∀i, j such that 0 ≤ i < N ∧ 0 ≤ j < N) in the rest of this document.

Reductions Reductions and scans (also called prefix computation) are very powerful program-

ming and computational abstractions. They can be specified as the application of associative

(and often commutative) operators to (collections of) values, producing (collections of) values.

Redon and Feautrier showed [65, 66, 71, 90] that for ACLs, after obtaining flow dependences as

piece-wise affine functions, reductions and scans also also be detected. We extend our program

representation to include reductions [47].

Formally, a reduction is the successive application of an associative and commutative binary

operator over a set of expressions. Intuitively, a reduction is a (potentially parametric) accu-

mulation, where the operator allows us to perform this accumulation in any order we want. In

many other formalisms, only the associativity property of the reduction operator is required,

however, in our case, we ask for both associativity and commutativity. This last property is

needed in order to reorder the way the accumulation is performed. It is also needed in the case

of accumulation over multi-dimensional expressions, for which the accumulation order is not

automatically defined (contrary to the unidimensional case).

17

For example, a matrix multiplication can be written by using a reduction, instead of accumu-

lating the values of A[i, k] ∗B[k, j] in a predefined order:

C[i, j] =
k<N∑
k=0

A[i, k] ∗B[k, j];

In general, the value of a reduction at the point ~i is
(∑
π(~k)=~i

SExpr[~k]
)

, where SExpr is an

expression, and π is typically a many-to-one affine function, called the projection function. In

the example above, we sum over the index k, thus π : (i, j, k 7→ i, j), and the result of the

reduction is a two-dimensional variable whose indices (i, j) ∈ Image(π).

All the reduction considered in this document will have a projection function which admits an

integer right-inverse [48] (i.e., there exists a function π′ such that π ◦ π′ = Id). For example, if

we consider (i, k 7→ i), a possible integer right-inverse is (i 7→ i, 0). This property is needed so

that some analyses stay within the polyhedral model. In our previous example, the image of

any polyhedron through the affine function (i, k 7→ i) is still a polyhedron. However, if we have

a projection function (i, j 7→ 2i), this function does not admit an integer right-inverse, and the

domain on which the reduction is defined is {i|i is even }, which is not a polyhedron.

In the context of our program representation, we represent reduction as a special equation:

~i ∈ Dr : S[~i] =
⊕
~j ∈ D
~i = π(~j)

Expr(S1[f1(~j)], . . . , Sd[fd(~j)])

where ⊕ is an associative and communicative binary operator, π is a projection function, Dr is

the domain of the reduction statement and D is the domain of the reduction body.

18

Moreover, we allow, as a convenience, equations of the following form, which uses reductions

are subexpressions:

~i ∈ D : S[~i] = Expr


. . . Sk[uk(~i)], . . . ,

⊕
~j ∈ D
~i = π(~j)

ExprRed
(
. . . , S′k[fk(~j)], . . .

)
, . . .



We can force reductions to be the top node of the right side of an equation by introducing a

temporary variable for every internal reductions. Thus, allowing such equation do not modify

the expressiveness of our program representation.

2.3 Program transformation

In this section, we introduce two program transformations: the Change of Basis transformation

and the tiling transformation. Both transformation restructure the domains of the variables of

the program, while preserving its semantics.

Change of Basis transformation The Change of Basis (CoB) transformation changes the

domain of a variable using a unimodular function (i.e., an affine function whose determinant is

1 or −1). This function is a one-to-one mapping from the old iteration space to the new one

(the unimodularity of this function being here to ensure that the new iteration space is still a

polyhedron). The transformation adjusts the dependence functions of the rest of the program

to ensure that exactly the same data are used: the operations remain strictly the same, but the

indexing of one domain is changed.

For example, let us consider the following equation, which is a part of a bigger program:

(∀(i, t), 0 < i < N ∧ 1 ≤ t < T) temp[i, t] = temp[i− 1, t− 1] + temp[i, t− 1] + temp[i+ 1, t− 1];

19

i

t

•
• • •

i′ = i+ t

t′ = t

•
• • •

Figure 2.3: Change of Basis transformation, using the unimodular function (i, t 7→ t + i, t)
applied on a variable with a Jacobi-like pattern of dependences

We want to apply a change of basis transformation on the variable temp, using the function

(i, t 7→ i, t+ i), which is unimodular. Figure 2.3 shows the effect of this transformation on the

domain of temp and its dependences. The equation becomes, after transformation:

(∀(i′, t′), t′ < i′ < N + t′ ∧ 1 ≤ t′ < T)

temp[i′, t′] = temp[i′ − 2, t′ − 1] + temp[i′ − 1, t′ − 1] + temp[i′, t′ − 1];

The transformation used in this example is an instance of time skewing [85, 86] transformation,

which is a CoB in which the time dimension (t) of a stencil computation (regular computation

with only uniform dependences) is added to other space dimensions (i). It is often used to make

all the dependences of a program go into the same directions (in the example toward the bottom

and the left), which is a crucial property required by the tiling transformation.

Tiling transformation Tiling [35, 87] is an important program transformation which groups

the instances of a loop into sets (called tiles), such that each tile is atomic. Figure 2.4 shows

an example of tiling for a stencil computation, with 3× 3 square tiles.

Because each tile is executed atomically, we cannot have cyclic dependences between two tiles

(i.e., some operations from a tile depending on data produced by another tile, and vice versa).

In our example in Figure 2.4, because all dependences between tiles are going toward the left or

the bottom, there is no cyclic dependences between tiles. Therefore, this tiling transformation

is legal. A CoB transformation can be used as a preprocessing step, in order to respect the

legality condition of a tiling transformation.

20

(∀i = j = 0) A[i, j] = 1

(∀j = 0 < i) A[i, j] = A[i− 1, j]

(∀i = 0 < j) A[i, j] = A[i, j − 1]

(∀0 < i, j) A[i, j] = A[i− 1, j] +A[i, j − 1]

i

j

Figure 2.4: Example of tiling transformation, with square 3× 3 tiles

We can see the tiling transformation as a two-part transformation: a first part is a reindexation

of the domain tiled by introducing new dimensions. The second part is a modification of the

schedule by using these newly introduced dimensions to ensure the atomicity of the tiles. We

call the first part partitioning. It introduces new dimensions to identify a tile and a point inside

a tile, doubling the number of dimensions if our tiles partition along all dimensions. This part of

the transformation is always legal, and does not change the schedule (i.e., the same operations

are executed at the same moment, except that the indices are not the same, like a change of

basis).

The tiles of a tiling can have different shapes, and can be either of constant size (for example,

a rectangle tile of sizes 16 × 32), or of parametric size (for example, a rectangular tile of sizes

b1×b2). The wildest used tile shape is a hyper-parallelepiped, defined through their hyperplanes.

However other shapes have been studied, such as trapezoid (with redundant computation [45])

or hexagonal [28, 67]. This transformation is useful to improve the locality of a program and to

create coarse-grain parallelism opportunities.

If we have constant tile sizes, this transformation stays in the polyhedral model [35]. For

example, in the hyper-rectangular case, we can substitute each of the original indices i by affine

expressions of the form t1.ib + il, where:

• t1 is a constant and is a tile size

21

• ib is a blocked index, and corresponds to the tile number along the dimension of i

• il is a local index, and corresponds to local position inside the tile. Also, because of the

shape of the tile, we have 0 ≤ il < t1

Therefore, all domains and functions remain affine after the tiling transformation. In the ex-

ample described in Figure 2.4, we have i = 3.ib + il and j = 3.jb + jl, where (ib, jb) is the tile

number and (il, jl) is the local position inside the tile.

In the case of parametric tile size, this transformation is no longer polyhedral. Indeed, if

we consider the hyper-rectangular case with tiles of size b1, . . . , bd, we have to substitute the

original indices by a quadratic expression of the form bk.ib + il where bk is a parameter of

the program. Thus, the resulting domains and functions are quadratic in general, and no longer

polyhedral.

A variant of the tiling transformation, called data tiling, was introduced by Kodukula et al. [42].

Where the classical tiling transformation tiles the iteration space of a program, the data tiling

transformation tiles the data space, and distribute the operations among data shackle, according

to which block of data is touched.

2.4 Program equivalence and template recognition

Notion of equivalence There exist several notions of program equivalence. One of them is

called Herbrand equivalence [3]. Assuming that we have a correspondence between the inputs

and outputs of two programs, they are equivalent if and only if the computations performed

by both programs are identical. This equivalence is purely structural: the same intermediate

values are computed in both programs and will be used by the same operations to compute the

same output, even if these operations might be organized differently. The problem of deciding

the Herbrand equivalence between two SAREs is undecidable [8].

However, Herbrand equivalence does not consider any semantic properties. For example, if

we compare two programs, one computing (a + b) + c and the other one a + (b + c), they

22

will not be Herbrand-equivalent, because the operations performed are different. Likewise, a

program computing (a + b) will not be equivalent to a program computing (b + a). We will

consider the Herbrand equivalence modulo associativity and commutativity properties later in

this document.

Barthou’s equivalence semi-algorithm Barthou et al [8] introduced an equivalence semi-

algorithm for SARE, checking Herbrand equivalence. Because we will use their algorithm as a

foundation of one of our algorithm in Chapter 5, we explain it in the following.

Let us consider two systems of affine recurrence equations without reductions. We want to

decide equivalence without considering any semantic property (i.e., Herbrand equivalence). A

semi-algorithm was proposed by Barthou et al. [8] and is based on the notion of equivalence

automaton. First of all, let us introduce the notion of Memory State Automaton (MSA, also

called Presburger automaton).

Definition 2.5. A Memory State Automaton (MSA) is a finite automaton where:

• Every state p is associated with an integer vector ~vp of some dimension np,

• p0 is the initial state,

• Every transition from p to q is associated with a firing relation Fp,q ∈ Znp × Znq ,

• A transition from (p, ~vp) to (q, ~vq) ((p, ~vp)→ (q, ~vq)) can only happen if (~vp, ~vq) ∈ Fp,q

We say that a state p is accessible iff it exists a finite path from the initial state p0 to p for some

initial vector. The accessibility relation of a state p is the set of pairs (~v0, ~vp), such that it exists

a finite path which starts from p0 with the value of its vector being ~v0, and which ends up on

the state p while the value of the associated vector is ~vp. Mathematically, we can express this

relation by using a transitive closure:

Rp = {(~v0, ~vp) | (p0, ~v0)→∗ (p, ~vp)}

23

Equivalence automaton Barthou’s algorithm is based on the notion of equivalence automa-

ton. Let us consider an equivalence problem, i.e. two SAREs and a mapping between their

inputs which indicate their corresponding inputs. We use the convention that expressions, op-

erators and indices of the second SARE are “primed” (e.g., X ′, E′1). The equivalence automaton

is an MSA defined (and built) as follows:

• States: A state is labeled by an equality e(~i) = e′(~i′) and is associated with the vector

(~i, ~i′), where e and e′ are expressions.

• Initial state: The initial state of the automaton is O[~i0] = O′[~i′0], where O and O′ are

the outputs currently compared.

• Final state: There are two kinds of final states: the success states and the failure states.

The failure states are:

– f(. . .) = f ′(. . .) where f and f ′ are different operators,

– Ik[~i] = f ′(. . .) or f(. . .) = I ′k[
~i′] where f and f ′ are operators,

– Ik[~i] = I ′k′ [
~i′] where Ik and I ′k′ are non-corresponding inputs.

On the other side, the accept states are:

– f() = f ′() (i.e., two identical constants)

– Ik = I ′k′ where Ik and I ′k′ are corresponding inputs.

• Transitions: We have 3 types of transitions (rules) in the equivalence MSA: Decompose,

Compute and Generalize, as described in Fig 2.5. The Decompose rule deals with operators

and simply says that two expressions using the same operator are Herbrand-equivalent

iff their arguments are Herbrand-equivalent. The Compute rule allows us to “unroll” a

definition and creates a state per equations defining the unrolled variable. Note that given

a value (~i, ~i′) associated with the source state, because the branch conditions are disjoint,

there is only one path which can be taken afterward.

These two rules allow us to unroll both computations while comparing the occurring

operations, starting from the outputs of both programs. However, because of recursions,

24

f(E1[~i], . . . , En[~i]) = f(E′1[
~i′], . . . , E′n[~i′])

E1[~i] = E′1[
~i′] En[~i] = E′n[~i′]. . .

Decompose rule

X[~i] = . . .

Expr1[~i] = . . . Exprk[~i] = . . .

~i ∈ ∆1
~i ∈ ∆k

. . .

where


∀~i ∈ ∆1, X[~i] = Expr1[~i]
. . . : . . .

∀~i ∈ ∆k, X[~i] = Exprk[~i]

Compute rule

. . . X[u(~i)] · · · = . . .

. . . X[~j] · · · = . . .

~j = u(~i)

where ~j is a fresh variable.

Generalize rule

Figure 2.5: Construction rules for the equivalence automaton. The Decompose rule allows us
to simplify an equality if the same operator is present on both side. The Compute rule unrolls
a definition and create a state per case. The Generalization rule remove dependence functions
and allow us to create cycles in the automaton.

simply unrolling both programs leads to a trace of parametric size, which is not manageable

in practice. Therefore, the Generalize rule is used to deal with such parametric recursions.

It replaces an affine expression by a fresh index. By doing so, we might end up on a state

which is already built previously in the automaton. In that case, instead of creating a

new state, we just add an edge going back to the previously constructed state, creating a

loop in the equivalence automaton.

Deciding equivalence using the equivalence automaton Intuitively, if a state Expr(~i) =

Expr(~i′) can be reached for a given (~i, ~i′), then these two expressions must be equivalent in order

for the two SAREs to be equivalent. Thus, the equivalence problem between the two considered

SAREs can be decided by studying the accessibility sets of the success and failure states.

Theorem 2.6 (from [8]). Two SAREs are equivalent iff, in their equivalence MSA:

• No failure state is accessible from the initial state. Indeed, a failure state corresponds to

the comparison of two expressions which are obviously not equivalent.

25

• The accessibility relation of each success state is included in the identity relation. This

means that, if we compare the same element of the outputs (i.e., if the vector associated

with the initial state is of the form (~i0, ~i0)), then when we end up on a reachable success

state, the compared elements must be the same (i.e., if I[~i] = I[~i′] is the success state, then

we must have ~i = ~i′).

This algorithm only checks Herbrand equivalence, semantic properties like associativity/com-

mutativity of operators are not taken into account. For instance, if we try to compare the

SAREs O = I1 + I2 and O′ = I ′2 + I ′1, the equivalent automaton will have a decompose rule

which will generate two failure states with respective labels (I1 = I ′2) and (I2 = I ′1).

This algorithm is a reduction of the problem of program equivalence toward the problem of

reachability set computation in a Presburger automaton. Both problems are undecidable in

general. Hence, this equivalence algorithm is a semi-algorithm, i.e., in some situations, we

cannot conclude if two programs are equivalent or not. This happens when the reachability sets

are overapproximated.

Example 2.1. As an example, let us compare the following program with itself:

O = A[N]

(∀i = 0) A[i] = I[0]

(∀0 < i ≤ N) A[i] = f(I[i], A[i− 1])

where O is the output of the program, I the input and f is an arbitrary operation. The equiva-

lence automaton is given in Fig 2.6.

We can notice that the automaton has a cycle: it corresponds to the comparison between the

recursions of both programs. We can notice that, for every state of the automaton, we have

i = i′ (indeed, for each transition we are modifying i, we are also modifying i′ in the same way).

Thus, because the reachability set of the failure states are respectively {i, i′ | i = 0 ∧ i′ > 0} and

{i, i′ | i > 0∧ i′ = 0}, then they are both empty. Moreover, the equalities that need to be satisfied

26

O = O′

A[N] = A′[N]

A[i] = A′[i′]

I[0] = A′[i′] f(I[i], A[i− 1]) = A′[i′]

I[0] = I ′[0]

I[0] = f(I ′[i′], A′[i′ − 1])

f(I[i], A[i− 1]) = I ′[0]

f(I[i], A[i− 1]) = f(I ′[i′], A′[i′ − 1])

I[i] = I ′[i′] A[i− 1] = A′[i′ − 1]

(Comp)

(Gen) i = N , i′ = N

(Comp)i = 0 i > 0

(Comp)i′ = 0 i′ > 0 (Comp)i′ = 0 i′ > 0

(Dec)
(Gen)

i = i− 1
i′ = i′ − 1

Figure 2.6: Equivalence automaton of Example 2.1. Success states are in blue and failure
states in red. The initial state is the one inside the double-boxed rectangle

when reaching a success state are respectively 0 = 0 (trivially satisfied) and i = i′ (satisfied).

Thus, according to Thm 2.6 these two programs are equivalent.

Template Intuitively, a template is a program with unknown parts, which can be operations

or inputs of a program. We usually try to match this template to another program or template

using a template matching algorithm. Such algorithm will answer if the program and the

template match, and give possible values to the unknown part of the template.

Several variants of the definition of a template exist. For example, in [3], the considered template

must be linear, i.e. its inputs must only occur once in its expression, and the unknown part can

be operations or inputs of the template.

In our case, we will assume that the unknown parts of a template correspond only to its inputs

(which might correspond to a bigger computation on the side of the program). Also, we will not

assume that our templates are linear, thus an input might appear several times in the template.

27

For example, the following template correspond to a L−1.B operation (where L is a lower

triangular matrix, this operation is called TRSM in the BLAS library [46]), where L and B are

inputs to the template and might correspond to a more complicated computation in a program:

(∀0 = i ≤ j < N) Out[i, j] = A[0, j]/L[0, 0]

(∀0 < i < N ∧ 0 ≤ j < N) Out[i, j] =
(
A[i, j]−

∑
k<i

L[i, k] ∗Out[k, j]
)
/L[i, i]

where L and A are the inputs of the template and might correspond to more complicated

expression in another program/template. Because the template input L occurs at multiple

places, this template is not linear.

28

Chapter 3

Monoparametric Partitioning

In the next two chapters, we present how to divide a polyhedral computation into smaller

blocks of computation, before considering each block separately and trying to recognize them

as a combination of linear algebra operations (cf Chapter 5). We use a tiling transformation to

distribute of the computation, which is composed of two parts: the first part is a reindexing of

the domains of the program (called partitioning), which allows us to identify which operation

belongs to which tiles. The second part gathers all the operations affiliate to a tile, and regroup

them at the same place. This chapter focuses on the first part of the transformation, and

Chapter 4 will focus on the later part.

Monoparametric tiling and partitioning The tiling transformation admits several vari-

ants, as presented in Section 2.3. When the tile sizes are constants (e.g., 16×16 for rectangular

tiles), this transformation is called fixed-size tiling. When the tile sizes are parameters of the

program (e.g., b1 × b2 for rectangular tiles), this transformation is called parametric tiling. If

we transform a polyhedral program using a fixed-size tiling transformation, we obtain another

polyhedral program. However, if we use instead a parametric tiling transformation, the resulting

program is no longer polyhedral.

In our context, because we want to recognize linear algebra operations inside the produced block

of operations, and because the algorithm we will use require a polyhedral program as an input,

29

we cannot use parametric tiling to distribute the operations. It is possible to use fixed-size tiling

to produce such code, but we lose in flexibility: indeed, because the tile sizes are fixed, if we

want to change them, we have to reapply the tiling transformation once more.

In the next two chapters, we show that we can do better than fixed-size tiling, by using a

monoparametric tiling transformation. A monoparametric tiling is a parametric tiling, in which

the tile sizes are multiples of the same parameter (e.g., b × 2b for rectangular tiles). Under

such a condition, this transformation produces a polyhedral program, thereby allowing a small

amount of parametrization.

In this chapter, we focus on the first part of the monoparametric tiling transformation, called

monoparametric partitioning. This part of the transformation is just a reindexing transforma-

tion, which replaces the original indices of a program into those used for tiling. The semantics

of the program remains unchanged and no block of computation becomes atomic, thus legality

conditions are not relevant.

Plan of the chapter In the first two sections of this chapter, we restrict ourselves to the case

where the tile shapes are multi-dimensional rectangles (i.e., hyperrectangles). In Section 3.1,

we prove the basic closure properties of the monoparametric partitioning transformation on

polyhedra and affine functions. In the case of affine functions, depending on the tile shape

chosen for the input and output spaces of the function, we obtain either a piecewise quasi-affine

function, or a piecewise function with integer division and modulo conditions. Since the former

class is preferable, we isolate the necessary and sufficient condition such that the obtained

function is a piecewise quasi-affine function.

These two closure properties are the main building blocks in order to apply the monoparametric

partitioning transformation to a polyhedral program, as presented in Section 3.2. Because of

the condition about the monoparametric partitioning of affine functions, we have to be careful

about the dependence functions of a program and the tile shape (a.k.a., in the rectangular case,

the ratio of the tile) used for variables. In order to alleviate the need to specify a ratio for each

variable of a program, we present an algorithm which derives automatically the missing ratio

30

of a program by finding the minimal values of a ratio for each variable, while avoiding modulo

conditions in the resulting program.

In Section 3.3, we consider general tile shapes. First, we show that we can still define the

monoparametric partitioning transformation for a general polyhedral shape, and prove that

the closure properties on polyhedra and affine functions are still valid. The application of these

closure properties to a polyhedral program is similar to their application for the hyperrectangular

case. We extend our ratio derivation algorithm so that it manages any arbitrary tile shape, while

not introducing modulo conditions.

Finally, we conclude this chapter in Section 3.4 with some additional remarks about the monopara-

metric partitioning transformation.

3.1 Hyperrectangular Monoparametric partitioning

In this section, we focus on the two main mathematical objects in our program representation:

polyhedra and affine functions. We show that applying a monoparametric partitioning transfor-

mation to these objects gives us, respectively, a union of polyhedra, and a piecewise quasi-affine

function. These operations will be applied to tile a complete program in Section 3.2. In Sec-

tion 3.3 we extend these two properties to any general shape and to complete programs.

3.1.1 Monoparametric partitioning of polyhedra

Monoparametric partitioning Let us first define what is the monoparametric partitioning

transformation in the hyperrectangular case.

Given a n-dimensional space Zn, let us introduce a block size parameter b (also called tile

size parameter) and a diagonal matrix D of size n called ratio of a tile, whose coefficients

are strictly positive and used to specify the “shape” of the tile. These informations define a

hyperrectangular tiling of the space, the tile size being b.D.~1, where ~1 is a n-dimensional vector

with only 1 elements.

31

The monoparametric partitioning transformation Tb,D maps an index point~i ∈ Zn in the original

space to a point (~ib,~il) ∈ Z2n in the tiled space, such that ~ib is the number of the tile in

which ~i belongs, and ~il is the local coordinate of ~i inside its tile. ~ib is called the block indices

and ~il the local indices (c.f. Figure 3.1). This transformation is similar to a “strip mining”

transformation [50].

Formally, we define the monoparametric partitioning transformation as the following:

Definition 3.1. Given the block size parameter b and a diagonal matrix D of ratio of a tile,

the hyperrectangular monoparametric partitioning transformation associated to this tiling is:

Tb,D =

 Zn 7→ Z2n

~i 7→ (~ib,~il) = (
⌊

~i
b.D.~1

⌋
,~i mod (b.D.~1))

where we have extended the division, modulo and floor operation elementwise to vectors.

The inverse of a monoparametric partitioning, T −1~b,D is:

T −1b,D(~ib, ~il) = b.D.~ib + ~il

where the product and sum are elementwise.

Monoparametric partitioning applied to a polyhedron Let us consider a polyhedron

D =
{
~i | . . .

}
⊂ Zn and a monoparametric partitioning transformation Tb,D. We want to

compute the image of D by this monoparametric partitioning transformation (∆ = Tb,D(D)).

In order to do that, we have to translate the constraints of D, which works on the original

indices ~i, into constraints of ∆, working on the block and local indices (~ib, ~il). We also assume

that all parameters ~p can be decomposed into the block parameters ~pb and the local parameters

~pl, where ~p = b.~pb + ~pl.

Starting from the constraints of D, by eliminating the old indices ~i and parameters ~p, it is

possible to obtain a disjunction of integral affine constraints on the block and local indices and

parameters, expressing ∆ as a finite union of polyhedra.

32

i

j

il

jl
(ib, jb)

2.b

b

Figure 3.1: A 2 dimensional monoparametric partitioning. The tiles are rectangles of ratio
2 × 1, and the domain is D = {i, j | 0 ≤ i, j ∧ i + j < N}. Each tile is uniquely identify by
the block indices (ib, jb). A point inside a tile is identify by the local indices (il, jl). When
partitioning D, we observe 3 kinds of tiles: the full ones (in green), the triangle ones (in gray)
and the trapezoid ones (in purple). The shape of each kind of tiles and their placement can
both be expressed as polyhedral sets.

For example, if we tile a triangle D = {i, j | 0 ≤ i, j∧i+j < N} with square tiles (assuming that

the block size parameter divides N), we have two tile shapes: the tiles along the diagonal are

triangles, all internal tiles are full squares. Therefore, ∆ is the union of two polyhedra: a one-

dimensional collection of triangles corresponding to the diagonal tiles, and a two dimensional,

triangular collection of squares corresponding to the interior tiles.

More interestingly, if the same triangle D = {i, j | 0 ≤ i, j ∧ i + j < N} is tiled with 2b × b

rectangles as in Fig. 3.1, we get three sets of shapes (if b divides N). In the “tall-skinny”

triangular region • {ib, jb | 0 ≤ ib, jb∧2ib+jb+3 ≤ Nb}, where Nb = N/b, we have full rectangles,

specified by {il, jl | 0 ≤ il < 2b∧0 ≤ jl < b}. Along the line segment • {ib, jb | 2ib+jb+2 = Nb},

we have trapezoidal tiles whose shape is {il, jl | 0 ≤ il, jl∧il+jl < 2b∧jl < b}. And finally, along

the line segment • {ib, jb | 2ib+jb+1 = Nb}, we have triangular tiles {il, jl | 0 ≤ il, jl∧il+jl < b}.

Notice how each collection itself is a disjoint polyhedron, and its constraints involve only the

block indices. Also notice how the constraints defining each shape involve only the local indices,

and the size parameter, b. This is not a coincidence, and the following theorem shows that ∆

is separable in this sense.

33

Mathematically, the corresponding theorem is the following:

Theorem 3.2. The image of a polyhedron D = {~i | Q.~i+Q(p).~p+ ~q ≥ ~0} by a monoparametric

partitioning transformation is:

∆ =
m⋂
c=1

[⊎
kmin
c <kc≤kmax

c


~ib, ~il

∣∣∣
Qc.D.~ib +Q

(p)
c .~pb + kc = 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc

~0 ≤ ~il < b.D.~1


]

~ib, ~il∣∣∣ Qc.D.~ib +Q
(p)
c .~pb + kminc ≥ 0

~0 ≤ ~il < b.D.~1

]

where ~k enumerates the possible values of
⌊
Q.~il+Q

(p).~pl+~q
b

⌋
∈ [|~kmin;~kmax|].

where [|~a,~b|] is the set of integral points in the rectangle whose corners are ~a and ~b.

Proof. Let us derive the constraints of ∆ from the constraints of D:

Q.~i+Q(p).~p+ ~q ≥ ~0 (3.1)

D is the intersection of m half planes, each one of them defined by a single constraint Qc.~i +

Q
(p)
c .~p + qc ≥ 0, for 1 ≤ c ≤ m, and we consider each constraint independently. Let us use the

definitions of ~ib, ~il, ~pb and ~pl to eliminate ~i and ~p.

b.Qc.D.~ib +Qc.~il + b.Q(p)
c .~pb +Q(p)

c .~pl + qc ≥ 0 (3.2)

Notice that these constraints are no longer linear, because of the b.~ib and b.~pb terms. To eliminate

them, we divide each constraint by b > 0 to obtain:

Qc.D.~ib +Q(p)
c .~pb +

Qc.~il +Q
(p)
c .~pl + qc
b

≥ 0

34

In general, this fraction is a rational vector. Thus, to define integer points, we take the floor of

each constraint (which is valid because a ≥ 0⇔ bac ≥ 0 and bn+ ac = n+ bac for n ∈ Z):

Qc.D.~ib +Q(p)
c .~pb +

⌊
Qc.~il +Q

(p)
c .~pl + qc
b

⌋
≥ 0 (3.3)

Let use define kc(~il) =

⌊
Qc.~il+Q

(p)
c .~pl+qc
b

⌋
. Now kc(~il) can only take a constant non parametric

number of values. Indeed, ~il belongs to a rectangle: 0 ≤ ~il < D.b.~1. Thus the maximum

will be reached on a vertex of the rectangle, i.e., when all the coordinates of ~il are either 0 or

d.(b−1) (depending on the sign of its coefficient). Let us define QD+
c the vector of non-negative

coefficients of Qc.D, Q
(p)+
c the vector of non-negative coefficients of Q(p), and note that ||.||1

denotes the L1-norm. We have:

kmax
c = max

~il

⌊
Qc.~il +Q

(p)
c .~pl + qc
b

⌋

Also: Qc.~il =
∑

j Qc,j .
~il(j). According to the remark above, the sum is maximized for ~il(j) =

dj .(b − 1) if Qc,j .dj(b − 1) > 0 and ~il(j) = 0 otherwise. Hence: max~il Qc.
~il =

∑
j{Qc,j .dj(b −

1) | Qc,j .dj > 0}, which is exactly (b− 1)||QD+
c ||1. Therefore:

kmax
c =

⌊
||QD+

c ||1.(b−1)+Q
(p)
c .~pl+qc

b

⌋
= ||QD+

c ||1 +

⌊
Q

(p)
c .~pl−||QD+

c ||1+qc
b

⌋
≤ ||QD+

c ||1 +

⌊
||Q(p)+

c ||1.(b−1)−||QD+
c ||1+qc

b

⌋
≤ ||QD+

c ||1 + ||Q(p)+
c ||1 +

⌊
qc−||Q(p)+

c ||1−||QD+
c ||1

b

⌋

Thus, we have a constant upper-bound on all kc(~il). Likewise, we can show that we have a

constant lower-bound on kc(~il), therefore, kc(~il) can only take a constant number of values.

Thus, we create one polyhedron per value of kc(~il).

35

Let us build the polyhedron obtained for a value of kc(~il) in [|kmin
c ; kmax

c |]. Eqn (3.3) becomes:

Qc.D.~ib +Q(p)
c .~pb + kc(~il) ≥ 0 (3.4)

kc(~il) is the quotient of the integer division in (3.3). Then there exists rc such that 0 ≤ rc < b

and Qc.~il +Q
(p)
c .~pl + qc = b.kc(~il) + rc. Hence:

b.kc(~il) ≤ Qc.~il +Q(p)
c .~pl + qc < b.(kc(~il) + 1) (3.5)

Also, the constraints (3.4) and (3.5) are affine, since kc(~il) is a constant, and all we need to do

is to ensure that ~il belongs to the tile, by adding the constraint ~0 ≤ ~il < b.D.~1, and we get the

desired polyhedron.

To summarize, the cth constraint of (3.1) has the same set of integer solutions as the union of

polyhedra obtained for each value of kc(~il):

⊎
kc


~ib, ~il

∣∣∣
Qc.D.~ib +Q

(p)
c .~pb + kc ≥ 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc < b.(kc + 1)

~0 ≤ ~il < b.D.~1


where kc enumerates all possible values of

⌊
Qc.~il+Q

(p)
c .~pl+qc
b

⌋
in the interval [|kmin

c ; kmax
c |].

Now, all we need to do is to intersect these unions for each constraint c ∈ [|1;m|] to obtain the

partitioning. Actually, it is possible to improve the result, as described below.

First, let us study the pattern of the constraints of the polyhedra of the union. Let us call

(Blockkc) the constraint on the block indices and (Localkc) the constraints on the local indices.

We notice some properties among these constraints (Figure 3.2):

• Each kc covers a different stripe of a tile (whose equations is given by (Localkc)). The

union of all these stripes, for kmin
c ≤ kc ≤ kmax

c forms a partition of the whole tile (by

definition of kmin
c and kmax

c).

36

kmax
c

. . .

kmin
c + 1

kmin
c

implies

Figure 3.2: Stripe coverage of a tile. Given a constraint, we have obtain a disjoint union
of polyhedra , each polyhedra covering a stripe of a given tile. These polyhedra are shown in
different shades of green, and ranging from kmin

c to kmax
c). By examining the constraints on

the block indices, we deduce that given a tile, if the stripe kc occurs in this tile, then all the
stripesk′c > kc also occurs in this tile. Thus, we merge all of these stripes to obtain a single
polyhedra per tile.

• If a tile ~ib satisfies the constraint (Blockkc) for a given kc, then the same tile also satisfies

(Blockk′c) for every k′c > kc (because a ≥ 0⇒ a+ 1 ≥ 0). In other words, if the kcth stripe

in a tile is non-empty, the tile will have all the k′c stripes, for every k′c > kc.

Thus, if a block ~ib satisfies (Blockkmin
c

), then it satisfy all the (Blockkc) for kc ≥ kmin
c and the

whole rectangular tile is covered by the union of polyhedra ∆

Also, if a block ~ib satisfies exactly (Blockkc) (i.e., if Qc.D.~ib +Q
(p)
c .~pb + kc = 0), then it does not

satisfy the (Blockk′c) for k′c < kc and we do not have the stripes below kc. Therefore, only the

local indices il which satisfy (b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc) are covered by the union of polyhedra

∆.

Using these observations, we separate the tiles into two categories: those which satisfy (Blockkmin
c

)

(corresponding to a full tile), and those which satisfy exactly a (Blockkc) where kmin
c < kc (cor-

responding to a portion of the tile).

Mathematically, by splitting all of the polyhedra of the union according to the constraints

Qc.D~ib + Q
(p)
c .~pb + kc = 0, kminc < kc ≤ kmaxc , then pasting them together, we obtain the

37

following improved expression:

⊎
kmin
c <kc≤kmax

c


~ib, ~il

∣∣∣
Qc.D.~ib +Q

(p)
c .~pb + kc = 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc

~0 ≤ ~il < b.D.~1


]

~ib, ~il∣∣∣ Qc.D.~ib +Q
(p)
c .~pb + kminc ≥ 0

~0 ≤ ~il < b.D.~1


Thus, by intersecting all of these unions for each constraint, we obtain the expression of ∆. By

distributing the intersection of the union of polyhedra, we obtain a union of disjoint polyhedra.

After eliminating the empty polyhedra, the number of obtained disjoint polyhedra is the number

of different tile shapes of the partitioned version of D.

Example 3.1. Let us consider the following parameterized triangle:

D = {i, j | N − 1− i− j ≥ 0 ∧ i ≥ 0 ∧ j ≥ 0}

We consider monoparametric tiles of size b×b. Let us introduce

i
j

 = b.

ib
jb

+

il
jl

 and, to

simplify the presentation, let us assume that the parameter N is a multiple of the size parameter

b: N = Nb.b. Then, the first inequality becomes:

N − 1− i− j ≥ 0 ⇔ Nb.b− 1− b.ib − il − b.jb − jl ≥ 0

⇔ Nb − ib − jb +
⌊
−il−jl−1

b

⌋
≥ 0

Let us study the values of k1(il, jl) =
⌊
−il−jl−1

b

⌋
. Because of the sign of the numerator coef-

ficients, the maximum is −1 (il = jl = 0) and the minimum is −2 (il = jl = b − 1). After

38

i

j

∆
=

First tiled polyhedron
(k1 = −1)∪

Second tiled polyhedron
(k1 = −2)

Figure 3.3: Obtained union of tiled polyhedra ∆ for Example 3.1. The original polyhedron
is a triangle, and we have assume that the tile sizes divide its sizes. We have two polyhedra in
∆: one corresponding to the full tiles, and another for the diagonal lower-triangular tiles

analyzing the two other inequalities, we obtain:

∆ =


ib, jb, il, jl |

Nb − ib − jb − 1 = 0

ib, jb ≥ 0

0 ≤ il, jl < b

−b ≤ −il − jl − 1


⊎
ib, jb, il, jl |

Nb − ib − jb − 2 ≥ 0

ib, jb ≥ 0

0 ≤ il, jl < b



This union of polyhedra is shown in Figure 3.3.

Example 3.2. Let us consider the following polyhedron: D = {i, j | i + j ≤ N − 1 ∧ j ≤

M ∧ 0 ≤ i, j} with tiles of size b × b. Let us define N = Nb.b + Nl and M = Mb.b + Ml the

block and local parameters, where 0 ≤Ml < b and 0 ≤ Nl < b. By going through the same steps

as in the proof, we obtain:



N − 1− i− j ≥ 0

M − j ≥ 0

i ≥ 0

j ≥ 0



Nb − ib − jb + k1 ≥ 0

Mb − jb + k2 ≥ 0

ib + k3 ≥ 0

jb + k4 ≥ 0

39

i

j

0 N − 1

M

Nb − ib − jb = 0 |Mb − jb = 0

Nb − ib − jb = 0 |Mb − jb ≥ 1

Nb − ib − jb = 1 |Mb − jb = 0

Nb − ib − jb = 1 |Mb − jb ≥ 1

Nb − ib − jb ≥ 2 |Mb − jb = 0

Nb − ib − jb ≥ 2 |Mb − jb ≥ 1

Figure 3.4: Obtained union of polyhedra for Example 3.2, for square tile sizes of size b × b.
We have in total 6 polyhedra contributing to the union. Among those 6, two of them have the
same shape in the figure, but, if increasing the value of M , their shapes become different. ib and
jb are the block indices along the i and j dimensions respectively. Nb and Mb are the integer
division of the parameters N and M by the block size b

where 

k1 =
⌊
Nl−il−jl−1

b

⌋
= −2,−1 or 0

k2 =
⌊
Ml−jl
b

⌋
= −1 or 0

k3 =
⌊
il
b

⌋
= 0

k4 =
⌊
jl
b

⌋
= 0

We obtain a union of 6 polyhedra, one for each possible value of (k1, k2, k3, k4) which are shown

in Figure 3.4. We notice that two of these polyhedra (yellow and green) have the same shapes:

this is because, in the situation illustrated by the figure, Ml ≤ Nl, but, in general, these two

polyhedra do not have the same shape. Moreover, when Ml ≥ Nl, the blue and gray polyhedra

will have the same shape.

40

3.1.2 Monoparametric partitioning of affine functions

Monoparametric partitioning applied to an affine function Let us consider an affine

function f : (~i 7→ Q.~i+Q(p).~p+~q). Let us consider two monoparametric partitioning transforma-

tion Tb,D and T ′b,D′ , sharing the same block size parameter b, such that the first one corresponds

to a partitioning of the input space of f , and the second one corresponds to a partitioning of

the output space of f .

Given a element ~i of the input space, we have a first set of block and local indices for the input

space ((~ib, ~il) = Tb,D(~i)). Likewise, given a element ~i′ of the output space, we have another set

of block and local indices for the output space ((~i′b,
~i′l) = Tb,D′(~i′)). We also introduce the block

and local parameters in the same manner than for the polyhedron case: ~p = b.~pb + ~pl where

~0 ≤ ~pl < b.~1.

We want to replace the original input and output indices of f by their block and local counter-

parts. Mathematically, this means that we want to compute φ = T ′b,D′ ◦ f ◦ T −∞b,D. If f was

a n to n′ dimensional function, then φ is a 2n to 2n′ dimensional function.

Like in the previous subsection, by starting with the definition of f , we derive the value of φ:

Theorem 3.3. Given two monoparametric partitioning transformation (Tb,D and T ′b,D′) and

any affine function (f(~i) = Q.~i+Q(p).~p+~q), the composition φ = T ′b,D′ ◦ f ◦T −1b,D is a piecewise

quasi-affine function, whose branches are:

φ(~ib, ~il) =

D′−1.Q.D.~ib +D′−1.Q(p).~pb + ~k

Q.~il +Q(p).~pl + ~q − b.D′.~k


if b.~k ≤ D′−1.Q.~il +D′−1.Q(p).~pl +D′−1.~q < b.(~k +~1)

for each ~k ∈ [|~kmin;~kmax|], and assuming that (D′−1.Q.D) and (D′−1.Q(p)) are integer matrices.

We will show later that the condition on (D′−1.Q.D) and (D′−1.Q(p)) is a necessary and suffi-

cient condition to have only affine conditions in the piecewise quasi-affine function φ. If these

41

hypothesis are not respected, then we might end up with modulo conditions in the branches of

φ.

Proof. Let us start from the definition of f : ~i′ = Q.~i + Q(p).~p + ~q. With similar arguments as

at the beginning of the proof of Theorem 3.2, we get rid of ~il
′

to obtain:

~ib
′
=

⌊
D′−1.Q.D.~ib +D′−1.Q(p).~pb +

D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

In general, if we do not have the additional hypothesis, we have no guarantee that (D′−1.Q.D.~ib)

and (D′−1.Q(p).~pb) are integral vectors. In order to draw these terms outside the floor operator,

we have assumed that (D′−1.Q.D) and (D′−1.Q(p)) are integer matrices. Using this hypothesis,

we obtain:

~ib
′
= D′−1.Q.D.~ib +D′−1.Q(p).~pb +

⌊
D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

By defining ~k(~il) =
⌊
D′−1.(Q.~il+Q

(p).~pl+~q)
b

⌋
and by conducting the same kind of analysis as pre-

viously, we manage to bound ~k(~il) between ~kmin and ~kmax. Finally, we obtain a piecewise

expression of ~ib
′
, in which each branch corresponds to one value of ~k(il):

~ib
′
= D′−1.Q.D.~ib +D′−1.Q(p).~pb + ~k

if b.~k ≤ D′−1.Q.~il +D′−1.Q(p).~pl +D′−1.~q < b.(~k +~1)

for each ~k ∈ [|~kmin;~kmax|].

We easily compute ~il
′

for each obtained branch by using the definition of ~ib
′
, to obtain the

expression of φ as a piecewise quasi-affine function. Indeed, for a given branch:

~il
′

=~i′ − b.D′.~ib
′
= Q.~i+Q(p).~p+ ~q − b.D′.(D′−1.Q.D.~ib +D′−1.Q(p).~pb + ~k)

= Q.(b.D.~ib + ~il) +Q(p).(b.~pb + ~pl) + ~q − b.Q.D.~ib − b.Q(p).~pb − b.D′.~k

= Q.~il +Q(p).~pl + ~q − b.D′.~k

42

φ(ib, jb, il, jl) =



(4ib,M − 2jb − 1, ib + jb, 2il, b− jl − 1, il + jl)
if 0 ≤ il < b ∧ 0 ≤ jl < b ∧ 0 ≤ il + jl < 2b

(4ib + 1,M − 2jb − 1, ib + jb, 2il − b, b− jl − 1, il + jl)
if b ≤ il < 2b ∧ 0 ≤ jl < b ∧ 0 ≤ il + jl < 2b

(4ib,M − 2jb − 2, ib + jb, 2il, 2b− jl − 1, il + jl)
if 0 ≤ il < b ∧ b ≤ jl < 2b ∧ 0 ≤ il + jl < 2b

(4ib,M − 2jb − 2, ib + jb + 1, 2il, 2b− jl − 1, il + jl − 2b)
if 0 ≤ il < b ∧ b ≤ jl < 2b ∧ 2b ≤ il + jl < 4b

(4ib + 1,M − 2jb − 1, ib + jb + 1, 2il − b, b− jl − 1, il + jl − 2b)
if b ≤ il < 2b ∧ 0 ≤ jl < b ∧ 2b ≤ il + jl < 4b

(4ib + 1,M − 2jb − 2, ib + jb + 1, 2il − b, 2b− jl − 1, il + jl − 2b)
if b ≤ il < 2b ∧ b ≤ jl < 2b ∧ 2b ≤ il + jl < 4b

Figure 3.5: Example 3.3 - obtained piecewise quasi-affine function after applying the parti-
tioning transformation to (i, j 7→ 2i,N − j − 1, i + j), for a 2b × 2b rectangular tiling on the
inputs and a b × b rectangular tiling on the outputs. Each branch corresponds to a different
value of the function, thus cannot be merged

Compared to the decomposition we obtained for polyhedra, we do not merge the branches

according to their conditions to have a single branch per tile. Indeed, the value of the piecewise

quasi-affine function is different for each branch, thus we cannot merge them.

Example 3.3. Let us consider the affine function f : (i, j 7→ 2i,N − j − 1, i+ j).

Let us introduce

i
j

 = b.

2 0

0 2

 .

ib
jb

+

il
jl

 where 0 ≤ il, jl < 2b and

i′
j′

 = b.

i′b
j′b

+

i′l
j′l

 where 0 ≤ i′l, j′l < b. We assume that the parameter N is divisible by b, and we introduce

N = Nb.b. We check that (D′−1.Q.D) and (D′−1.Q(p)) are both integral, thus we will have purely

affine constraints.

After performing the operations described previously, we obtain an expression of ~i′b:
i′b

j′b

k′b

 =


4 0

0 −2

1 1


ib
jb

+


0

1

0

 .
[
M

]
+


k1

k2

k3


where k1 =

⌊
2il
b

⌋
, k2 =

⌊
−jl−1
b

⌋
and k3 =

⌊
il+jl
2b

⌋
. Thus, 0 ≤ k1 ≤ 1, −2 ≤ k2 ≤ −1 and

0 ≤ k3 ≤ 1.

43

Two out of the resulting eight branches have unsatisfiable conditions. Therefore, after pruning

them out, we obtain the expression of φ described in Figure 3.5.

Example 3.4. Let us consider the affine function f : (i, j 7→ 2N + 2i + 4j − 1), with a block

size of b × b for the input indices, and 2b for the output indices. The conditions are verified,

and we obtain after derivation:

i′b = Nb + ib + 2jb + k1 where k1 =

⌊
2.Nl + 2.il + 4.jl − 1

2b

⌋

The final result is:

(i′b, i
′
l) =



(Nb + ib + 2.jb − 1, Nl + il + 2.jl + b) if 2.Nl + 2.il + 4.jl − 1 < 0

(Nb + ib + 2.jb, Nl + il + 2.jl) if 0 ≤ 2.Nl + 2.il + 4.jl − 1 < 2b

(Nb + ib + 2.jb + 1, Nl + il + 2.jl − b) if 2b ≤ 2.Nl + 2.il + 4.jl − 1 < 4b

(Nb + ib + 2.jb + 2, Nl + il + 2.jl − 2b) if 4b ≤ 2.Nl + 2.il + 4.jl − 1 < 6b

(Nb + ib + 2.jb + 3, Nl + il + 2.jl − 3b) if 6b ≤ 2.Nl + 2.il + 4.jl − 1

In Theorem 3.3, we have introduced a condition on two products of matrices to have only affine

conditions in φ. Let us see what happens when this condition is not satisfied.

Example 3.5. Let us consider the identity function (i 7→ i) where D = (2) and D′ = (6).

Because Q = (1) and Q(p) = (0), D′−1.Q.D =

(
1

3

)
and D′−1.Q(p) = (0), the conditions are

not satisfied. In particular, given a point (ib, il) in the input domain of this function, we need

to know the result of the integer division of ib by 3 to know in which block we end up, i.e., you

need to know the value of ib mod 3 to compute the new local index (as shown in Figure 3.6).

Necessary and sufficient condition to avoid modulo constraints Now, let us show

that the condition in Theorem 3.3 is a necessary and sufficient condition to have only affine

conditions in φ, and when it is not respected, conditions containing modulo appear in φ.

Theorem 3.4. Given two monoparametric partitioning transformations (Tb and T ′b) and any

affine function (f(~i) = Q.~i+Q(p).~p+~q). Assuming that the ratio associated with Tb is D and the

44

ib, il

ib + 1, il

ib + 2, il

⌊
ib
3

⌋
, il

⌊
ib
3

⌋
, il + 2b

⌊
ib
3

⌋
, il + 4b

Figure 3.6: Example 3.5: graphical representation of the tiles on both sides of a partitionned
identity function, for a 2b tiling on the inputs and a 6b tiling on the outputs. Notice that, in
order to retrieve the number of the tile on the output space from (ib, il), we need to perform an
integer division.

ratio associated with T ′b is D′, the composition T ′b ◦ f ◦ T −1b has only purely affine constraints

iff (D′−1.Q.D) and (D′−1.Q(p)) are integral matrices.

Proof. In the proof of Theorem 3.3, we had obtained the following equality:

~ib
′
=

⌊
D′−1.Q.D.~ib +D′−1.Q(p).~pb +

D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

Let us consider the c-th dimension, 0 ≤ c < |~i′b|:

i′bl,c =

⌊
Qc.D.~ib
D′c,c

+
Q

(p)
c .~pb
D′c,c

+
Qc.~il +Q

(p)
c .~pl + qc

D′c,c.b

⌋

If the fraction Qc.D
D′c,c

is non-integral, it can affect the value of kc (which was previously only a

function of the local indices and parameters). This means that, depending the value of ~ib and

its modulo with respect to D′c,c, the value of kc is shifted and the cuts are different. Thus, we

need to distinguish the different values of ib modulo D′c,c, and this is a non-affine constraint.

Likewise, if the fraction Q
(p)
c . ~pb
D′c,c

is non-integer, ~pb affects the value of kc and we have non-affine

constraints on ~pb.

Therefore, we just have shown that if the condition is not satisfied, then we have modulo

constraints. Theorem 3.3 has already shown that if the condition is satisfied, we do not have

modulo constraints. Therefore, this condition is a necessary and sufficient condition.

45

Example 3.5 shows what happens in practice when the condition is not satisfied.

Derivation when the condition is not satisfied If the necessary and sufficient condition

is not satisfied, we can still finish the computation of φ and obtain a piecewise quasi-affine

function with modulo conditions, as shown by the following theorem:

Theorem 3.5. Given two monoparametric partitioning transformation (Tb,D and T ′b,D′) and

any affine function (f(~i) = Q.~i + Q(p).~p + ~q), if (D′−1.Q.D) or (D′−1.Q(p)) is not an integer

matrix, the composition φ = T ′b,D′ ◦ f ◦ T −1b,D is a piecewise quasi-affine function with modulo

conditions in its branches.

Proof. We consider the integer divisions of ~ib by the diagonal elements of D′: ~ib = ~ib
(div),l

.D′l,l+

~ib
(mod),l

where ~ib
(div),l

is the quotient and ~ib
(mod),l

is the rest of the integer division (thus,

~0 ≤ ~ib
(mod),l

< D′l,l.
~1). Likewise, we consider the integer divisions of ~pb by the diagonal elements

of D′: ~pb = ~pb
(div),l.D′l,l + ~pb

(mod),l where ~0 ≤ ~pb
(mod),l < D′l,l.

~1.

In the beginning of the derivation of Theorem 3.3, before using the conditions on the matrices

(D′−1.Q.D) and (D′−1.Q(p)), we have obtained the following equality:

~ib
′
=

⌊
D′−1.Q.D.~ib +D′−1.Q(p).~pb +

D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

By using the quotient and rest of the integer divisions we have introduced at the beginning of

this proof, we obtain the following equality in our derivation:

~ib
′
l = Ql.D.~ib

(div),l
+Q

(p)
l .~pb

(div),l +

⌊
Ql.D.~ib

(mod),l
+Q

(p)
l .~pb

(mod),l

D′l,l.b
+
Ql.~il +Q

(p)
l .~pl + ql

D′l,l.b

⌋

Let us define kl(~ib
(mod),l

, ~pb
(mod),l) =

⌊
Ql.D.~ib

(mod),l
+Q

(p)
l . ~pb

(mod),l

D′l,l.b
+

Ql.~il+Q
(p)
l .~pl+ql

D′l,l.b

⌋
. Because ~ib

(mod),l

and ~pb
(mod),l can only take a finite number of values, we do one analysis of kl for each of their

values.

46

The number of branches resulting from the analysis of the l-th dimension correspond to the

number of values the triplet (~ib
(mod),l

, ~pb
(mod),l, kl) can take. The total number of branches of

the piecewise quasi-affine function is the product of the number of branches for each dimension.

Thus, the number of branches might be large, but an expression for φ can be computed.

Even if we manage to get an expression of φ when the condition is not satisfied, the number of

branches is considerable, and it means going introducing modulo conditions.

Example 3.6. Let us consider f : (i, j 7→ i, j) where the input indices are tiled as

i
j

 =

ib
jb

 .b+

il
jl

 and the output indices are tiled as

i′
j′

 =

2i′b

3j′b

 .b+

i′l
j′l

. Let us consider

the first output dimension:

i′ = i ⇔ 2.i′b.b+ i′l = ib.b+ il

⇒ i′b =
⌊
ib
2 + il

2b

⌋
= i

(1)
bb +

⌊
i
(1)
bl
2 + il

2b

⌋

where ib = 2.i
(1)
bb + i

(1)
bl and 0 ≤ i(1)bl ≤ 1. Likewise, we have:

j′b = j
(2)
bb +

⌊
j
(2)
bl

3
+
jl
3b

⌋

where jb = 3.j
(2)
bb + j

(2)
bl and 0 ≤ j

(2)
bl ≤ 2. Finally, we build the pieces of φ by enumerating all

the possible values of i
(1)
bl and j

(2)
bl . For example, for i

(1)
bl = j

(2)
bl = 0:

~k(il, jl) =

(⌊
il
2b

⌋ ⌊
jl
3b

⌋)T

47

We only have one possible value for k1(il, jl) and k2(il, jl) (which is 0 in both cases), thus we

will only have one branch in φ corresponding to these values. The full expression of φ is:

φ :



ib

jb

il

jl


7→



(ib/2, jb/3, il, jl)
T if ib ≡ 0 mod 2 ∧ jb ≡ 0 mod 3

(ib/2, (jb − 1)/3, il, jl + b)T if ib ≡ 0 mod 2 ∧ jb ≡ 1 mod 3

(ib/2, (jb − 2)/3, il, jl + 2b)T if ib ≡ 0 mod 2 ∧ jb ≡ 2 mod 3

((ib − 1)/2, jb/3, il + b, jl)
T if ib ≡ 1 mod 2 ∧ jb ≡ 0 mod 3

((ib − 1)/2, (jb − 1)/3, il + b, jl + b)T if ib ≡ 1 mod 2 ∧ jb ≡ 1 mod 3

((ib − 1)/2, (jb − 2)/3, il + b, jl + 2b)T if ib ≡ 1 mod 2 ∧ jb ≡ 2 mod 3

3.2 Hyperrectangular monoparametric partitioning program trans-

formation

In the previous section, we showed how to apply the monoparametric partitioning transformation

to a polyhedron and an affine function, the two main mathematical objects in any polyhedral

program representation. In this section, we show how to apply this transformation to a complete

polyhedral program. Then, we show how to choose a ratio for the local variables which do not

already have a ratio assigned, which does not introduce modulo conditions in our transformed

program.

3.2.1 Monoparametric partitioning program transformation

Let us consider an equation coming from a polyhedral program. This equation has one of the

following two forms:

(∀~i ∈ D) : S[~i] = Expr(S1[u1(~i)], . . . , Sd[ud(~i)])

(∀~i ∈ Dr) : S[~i] =
⊕
~j ∈ D
~i = π(~j)

Expr(S1[f1(~j)], . . . , Sd[fd(~j)])

48

To apply the monoparametric partitioning transformation to this program, we have to replace

all the polyhedra and affine functions of this program by their monoparametric partitioned

alter-egos. The number of dimensions of all domains is doubled, and, because the polyhedra

and affine functions remain the same (but are expressed in a different basis) the operations

performed by the program are not changed.

However, this substitution introduces piecewise quasi-affine functions in the middle of the pro-

gram, which is not allowed. Thus, a post-processing step (called normalization) is required.

Given an equation, the normalization step gathers the conditions of the branches of the piece-

wise quasi-affine functions from this program and compute their intersections. At this point,

we obtain a list of equations, in which each element correspond to a specific combination of the

branches of the piecewise quasi-affine functions of this equation. We finish by eliminating the

combinations which are not satisfiable.

Thus, the normalization step flattens all the branches of the piecewise quasi-affine functions,

and prune the empty branches. If we try to distinguish these two steps, the normalization

does not scale. For example, in our Jacobi1D example, if we consider the last equation, we

have a summation between 3 variables. After flattening them and before pruning the empty

branches, we have a total of 4×2×4 = 32 branches before pruning. This number explodes when

considering stencils of higher-orders. For example, if we consider a Jacobi2D example, we have

a summation between 9 variables, corresponding to a total of 48 ∗2 = 217 different combination,

thus different branches before pruning. Therefore, the pruning must occur during the gathering

of the branches.

Example 3.7. Let us consider the following program, corresponding to a Jacobi1D computation:

49

(∀0 ≤ i < N) : Out[i] = Temp[T − 1, i]

(∀0 ≤ i < N ∧ t = 0) : Temp[t, i] = I[i]

(∀i = 0 ∧ 0 < t < T) : Temp[t, i] = Temp[t− 1, i]

(∀i = N − 1 ∧ 0 < t < T) : Temp[t, i] = Temp[t− 1, i]

(∀0 < i < N − 1 ∧ 0 < t < T) : Temp[t, i] = (Temp[t− 1, i− 1]+

Temp[t− 1, i] + Temp[t− 1, i+ 1])/3

where Out is an output variable and I an input, both defined over {i|0 ≤ i < N}. For simplicity,

we assume that the parameters N and T are multiples of the tile size parameter b (N = Nb.b

and T = Tb.b).

We want to apply a monoparametric partitioning transformation such that the variable Temp is

tiled with square tiles of size b× b, and the variables Out and I are tiles with tiles of size b. In

order to do this, we consider each domain and dependence functions of this program and apply

the monoparametric partitioning transformation on them. Finally, we substitute them with their

monoparametric partitioned alter ego and to obtain the program described in Figure 3.7, before

applying the normalization post-processing step.

3.2.2 Derivation of the partitioning

While applying the monoparametric partitioning transformation, we might have different par-

titionings (a.k.a., ratio, in the case of rectangular tiles) interacting within an expression. For

example, if we choose a ratio of 1× 2 for a variable T , what ratio should we pick for a variable

whose equation uses T , say S[i, j, k] = g(. . . T [i, k+ j] . . .), and how to adapt this expression to

make the (potentially different) tiling compatible?

If we assume that the ratio of all variables were chosen beforehand, we just have to check for

their compatibility, i.e., we have to check that partitioning the dependence functions do not

introduce non-polyhedral modulo constraints (cf Theorem 3.4). This means that we have to

check, for any dependence function (~i 7→ Q.~i+Q(p).~p+ ~q) and ratio D and D′, that (D′−1.Q.D)

and (D′−1.Q(p)) are integral.

50

∀
{

0 ≤ ib < Nb

0 ≤ il < b
: Out[ib, il] = Temp[Tb, ib, b− 1, il]

∀


0 ≤ ib < Nb

0 ≤ il < b
tb = tl = 0

: Temp[tb, ib, tl, il] = I[ib, il]

∀


ib = il = 0 0 < tb ∧ 0 ≤ tl < b

∨
tb = 0 ∧ 0 < tl < b

 : Temp[tb, ib, tl, il] = Temp

[
tl = 0 : (tb − 1, ib, b− 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

∀


ib = Nb − 1 ∧ il = b− 1 0 < tb ∧ 0 ≤ tl < b

∨
tb = 0 ∧ 0 < tl < b

 : Temp[tb, ib, tl, il] = Temp

[
tl = 0 : (tb − 1, ib, b− 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

∀




ib = 0 ∧ 0 < il < b

∨
ib = Nb − 1 ∧ 0 ≤ il < b− 1

∨
0 < ib < Nb − 1 ∧ 0 < il < b


 0 < tb ∧ 0 ≤ tl < b

∨
tb = 0 ∧ 0 < tl < b


: Temp[tb, ib, tl, il] = 1/3×

(

Temp

 tl = 0 ∧ il = 0 : (tb − 1, ib − 1, b− 1, b− 1)
tl = 0 ∧ il > 0 : (tb − 1, ib, b− 1, il − 1)
0 < tl ∧ il = 0 : (tb, ib − 1, tl − 1, b− 1)
0 < tl ∧ il > 0 : (tb, ib, tl − 1, il − 1)

+ Temp
[
tl = 0 : (tb − 1, ib, b− 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

+Temp

 tl = 0 ∧ il = b− 1 : (tb − 1, ib + 1, b− 1, 0)
tl = 0 ∧ il < b− 1 : (tb − 1, ib, b− 1, il + 1)
0 < tl ∧ il = b− 1 : (tb, ib + 1, tl − 1, 0)
0 < tl ∧ il < b− 1 : (tb, ib, tl − 1, il + 1)

)

Figure 3.7: Jacobi1D computation, after substituting every polyhedron and affine function
by its monoparametric partitioned equivalent, and before the normalization step. In order to
save space, we allow union of polyhedra in the domain of the equations (instead of having one
equation per polyhedron).

In a more general situation, we assume that the ratio of some variables were chosen beforehand

(either by the user or by the compiler), but not all ratios were decided. In order to apply

the monoparametric partitioning transformation, we need to find ratio for all the remaining

variables, such that no modulo constraints are introduced in their equations.

We assume that for any cycle in the PRDG of our program, at least one variable was given a

ratio. For example, if a variable S depends on itself then its ratio must be specified. Or if a

variable S depends on T , which depends on S, at least one of these variables must have their

ratio specified. This condition avoids recursive divisibility equation when we derive the missing

51

ratio of the program. About the order of derivation of the missing ratio of the program, under

this condition, it is always possible to find a variable for which all the variables it uses have

already been given a ratio. Therefore, by considering successively such variables, we derive a

ratio for all the variables of the program.

We always pick the smallest ratios possible for an expression: indeed, let us assume that we

have derived DTk for a variable Tk and let us consider an equation S[~i] = g(. . . Tk[fk(~i)] . . .)

in which the ratio of S is determined. According to the conditions of Theorem 3.4, we have

to make sure that (D−1Tk .Q.DS) is integral. By taking the lowest ratio possible for Tk (i.e., the

lowest values for DTk), we minimize the risk that this condition is not satisfied, thus the risk

that the algorithm does not manage to avoid modulo constraints.

Ratio derivation algorithm Let us consider an equation in which all the used variables

have a ratio. Two situations might arise, depending on the nature of the equation:

• If the equation is not a reduction: S[~i] = g(T1[f1(~i)], . . . , Td[fd(~i)]). Assuming that

each dependence function fk are of the form fk : (~i 7→ Qk.~i+Q
(p)
k .~p+ ~q), the constraints

that must be satisfied by the ratio of S are:

 (∀1 ≤ k ≤ d) D−1Tk .Qk.DS is integer

(∀1 ≤ k ≤ d) D−1Tk .Q
(p)
k is integer

This means:  (∀1 ≤ k ≤ d) (∀i, j) (DTk)i divides (Qk)i,j .(DS)j

(∀1 ≤ k ≤ d) (∀i, j) (DTk)i divides (Q
(p)
k)i,j

The last condition (concerning the parameters) does not impact the ratios of S. Moreover,

if this condition is not satisfied, then we must have modulo constraints on the parameters

when partitioning this dependence expression. Let us now study the first condition to

find the smallest ratio of S possible. We factorize (DTk)i as a product of prime numbers.

Because of the first condition, these prime numbers must be present either inside (Qk)i,j

or (DS)j (which is the unknown). If some of them are already inside (Qk)i,j , they do not

52

need to be in (DS)j . Thus, let us introduce (δk)i,j , the product of prime factors of (DTk)i

which are not inside (Qk)i,j :

(δk)i,j = (DTk)i/gcd((DTk)i, (Qk)i,j)

The conditions become (∀k)(∀i j), (δk)i,j divides (DS)j . Thus, the smallest ratio we can

take for S are:

(DS)j = lcmk,i((δk)i,j)

• If the equation is a reduction:

S[~i] =
⊕

~i = π(~j)

~j ∈ D

g(T0[f0(~j)], . . . , Td[fd(~j)]).

We consider two ratios for this equation: one corresponding to the subexpression of the

reduction body, and one corresponding to the reduction itself. In order to determine the

minimal ratios for the reduction body DSExpr, we simply use the method described in the

case of a normal equation. Then, all that remains is to partition the projection function

π : (~j 7→ Q.~j +Q(p).~p+ ~q). The conditions to avoid modulo constraints when partitioning

π are:  (∀i, j) (DS)i divides Qi,j .(DSExpr)j

(∀i, j) (DS)i divides Q
(p)
i,j

We notice that the divisibility constraints are in the opposite direction than what we had

in the previous case: instead of having to find a value of (DS)i which is divisible by another

value, we have to find a value of (DS)i which divides another value. Thus, we could just

take (DS)i = 1, which is the smallest ratio possible.

However, after simplification, we might obtain a projection function which does not admit

an integer right inverse [48]. For example, if we consider a ratio DSExpr =

2 0

0 1

 and

a projection function π : (i, j 7→ i), then we obtain a piecewise quasi-affine function with

53

two branches:

(ib, jb, il, jl) 7→

 (2.ib, il) when 0 ≤ il < b

(2.ib + 1, il − b) when b ≤ il < 2b

Because a projection function must be a non-piecewise quasi-affine function, we need to

split the reduction into two separate reductions, whose projection function correspond to

a single branch of the piecewise quasi-affine function. However, the projection functions

of the reductions produces by each branch do not admit an integer right inverse (it admits

a rational right inverse, with a division by 2), thus each obtained reduction is defined over

non-polyhedral domains (with the modulo conditions being respectively “i′b even” and “i′b

odd”).

To avoid this situation, we apply a preprocessing step to the program to make the pro-

jection canonic, i.e., of the form (~x, ~y 7→ ~x). Then, we just keep the ratio of SExpr

for the dimensions which are not projected. Under these circumstances, the partitioned

projection function will have only one branch, of the form (~xb, ~yb, ~xl, ~yl 7→ ~xb, ~xl).

We call valid ratios of variables a set of ratios which do not introduce modulo conditions when

we use them for a monoparametric partitioning transformation. A set of ratios which are always

valid is (1×1×· · ·×1) for every variable, corresponding to square shapes. Thus, for any program,

there always exist valid ratios of their variable.

Example 3.8. Let us consider a matrix multiplication computation, where the ratios of A are

2× 2, the ratios of B are 2× 1 and the ratios of C are 2× 1:

(∀0 ≤ i, j < N) C[i, j] =
∑

0≤k<N
A[i, k] ∗B[k, j]

After examining the subexpression of the reduction, we find 2 × 1 × 2 as the minimal ratio.

The reduction projects the k dimension, thus the smallest ratio of the right side of the equation

of C is 2 × 1. This ratio is exactly the same as C, thus the algorithm succeeds. A graphical

representation of the result of this derivation is shown in Figure 3.8.

54

A

B

C

Figure 3.8: Example 3.8 - Chosen ratios for a matrix multiplication computation. The chosen
ratio are: 2× 2 for A, 2× 1 for B and 1× 2 for C.

Example 3.9. Let us consider the following program, in which A has a ratio of 2, B has a

ratio of 3 and Out a ratio of 1:

(∀0 ≤ i < N) Temp[i] = A[i+ 1] +B[3i]

(∀0 ≤ i < N) Out[i] = Temp[i]

Because the ratio of Temp is not decided yet, we cannot consider first the equation of Out, and

have to start with the equation of Temp. The contribution of A in this equation (A[i+1]) forces

the ratio of Temp to be a multiple of 2. The contribution of B in this equation (B[3i]) forces

this ratio to be a multiple of 3/3 = 1. Therefore, the minimal ratio of Temp is 2.

Then, we consider the equation of Out. The ratio of Temp is 2 and the ratio of Out is 1.

Because 1/2 is not an integer, we are forced to introduce a modulo constraint if we partition this

program, and the algorithm fails. If we had picked a multiple of 2 as a the ratio for Out, the

algorithm would have succeed.

Set of possible ratios Let us show that if our algorithm does not manage to find valid ratios,

then such ratios do not exist.

Theorem 3.6. The set of valid ratios for a variable are the multiples of a single minimal ratio,

which is the one found by our algorithm.

Therefore, given a set of pre-specified ratios, if our algorithm fails to complete this specification,

then no valid ratios exist.

55

Proof. At every step of our algorithm, the ratio we pick for each variable is always the smallest

ratio which avoids modulo constraints. The key observation is that all the constraints on

the ratios we consider are divisibility constraints. Thus, if we consider the prime number

decomposition of the ratio we find, our algorithm discards the divisors which can be eliminated

(because of the dependence functions) and only keeps the divisors which cannot be removed.

Therefore, all the ratios that our algorithm find are the product of the divisors which cannot

be eliminated, and hence, are the smallest valid ratios.

If our algorithm fails, then there exists an equation such that the ratio of the right side does

not divide the ratio of the variable of the equation. This means that there is at least a divisor

of the ratio of the right side which does not divide the ratio of the variable of the equation.

Because our algorithm only keeps all the divisors which cannot be eliminated, this means that

there is not valid ratio.

We notice that a valid ratio for any variable must be a multiple of the minimal ratio we find. If

our compiler framework can manage modulo constraints inside our program, we are not forced

to find a valid ratio of the program. However, as shown in Theorem 3.5, because the number

of branches are usually much larger when modulos are introduced, we might still want to avoid

modulo conditions whenever possible.

3.2.3 Experimental validation

In this subsection, we present our implementation of the rectangular monoparametric partition-

ing, and report our experiment with this transformation.

Implementation The rectangular monoparametric partitioning transformation has been im-

plemented in Java, using the AlphaZ compiler framework [89]. A C++ standalone version of

this transformation for polyhedra and affine functions (manipulated through their matrix rep-

resentation) is available online1. We use the fact that the block and local indices are separated

1http://compsys-tools.ens-lyon.fr/cart/index.html

56

http://compsys-tools.ens-lyon.fr/cart/index.html

the constraints to manipulate them separately (i.e., we manipulate cross-product of polyhedra,

the first one being on the block indices and the second one on the local indices), in order to

reduce the cost of the polyhedral operations performed on them.

We have implemented several options to the monoparametric partitioning transformation, in

order to reduce the size of the transformed program:

• We can specify if the parameters of the program must be multiple of the block size pa-

rameter (i.e., if N is a parameter, we can force that N = Nb.b and the local parameter is

Nl = 0). This option allows us to remove a lot of corner cases. For example, if we have a

two-dimensional square polyhedra {i, j | 0 ≤ (i, j) < N}, if we do not assume that N is

divisible by the block size parameter b, we obtain a union of 4 polyhedra: one for the full

tiles, one for the last column of tiles, one for the last row of tiles and one for the top-right

tile. If the block size parameter divides N , we only obtain a union of a single polyhedra

(corresponding to the full tile).

• We can specify a minimal value for the block size parameter b. This is especially useful

for uniform dependence functions. For example, if we have an equation of the form

A[i] = B[i − 2], if the ratio of A and B are both 1, the dependence function (i 7→ i − 2)

access the previous tile of the variable B for b ≥ 2. However, if b = 1, this dependence

jumps a tile. Hence, when we partition this affine function, we need a special branch of

the resulting piecewise quasi-affine function to treat this special case. Imposing that b ≥ 2

remove such branch.

• We can specify a minimal value for the block parameters (such as Nb, where N is a

parameter). For example, if we consider a Jacobi1D computation (cf Example 3.7 Page 49),

we have a rectangular domain with a special computation at the bottom row (t = 0) and at

the two extremal columns (i = 0 and i = N − 1). Assuming that the block size parameter

b divides the program parameter N = Nb.b, when Nb = 1 we have a single tile spawning

over the length of the domain. To avoid such extreme case, we can force Nb ≥ 2.

57

Experiment on the scalability of the monoparametric partitioning transformation

We want to study the scalability of our implementation of the rectangular monoparametric

partitioning transformation. This means that we want to check that the time performed by

our transformation in a compiler is reasonable. In addition, we want to study the scalability of

an arbitrary polyhedral analysis on the transformed program (which is larger than the original

program).

As our set of benchmark, we use Polybench/Alpha2 benchmarks, an hand-written Alpha imple-

mentation of the Polybench 4.0 benchmark suite. We run our experiment on a machine with an

Intel Xeon E5-1650 CPU with 12 cores running at 1.6 GHz (max speed at 3.8GHz), and 31GB

of memory.

We run the following experiment for each kernel:

• After parsing the program, we apply the rectangular monoparametric partitioning trans-

formation. Because the partitioning transformation is the reindexing part of a tiling, we

do not have any legality condition to respect. Thus, we select by default a rectangular

tiling of ratio 1d where d is the number of dimensions of a variable. We assume that the

program parameters (Nb) are multiple of the block size parameter (b) and we impose a

minimal value for both of them.

• We apply a polyhedral analysis after the monoparametric partitioning transformation,

which computes the context domain of each node of the AST of our program. The context

domain of an expression is the set of indices on which the expression value is needed to

compute the output of a program. This analysis performs a tree traversal of the AST of

the program, and regularly performs polyhedral operations (such as image and preimage)

at certain nodes of the AST. Thus, our choice of using this analysis in order to investigate

the scalability of polyhedral analysis after the partitioning transformation.

Figure 3.9 reports the time taken by each phase for all the kernel of Polybench/Alpha, and the

number of node of the AST of the program after the partitioning transformation.

2http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.

polybench/polybench-alpha-4.0/

58

http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/

Time taken (ms)

co
rr

el
a
ti

o
n

co
va

ri
a
n

ce

g
em

m

g
em

v
er

g
es

u
m

m
v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2
m

m

3
m

m

Parsing 121 69 62 83 50 118 83 54 43 93 112

Partitioning 300 157 151 178 93 282 439 119 82 308 482

Context Domain 1147 504 163 230 162 1257 685 153 207 319 451

Num AST Nodes 110 66 21 47 29 136 36 21 25 34 39

Num Equations 10 6 2 5 3 14 3 2 3 4 6

Time taken (ms)

at
ax

b
ic

g

d
oi

tg
en

m
v
t

ch
ol

es
k
y

d
u

rb
in

gr
am

sc
h

m
id

t

lu

lu
d

cm
p

tr
is

ol
v

d
er

ic
h

e

Parsing 51 51 54 55 389 121 147 106 179 74 468

Partitioning 112 113 187 159 369 266 398 284 472 139 1213

Context Domain 153 153 185 201 1197 2182 1867 1208 2672 203 2843

Num AST Nodes 25 25 13 29 113 315 123 138 216 39 659

Num Equations 4 4 2 4 15 34 20 20 30 5 40

Time taken (ms)

fl
oy

d
-w

ar
sh

al
l

n
u

ss
in

ov

a
d

i

fd
td

-2
d

ja
co

b
i-

1d

ja
co

b
i-

2d

se
id

el
-2

d

h
ea

t-
3d

Parsing 220 122 546 331 139 134 183 278

Partitioning 390 380 2393 1048 678 628 550 3275

Context Domain 335 6845 2m 32s 1m 52s 2913 58s 1m 28s 37m 13s

Num AST Nodes 27 537 11931 4194 334 2836 4684 50170

Num Equations 4 57 570 495 38 194 210 1242

Figure 3.9: Time taken by the hyperrectangular monoparametric partitioning transforma-
tion inside the compiler, number of nodes of the AST of the program after the partitioning
transformation and number of equations of the partitioned program. All the considered stencil
computations (adi to heat-3d) have an order of 1.

59

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 t

a
ke

n
 (

m
s)

Number of AST Nodes

Figure 3.10: Time taken by the context domain polyhedral analysis against the number of
AST Nodes of the program after the monoparametric partitioning transformation, plotted in a
log-log scale. This plot shows that the size of the program after the transformation is linked to
the time taken by the following polyhedral analysis.

The time taken by the transformation itself remains reasonable (no more than about 2 seconds

for heat-3d). However, the time taken by the following polyhedral analysis (i.e., the context

domain calculation) is not for the stencils kernels (the kernels from adi to heat-3d, the later

taking up to about 37 minutes).

Indeed, these stencil computations have equations with several uniform dependences (of the

form (~i 7→~i+ ~c) where ~c is a vector of constants). When we partition these dependences inde-

pendently, each dependence becomes a piecewise quasi-affine function before the normalization

post-processing step, each branch of this piecewise function corresponding to a different tile ac-

cessed. After the normalization step, we still have a lot of branches which cannot be eliminated

(because of an empty domain) or merged (because each computation is unique).

In order to figure out why the context domain calculation takes so much time for some kernels, we

have plotted in Figure 3.10 the time taken by the context domain analysis, against the number

of nodes the AST of the program has after the monoparametric partitioning transformation.

This plot shows a correlation between the time taken and the size of the AST, thus the main

60

reason the following polyhedral analysis takes so much time is because of the size of the program

afterward.

Hence, building explicitly the entire program after the partitioning transformation is expensive

for the potential polyhedral operations afterward. Notice that if we used a fixed-size partitioning

instead of a monoparametric partitioning, the same issue happens. However, in our situation,

we need to keep all of this information for later, in order to recognize instances of linear algebra

operations. In Chapter 4, we will see how to distribute these computation into submodules of

computation (called subsystems), which are much smaller than the whole program and can be

considered independently.

3.3 General monoparametric partitioning

In Section 3.1 and Section 3.2, we have only considered hyperrectangular monoparametric par-

titioning, i.e., hyperrectangular shapes for the partitions. We now show that this theory can be

extended to any polyhedral tile shape (hexagonal [28], diamond [7], etc).

First of all, let us describe what a general monoparametric partitioning is. Let us start from a

general fixed size partitioning. We need 3 objects to describe it:

• A non-parametric bounded convex polyhedron P

• A non-parametric integer lattice L of the tile origins (which admits a basis L) and,

• A function T which decomposes any point ~i in the following way:

T (~i) = (~ib, ~il)⇔~i = L.~ib + ~il where (L.~ib) ∈ L and ~il ∈ P

Notice that if the decomposition is not unique, then we have overlapping tiles. If the decom-

position is unique, this partitioning defines a partition of the space. Some partitionings do

not have an integral lattice of tile origins (such as diamond partitioning with non-unimodular

61

i

j

il

jl

(ib, jb)

4b

2b

Figure 3.11: Example of hexagonal monoparametric blocking for a 2D space. (ib, jb) are the
block indices, which identify a tile, (il, jl) are the local indices, which identify the position of a
point inside a tile. The tile shape is an hexagon with 45◦ slopes and of size 4b× 2b, and can be
viewed as the homothetic scaling of a 4 × 2 hexagon. The red arrows correspond to a basis of
the lattice of tile origins.

hyperplanes). We do not consider partitioning with overlapped tiles or with non-integral tile

origins in this document.

A homothetic transformation a × D, where a is a constant and D is a set, is the set a × D =

{~z | (~z/a) ∈ D}.

Definition 3.7. A general monoparametric partitioning is a partitioning whose tile shape is

the homothetic scaling of a fixed size partitioning, by a factor of b: Pb = b×P. The new lattice

of tile origins is Lb = b× L and we obtain the new partitioning function Tb from T .

3.3.1 General monoparametric partitioning of polyhedra

Let us consider a n-dimensional polyhedron D = {~i | Q.~i + Q(p).~p + ~q ≥ ~0} where ~p are the

program parameters. As in Section 3.1, we want to replace~i by the block indices ~ib and the local

indices ~il, such that ~i = Tb(~ib, ~il) (cf Figure 3.11). We still assume that all parameters ~p can be

decomposed into block and local parameters. Let us show that the derivation of Theorem 3.2, for

a hyperrectangular monoparametric partitioning, can be adapted to a general monoparametric

partitioning.

62

Let us consider the c-th constraint of D: Qc.~i + Q
(p)
c .~p + qc ≥ 0. We substitute ~i by b.L.~ib + ~il

where ~il ∈ Pb. By doing exactly the same operations as in the proof of Theorem 3.2, we obtain

the following expression:

Qc.L.~ib +Q(p)
c .~pb +

⌊
Qc.~il +Q

(p)
c .~pl + qc
b

⌋
≥ ~0

We define kc(~il) =

⌊
Qc.~il+Q

(p)
c .~pl+qc
b

⌋
. Because ~il ∈ Pb and Pb = b × P where P is bounded,

kc(~il) only takes a finite number of values. Because the shape of the tile is more complex than

a rectangle, we cannot simply look at the sign of the coefficient to find the extremal values of

kc(~il). Because kc is an affine function and because ~il belongs to Pb, we use linear programming

solvers (such as PIP [23]) to find the extremal values of kc(~il). The rest of the proof caries on

exactly in the same way as for Theorem 3.2.

Therefore, we obtain a union of polyhedron having the same properties as the rectangular case,

for a general form of tiles:

Theorem 3.8. The image of a polyhedron D = {~i | Q.~i+Q(p).~p+~q ≥ ~0} by a general monopara-

metric partitioning transformation is:

∆ =
m⋂
c=1

[⊎
kmin
c <kc≤kmax

c


~ib, ~il

∣∣∣
Qc.L.~ib +Q

(p)
c .~pb + kc = 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc

~il ∈ Pb


]

~ib, ~il∣∣∣ Qc.L.~ib +Q
(p)
c .~pb + kminc ≥ 0

~il ∈ Pb

]

where ~k enumerates the possible values of
⌊
Q.~il+Q

(p).~pl+~q
b

⌋
.

After distributing the intersection across the unions and eliminating the empty polyhedral, we

obtain as many polyhedra as the number of different tile shapes of the partitioned version of D

(which is, at most, the number of different values of ~k).

63

i

j

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.12: Polyhedron and tiling of Example 3.10. The dots correspond to the tile origins
of the tiles contributing to the polyhedron. The blue arrows show the basis of the lattice of tile
origins.

Example 3.10. Let us consider the following polyhedron: {i, j | j− i ≤ N ∧ i+ j ≤ N ∧ 0 < j}

and the following partitioning:

• Pb = {i, j | − b < j ≤ b ∧ − 2b < i+ j ≤ 2b ∧ − 2b < j − i ≤ 2b}

• Lb = L.b.Z2 where L =

3 3

1 −1


For simplicity, we assume that N = 6.b.Nb + 2b, where Nb is a positive integer. A graphical

representation of the polyhedron and of the tiling is shown in Figure 3.12.

Let us start with the first constraint of the polyhedron.

j − i ≤ N ⇔ 0 ≤ 6.b.Nb + 2.b+ b.(3.ib + 3.jb) + il − b.(ib − jb)− jl

⇔ 0 ≤ 6.Nb + 2 + 2.ib + 4.jb +
⌊
il−jl
b

⌋
where −2b ≤ il − jl < 2b. Therefore, k1 =

⌊
il−jl
b

⌋
∈ [| − 2, 1|]. For k1 = −1 and 1, the equality

constraint 6.Nb + 2.ib + 4.jb + 2 +k1 = 0 is not satisfied (because of the parity of its terms), thus

the corresponding polyhedra are empty.

64

Let us examine the second constraint of the polyhedron.

i+ j ≤ N ⇔ 0 ≤ 6.b.Nb + 2.b− b.(3.ib + 3.jb)− il − L.b.(ib − jb)− jl

⇔ 0 ≤ 6.Nb + 2− 4.ib − 4.jb +
⌊
−il−jl
b

⌋
where −2b ≤ −il − jl < 2b. Therefore k2 =

⌊
−il−jl
b

⌋
∈ [| − 2, 1|]. For the same reason as the

previous constraint, k2 = −1 and 1 lead to empty polyhedra.

Let us examine the third constraint of the polyhedron.

0 ≤ j − 1 ⇔ 0 ≤ b.(ib − jb) + jl − 1

⇔ 0 ≤ ib − jb +
⌊
jl−1
b

⌋
where −b ≤ jl − 1 < b. Therefore k3 =

⌊
jl−1
b

⌋
∈ [| − 1, 0|]

Therefore, we obtain a union of 2 × 2 × 2 = 8 polyhedra, which are the result of the following

intersections:

 {ib, jb, il, jl|0 ≤ 6.Nb + 2.ib + 4.jb ∧ (il, jl) ∈ Tb}

]{ib, jb, il, jl|0 = 6.Nb + 2.ib + 4.jb + 2 ∧ (il, jl) ∈ Tb ∧ 0 ≤ il − jl}


∩

 {ib, jb, il, jl|0 ≤ 6.Nb − 4.ib − 4.jb ∧ (il, jl) ∈ Tb}

]{ib, jb, il, jl|0 = 6.Nb − 4.ib − 4.jb + 2 ∧ (il, jl) ∈ Tb ∧ 0 ≤ −il − jl}


∩

 {ib, jb, il, jl|0 ≤ ib − jb − 1 ∧ (il, jl) ∈ Tb}

]{ib, jb, il, jl|0 = ib − jb ∧ (il, jl) ∈ Tb ∧ 0 ≤ jl − 1}



3.3.2 General monoparametric partitioning of affine functions

Let us consider an affine function f : (~i 7→ Q.~i+Q(p).~p+ ~q) and two partitionings: one for the

input indices and one for the output indices (denoted with primes). Note that the “tile shapes”

in the input and output dimensions, Pb and P ′b might be different. Let us show how to adapt

the derivation of Theorem 3.3 to these general partitionings.

65

Theorem 3.9. Given two general monoparametric partitioning transformations (Tb and T ′b)

and any affine function (f(~i) = Q.~i+Q(p).~p+ ~q), the composition (T ′b ◦ f ◦ T −1b) is a piecewise

quasi-affine function, whose branches are of the form:

φ(~ib, ~il) =

L′−1.Q.D.~ib + L′−1.Q(p).~pb + ~k − ~k′

Q.~il +Q(p).~pl + ~q + b.L′(~k′ − ~k)



if


b.~k ≤ L′−1.Q.~il + L′−1.Q(p).~pl + L′−1.~q < b.(~k +~1)

Q.~il +Q(p).~pl + ~q + b.L′(~k′ − ~k) ∈ P ′b
~il ∈ Pb

for each ~k ∈ [|~kmin;~kmax|], for each ~k′ ∈ [|~k′
min

; ~k′
max
|], where L,L′ are bases of the lattices of

tile origins of respectively T and T ′, and assuming that (L′−1.Q.L) and (L′−1.Q(p)) are integer

matrices.

Proof. Starting from the definition of f , we perform the same manipulation as in the proof of

Theorem 3.3 to obtain:

~ib
′
+

⌊
L′−1.~il

′

b

⌋
=

⌊
L′−1.Q.L.~ib + L′−1.Q(p).~pb +

L′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

However, in the case of a non-rectangular partitioning, ~k′(~il
′
) =

⌊
L′−1.~il

′

b

⌋
is not always equal to

0, so we cannot eliminate it, as in the rectangular case 3. Because ~il
′ ∈ P ′b, ~k′(~il

′
) only takes a

finite number of values, whose extremal values can be determined through a linear programming

solver.

For each value ~k′ of ~k′(~il
′
), we perform the same analysis as in Theorem 3.3. The new necessary

and sufficient condition to avoid modulo conditions is that the matrices L′−1.Q.L and L′−1.Q(p)

are integral. After defining ~k(~il) =
⌊
L′−1.(Q.~il+Q

(p).~pl+~q)
b

⌋
, we obtain a piecewise quasi-affine

function in which each branch corresponds to a different value of ~k(~il).

3Intuitively, ~k′ = ~0 means that ~il
′

belongs to the parallelepiped {L′.~z|~0 ≤ ~z < ~1}. For a hyperrectangular tile,
this is always the case, but for the hexagonal tile shown in Figure 3.12, it only corresponds to the portion of the
hexagon between the two red arrows

66

Finally, we gather the constraints for each branch. From the definition of ~k, we obtain the

following constraint:

b.~k ≤ L′−1.Q.~il + L′−1.Q(p).~pl + L′−1.~q < b.(~k +~1)

From the definition of ~k′ and after substituting ~il
′
by its value, we obtain the following constraint

b.~k′ ≤ L′−1.(Q.~il +Q(p).~pl + ~q − b.L′.~k) < b.(~k′ +~1)

However, after simplification, we obtain exactly (and surprisingly) the same constraint as we

got from the definition of ~k. The two remaining constraints are ~il ∈ Pb and ~i′l ∈ P
′
b (in which ~i′l

can be substituted by its value).

Finally, we regroup all the branches derived for every ~k′ to form the partitioned piecewise

quasi-affine function corresponding to f .

Note that the condition to avoid modulo constraints is that L′−1.Q.L and L′−1.Q(p) are integral.

This condition depends only on the lattice of the tile origins and the coefficient matrix of the

polyhedron, but is independent of the shape of a tile considered.

Example 3.11. Let us consider the identity affine function (i, j 7→ i, j), and let us consider the

two following partitionings:

• For the input space, we choose an hexagonal tiling:

– Tb = {i, j | − b < j ≤ b ∧ − 2b < i+ j ≤ 2b ∧ − 2b < j − i ≤ 2b}

– Lb = L.b.Z2 where L =

3 3

1 −1


• For the output space, we choose a rectangular tiling, with the same lattice:

– T ′b = {i, j | 0 ≤ i < 3b ∧ 0 ≤ j < 2b}

– L′b = L′.b.Z2 where L′ =

3 3

1 −1


67

i

j

Figure 3.13: Overlapping of the rectangular (in green) and the hexagonal tiles introduced in
Example 3.11

An overlapping of these two tilings is shown in Figure 3.13.

The derivation goes as follow:

i′
j′

 =

i
j


⇔ L′.b.

i′b
j′b

+

i′l
j′l

 = L.b.

ib
jb

+

il
jl


⇔

i′b
j′b

+ L′−1.1b .

i′l
j′l

 =

ib
jb

+ L′−1.1b .

il
jl



Because L′−1 = 1
6 .

1 3

1 −3

, then the constraints become:

 i′b +
i′l+3.j′l

6b = ib + il+3.jl
6b

j′b +
i′l−3.j

′
l

6b = jb + il−3.jl
6b

After taking the floor of these constraints:

 i′b +
⌊
i′l+3.j′l

6b

⌋
= ib +

⌊
il+3.jl

6b

⌋
j′b +

⌊
i′l−3.j

′
l

6b

⌋
= jb +

⌊
il−3.jl

6b

⌋

68

We define k′1 =
⌊
i′l+3.j′l

6b

⌋
, k1 =

⌊
il+3.jl

6b

⌋
, k′2 =

⌊
i′l−3.j

′
l

6b

⌋
and k2 =

⌊
il−3.jl

6b

⌋
. After analysis of the

extremal values of these quantities, we obtain:

• k1 ∈ [| − 1; 0|] and k2 ∈ [| − 1; 0|]

• k′1 ∈ [|0; 1|] and k′2 ∈ [| − 1; 0|]

Therefore, we obtain a piecewise quasi-affine function with 16 branches (one for each value of

(k1, k
′
1, k2, k

′
2)). Each branch has the following form:

(
ib + k1 − k′1, jb + k2 − k′2, il + 3b(k′1 + k′2 − k1 − k2), jl + b(k′1 + k2 − k1 − k′2)

)
when 0 ≤ il + 3b(k′1 + k′2 − k1 − k2) < 3b ∧ 0 ≤ jl + b(k′1 + k2 − k1 − k′2) < 2b

k1.b ≤ il + 3jl < (k1 + 1).b ∧ k2.b ≤ il − 3jl < (k2 + 1).b

−b < jl ≤ b ∧ − 2b < il + jl ≤ 2b ∧ − 2b < jl − il ≤ 2b

3.3.3 General monoparametric partitioning program transformation

In the previous subsections, we have extended the closure properties for the polyhedron and

affine function, we can apply in a similar way the general monoparametric partitioning trans-

formation to a complete polyhedral program. In this subsection, we show how to extend the

compatibility algorithm to manage general tiles.

In Section 3.2, we manipulated rectangular tile sizes D.b, which correspond to a special case of

the lattice of tile origins, were the basis is canonic. In the general case, we manipulate lattice

bases, whose vectors are the columns of an invertible matrix L. The constraints to avoid modulo

conditions are of the form “the matrix L′−1.Q.L is integral”, which is the same as saying that

the input lattice Q.L.Zn is a subset of the output lattice L′.Zm. For similar reasons as in the

hyperrectangular case, we want to select the lattice of minimal basis, i.e., to minimize the size

of the considered tiles.

The same derivation algorithm can be adapted to affine lattices:

69

• For a normal edge in the PRDG, corresponding to 〈S,~i〉 = g(〈T1, f1(. . . , 〈Tk, fk(~i) . . . 〉),

and assuming fk is of the form fk : (~i 7→ Qk.~i+Q
(p)
k .~p+ ~qk), the constraints that must be

satisfied by the lattice of tile origins of S are:

 (∀1 ≤ k ≤ d) L−1Tk .Qk.LS is integer

(∀1 ≤ k ≤ d) L−1Tk .Q
(p)
k is integer

Once again, we drop the second constraint. The first constraint means that all the lattices

L−1TkQk.LS .Z
n are subsets of the lattice Zm. Therefore, the lattices Qk.LS .Zn are subsets

of the lattices LTk .Zm, for 1 ≤ k ≤ d. Let us define the affine functions uk : (~z 7→ Qk.~z).

The lattices uk(LS .Zn) are subsets of the lattices LTk .Zm, 1 ≤ k ≤ d. Because [u(A) ⊂

B ⇒ A ⊂ u−1(B)], this constraints means that the lattice LS .Zn is a subset of all the

preimages of the lattice LTk .Zm by the affine function uk. Therefore, we have:

LS .Zn ⊂
⋂

1≤k≤d
u−1k (LTk .Z

m)

We compute the right affine lattice, then take any of its bases as the value of LS . There

is no constraint on the tile shape for S, thus we select any one we want.

• If the statement is a reduction:

〈S,~i〉 =
⊕

~i = π(~j)

~j ∈ D

g(〈T0, f0(~j)〉, . . . , 〈Td, fd(~j)〉).

For similar reasons as stated in Section 3.2, we assume that the projection function is

canonic. When we tile the projection function, if the result is a piecewise quasi-affine

function, the affine function inside a branch might not admit an integer right inverse.

One method, to be sure that the resulting projection function will be correct, is to force

the tile shape of the subexpression of the reduction to be hyperrectangular. Indeed,

for such a form, projecting along a canonic dimension is trivial, but this forces the tile

shape of statement S to be a rectangle. A more general way is to force the shape of the

70

subexpression to be an orthogonal prism, whose base is the tile shape of S and which

spans across the projected dimensions.

3.4 Discussion

Adaptation to fixed-size partitioning It is possible to obtain a fixed-size partitioned code

from a monoparametric partitioned code. For example, if we want to apply a rectangular

partitioning with constant tile sizes t1 × t2 × · · · × tn, we take as a block size parameter b =

gcd(t1, t2, . . . , tn) and we use the ratio D = Diag(t1b ,
t2
b , . . . ,

tn
b).

Adaptation between different partitioning Let us consider an identity function (~i 7→~i),

with different tilings on both sides of the function. By computing the monoparametric partioned

version of this function, we obtain a piecewise quasi-affine function which can be used to adapt

the indices of two statements with two different partitionings. For example, we can theoretically

mix an hexagonal and a rectangular partitioning in a program.

Partitioning a subset of the indices When we apply the monoparametric partitioning

transformation to a polyhedron or an affine function, we are forced to decompose all the original

indices ~i into their block and local counterpart (~ib and ~il). We can relax slightly this condition,

by asking that an index which is inside the same constraint or affine expression than another

partitioned index must be also partitioned. For example, we have a constraint i ≤ j and if we

try to partition only i, we obtain a constraint of the form ib.d.b + il ≤ j (where d is the ratio

for the ith dimension) which cannot be transformed into an affine constraint. Hence, we also

have to partition j.

Therefore, if a set of indices does not interact with the partitioned indices, we can avoid de-

composing them. For example, if we consider a matrix multiplication computation ((∀0 ≤ i <

N, ∀0 ≤ j < M) C[i, j] =
∑

0≤k<K A[i, k] × B[k, j]), if we partition the indices i and j, we are

not forced to partition the index k, because it does not interact with i and j.

71

Partitioning all the indices does not mean we need to tile all the dimensions We

emphasize the fact that partitioning all the dimensions does not necessarily implies that we must

eventually tile all the dimensions. Indeed, the monoparametric partitioning transformation is

just a reindexing transformation which replace the original indices into new block and local

indices. This transformation does not change the schedule of the program. The newly introduced

indices are needed to be able to express the new tiling schedule, but we are not forced to use

all of them.

For example, if we consider a variable with a 3-dimensional domain (over i, j, k) and assuming

that we already have a schedule, which iterates over this domain through a lexicographic order.

After partitioning, the schedule becomes (ib, il︸︷︷︸
i

, jb, jl︸︷︷︸
j

, kb, kl︸ ︷︷ ︸
k

), which iterates over all the points

exactly at the same order as the original schedule.

If we want to tile only the dimensions j and k, we can use the schedule (jb, kb, ib, il︸︷︷︸
i

, jl, kl), in

which each tile (jb, kb) is a strip of computation along the i dimension. If we want to use the

original index i later, inside the generated code, we can recover it though the non-linear equality

i = ib.d.b+ il.

Flexibility of polyhedral code generator and monoparametric tiling Because the gen-

eral parametric tiling transformation is not a polyhedral transformation, the current polyhedral

compilers hard-code this transformation in their code generator. This means that if we want

to change the analysis or transformations performed after the parametric tiling transformation,

we have to modify the code generator. A typical example can be found in [44] where two code

generators where implemented in order to exploit wavefront parallelism or canonic parallelism.

Thus, we lose in flexibility in our compiler framework.

The monoparametric partitioning transformation is a polyhedral transformation, which means

that the transformed program is still polyhedral. Thus, we are still able to apply any polyhe-

dral analysis or transformation after partitioning. For example, we can introduce a new level of

72

partitioning almost for free, just by applying the partitioning transformation on the newly intro-

duced local indices (which do not interact with the block indices, thus which can be partitioned

independently), and without having to implement a new code generator for this strategy.

Intra-tile dependence analysis and legality condition of tiling It is possible to recover

the informations about dependence between tiles from a partitioned program. Indeed, the infor-

mation about which tiles depend on which tiles is explicitly given by the blocked dimensions of

the partitioned dependence functions. Notice that we do not need to apply the monoparametric

partitioning transformation to the whole program to recover these informations.

The intra-tile dependences are useful to determine if a tiling is legal, i.e. if there is no cyclic

dependences between tiles. The method used by current polyhedral compilers is to check that

all the dependences cross the tiling hyperplanes in the same direction. Instead of using this

sufficient condition, we can project the domains and dependences of the program on their blocked

dimensions, to build a graph whose nodes are the tiles and whose edges are the dependences

between two different tiles. Checking the legality condition of tiling is equivalent to checking that

there is no cyclic dependences in this graph. We can consider this graph as a reduced dependence

graph and check if the corresponding program admits a schedule (using a scheduling algorithm

such as in [15, 25]). This way of checking the legality of a tiling is more expensive than the

commonly-used sufficient condition, but is necessary and sufficient.

An example of program on which the tiling is legal, but the hyperplane condition fails is the

following:

(∀ −N ≤ i ≤ N, 0 ≤ j < N)A[i, j] = A[−b− 1− 2i, j];

where b is the size of a tile. Note that this example also works for a constant tile size. Because

of the dependence (i, j 7→ −b − 1 − 2i, j), the dependences cross any tiling hyperplane in both

directions. Let us show that the tiling is still legal, and that we can conclude so through our

method.

73

When we apply the monoparametric partitioning transformation to the dependence function,

we obtain the following piecewise function:

(ib, jb, il, jl) 7→

 (−2ib − 2, jb, b− 1− 2il, jl) if − b ≤ −1− 2il < 0

(−2ib − 3, jb, 2b− 1− 2il, jl) if − 2b ≤ −1− 2il < −b

When extracting the blocked part of this piecewise dependence, we build the graph of de-

pendences between tiles, where there is only two edges: (ib, jb 7→ −2ib − 2, jb) and (ib, jb 7→

−2ib− 3, jb). By enumerating all possibilities, we can prove that there is no cycle in this graph.

Thus, there is no cycle between tiles and the rectangular tiling is legal.

Extension to (fully) parametric partitioning In the next few paragraph, we will study if

is it possible to adapt the monoparametric partitioning to have a fully parametric partitioning,

and what makes such adaptation not possible in some situations.

In certain situations, we can use the monoparametric partitioning transformation to obtain a

full-parametric partitioning. Indeed, we can partition groups of indices of a program using

different tile size parameters b1, b2, . . . if these groups of indices do not interact with each other.

For example, if we consider a matrix multiplication computation between rectangular matrices,

each index does not interact with the others, thus we can obtain a fully parametrized tiled code

through the monoparametric partitioning transformation while obtaining an affine program.

However, as soon as two indices with different tile size parameter interact with each other, when

we try to follow the same derivation than the monoparametric partitioning transformation, we

obtain a term of the form
⌊
b1
b2

⌋
, which is not affine.

To get an intuition of why it cannot work, let us consider a polyhedron containing only the

constraint i+ j ≤ 0, and let us see what happens when we try to tile it with a parametric tile

size b1× b2. As shown by Figure 3.14, there are two reasons why the result cannot be expressed

in the polyhedral model:

74

b1

b2

lcm(b1, b2)

lcm(b1, b2)

(0,-1)

Figure 3.14: Parametric tiling with b1 × b2 rectangular tile sizes on the polyhedron i+ j ≤ 0.
If we study the shape of the tiles on the diagonal between (0, 0) and (lcm(b1, b2), lcm(b1, b2)),
we already have a parametric number of different tile shapes

• Let us estimate the number of different tile shapes on the diagonal. The constraints i ≤ j

goes through the integer point (0, 0), and we can show that the next integer point it is

going through is (lcm(b1, b2), lcm(b1, b2)) where lcm(x, y) is the least common multiple of

x and y. Thus, we have O(lcm(b1, b2)/b1) ≈ O(b1 + b2) different type of tiles.

• If we consider the shape of the diagonal tile (ib, jb) = (0,−1), this shape happens for every

tile (ib, jb) such that b1.ib + b2(jb + 1) = 0, which is not an affine constraint.

Also note that the constraints of the shapes themselves are polyhedral (ex: il + jl ≤ b2 for the

diagonal tile (ib, jb) = (0,−1)). Therefore, it is not possible to express this union as a polyhedral

union, even if it might be possible to exploit the fact that each shape is polyhedral.

75

Chapter 4

From Partitioning to Tiling

In the previous chapter, we have presented the monoparametric partitioning transformation,

which is a reindexing transformation. It introduces a new set of indices, identifying which block

contains a given point, and what are its local coordinate inside such block. In this chapter, we

use this transformation to express a tiling. The main addition of the monoparametric tiling

transformation compared to the partitioning equivalent is that the tiles are atomic. We have

seen in Section 3.4 that we can force this atomicity by changing the schedule of the program, if

it admits one.

We start this chapter by presenting an extension of our program representation in Section 4.1.

We allow hierarchical programs where it is possible to “call” other subprograms (called subsys-

tems [19]). In addition, we impose that the subsystems are atomic. This allows us to express a

tiling without having to consider the schedule of a program. It also allows us to isolate explicitly

the computation of each tile, so that we can consider them independently later in Chapter 6.

In Section 4.2, we will show how to apply the monoparametric tiling transformation on a program

which does not contain reductions. We first introduce the notion of tile group which identify set

of variables which will share the same tile space. Then, we describe how we build the different

subsystems corresponding to the tiles. The key part of this transformation is the classification

of the tiles according to their computation, i.e., into kind of tiles. We show that there is a finite

76

non-parametric number of them, thus we can generate one subsystem per kind of tile. Then, we

have to identify the inputs and outputs of each subsystem. Finally, we need to create a main

system which will call the other subsystems and communicate the correct values between each

of them.

In Section 4.3, we will consider program which contains reductions. In particular, because the

projected dimensions of the reductions are also tiled, we have to create a new variable for each

reduction. Such a variable requires a special management in order to keep the legality of the

tiling. Finally, we present the extension of the monoparametric tiling transformation to program

with reductions. We evaluate the scalability of our transformation in Section 4.4.

4.1 Hierarchical programs

This section presents an extension of our program representation which allows us to call other

programs, i.e., structuration. We introduce a new type of equations, called use equations. A use

equation corresponds to a call another program (called a subsystem [19]), provides the inputs

to this program, and retrieves its outputs. Contrary to the formalism introduced in [19], we

assume in this document that the subsystems are atomic. This means that all of their inputs

must be ready before calling a subsystem, and all of their outputs can be retrived at once.

The syntax of a use equation is the following:

use Dext name[parameters] (list of input expressions) returns (list of output variables);

where the extension domain Dext is optional. The role of each object and the semantic of this

use equation will be introduced incrementaly in the rest of this section. We first consider the

case where a use equation does not have an extension domain, then the case where it does.

Use equation without extension domain Let us first consider the case where there is no

Dext (which is called the extension domain). The meaning of this equation is the following.

First, the main system computes the input expressions, before calling the subsystem (called

77

”name”) on these inputs, with a list of affine expressions of the parameters (corresponding

to the parameters of the new system). The subsystem performs its computation atomically,

i.e., independently for the rest of the computation. Finally, the outputs of the subsystem are

retrieved and stored inside some variables of the main system.

Example 4.1. Let us consider the following example, in which the main program computes the

mean value of a vector of size N , and calls a subsystem which computes the sum of the values

of a vector:

Program “sum” : input: V ect (defined on {i|0 ≤ i < N})

output: Res (scalar)

parameter: N

Res =
∑

0≤k<N
V ect[k];

Program “mean” : input: A (defined on {i|0 ≤ i < N})

output: Mean (scalar)

local: temp (scalar)

parameter: N

use sum [N] (A) returns (temp);

Mean = temp/N ;

If we consider the PRDG view of our program representation, a use equation corresponds to

a special kind of hyperedge, labelled by a program name, connected to multiple inputs and

outputs nodes. For example, the PRDG of the program described in Example 4.1 is shown in

Figure 4.1

78

Mean

Temp

A

•

Res

Vect

sum

Figure 4.1: PRDG of the program described in Example 4.1. The use equation is represented
by an hyperedge, with one source per output and one destination per input.

Use equation with extension domain Let us consider a program which performs a scalar

product and let us assume that we want to use it as a subsystem to perform a matrix mul-

tiplication. In the matrix multiplication program, we need to instantiate the scalar product

subsystem a parametric number of times. It can be done by using the extension domain Dext.

Each integer point iext ∈ Dext corresponds to one subsystem instance. This iext can be used as

parameters in the rest of the use equation. More precisely:

• The indices can be used to specify the parameters of the subsystem.

• The first dimensions of the input expressions correspond to the dimensions of the extension

domain (like in a functional “map”)

• The first dimensions of the output variables correspond to the dimensions of the extension

domain. All the results from every subsystem call are gathered in the same common

variables (like in a “map”)

79

Example 4.2. Let us assume that we want to implement a matrix-vector product, where the

matrix is lower-triangular, by using a subsystem which implements a scalar product:

Program “scalProd” : inputs: V ect1, V ect2 (both defined on {i|0 ≤ i < M})

output: Res (scalar)

parameter: M

Res =
∑

0≤k<M
V ect1[k] ∗ V ect2[k];

Program “triMatVectProd” : inputs: V ect (defined on {i|0 ≤ i < N})

L (defined on {i, j|0 ≤ i ≤ j < N})

output: vectRes (defined on {i|0 ≤ i < N})

parameter: N

use{k|0 ≤ k < N} scalProd [k]

((k, i→ i)@V ect, L)

returns (vectRes);

where (k, i→ i)@V ect is a 2-dimensional expression whose value at (k, i) is V ect[i].

In this example, we have N different subsystems call. The k-th call computes the product of two

vectors of size k. The first one is the first k elements of V ect, the second one is the kth row of

L. The value produced by the k-th instance of the subsystem is the k-th element of vectRes.

4.2 Monoparametric tiling without reduction

We present how to apply the monoparametric tiling transformation such that the computation

of each tile is separated into a different subsystem. In this section, we will consider programs

80

without reductions, before removing this restriction in the following section. The monoparamet-

ric tiling transformation is a combination of the monoparametric partitioning transformation

with an outlining transformation. An outlining transformation is a transformation which en-

capsulates a portion of the computation of a system inside a new subsystem. Its reverse is called

the inlining transformation.

In Subsection 4.2.1, we present the kind of code we want to obtain after the monoparametric

tiling transformation through an example. Then, in Subsection 4.2.2, we talk about an adap-

tation to the monoparametric partitioning transformation which exposes the blocked and local

indices. In order to allow tile spaces shared by several variables (which might be required by

the legality conditions), we introduce the notion of tile group in Subsection 4.2.3. Finally, we

present our transformation in Subsection 4.2.4.

4.2.1 Example - Smith Waterman

In this subsection, we present an example of application of the monoparametric tiling transfor-

mation. We consider the following program which corresponds to a Smith-Waterman computa-

tion, with no diagonal dependence:

Out = A[N − 1, N − 1]

(∀i = j = 0) A[i, j] = w[0, 0];

(∀i = 0 < j < N) A[i, j] = A[i, j − 1] + w[i, j − 1];

(∀j = 0 < i < N) A[i, j] = A[i− 1, j] + w[i− 1, j];

(∀0 < (i, j) < N) A[i, j] = min(A[i− 1, j] + w[i− 1, j], A[i, j − 1] + w[i, j − 1]);

where w is an input of the program, and N a program parameter. A graphical representation

of this program is shown in Figure 4.2.

First of all, let us remark that the rectangular tiling is legal, and let us consider a monopara-

metric tiling transformation with square tiles (1× 1 ratio). We also assume for simplicity that

the tile size parameter b divides N . We also tile the variables A and Out separately. This tiling

is also shown in Figure 4.2.

81

i = (ib, il)

j = (jb, jl)

in

in

out
Kind of tiles:

: ib = 0, jb = 0
: ib = 0, jb > 0
: ib > 0, jb = 0
: ib > 0, jb > 0

: Separation between the branches
of the original system

Figure 4.2: Example of Subsection 4.2.1: Monoparametric tiling of a Smith-Waterman com-
putation

Kind of tiles In the tiled code we want to generate, the computation of each tile is enclosed

inside a subsystem. If two tiles have a different computation, we have to use two different

subsystems. If two tiles have the same computation (but are called using different input values),

then we can reuse the same subsystem for both tiles. This means that we have to classify the

tiles according to their computation, in order to generate one subsystem for each different

computation. This classification is called kind of tiles.

In this example, we have 4 different kinds of tiles, as shown in Figure 4.2, because of the special

computation performed in the first row and column (i = 0 and j = 0). The first kind of tile

(occurs at ib = jb = 0, in green in the figure) has a special computation on its first row and

column (il = 0 and jl = 0). The second kind of tile (occurs for all the ib = 0 and jb > 0, in

yellow in the figure) has a special computation only on its first row (il = 0). The third kind of

tile (occurs for all the ib > 0 and jb = 0, in blue in the figure) has a special computation only on

its first column (jl = 0). The fourth kind of tile (occurs for all the ib > 0 and jb > 0, in orange

in the figure) has no special computation. Thus, we will have 4 different subsystems generated.

Building the subsystems Let us consider a kind of tile. In order to build the corresponding

subsystem, we need to know its computation, and its inputs/outputs. Its computation can be

82

determined by applying the monoparametric partitioning transformation to the program, then

classify the equations according to the constraints on the block indices. For example, for the

kind of tile • (ib > 0, jb > 0), the corresponding equations in the partitioned system are the

following:

(∀0 < ib, jb) (∀0 = il = jl) Â[ib, jb, il, jl] = min(Â[ib − 1, jb, b− 1, jl]

+ŵ[ib − 1, jb, b− 1, jl], Â[ib, jb − 1, il, b− 1] + ŵ[ib, jb − 1, il, b− 1]);

(∀0 < ib, jb) (∀0 = il < jl) Â[ib, jb, il, jl] = min(Â[ib − 1, jb, b− 1, jl]

+ŵ[ib − 1, jb, b− 1, jl], Â[ib, jb, il, jl − 1] + ŵ[ib, jb, il, jl − 1]);

(∀0 < ib, jb) (∀0 = jl < il) Â[ib, jb, il, jl] = min(Â[ib, jb, il − 1, jl]

+ŵ[ib, jb, il − 1, jl], Â[ib, jb − 1, il, b− 1] + ŵ[ib, jb − 1, il, b− 1]);

(∀0 < ib, jb) (∀0 < il, jl) Â[ib, jb, il, jl] = min(Â[ib, jb, il − 1, jl]

+ŵ[ib, jb, il − 1, jl], Â[ib, jb, il, jl − 1] + ŵ[ib, jb, il, jl − 1]);

Once we have identify the computation of each kind of tile, we need to find what are the inputs

and outputs of each kind of tile. The inputs can be determined by examining the dependences of

the computation of the subsystem. Because the block indices are explicit, we can immediately

identify when a value is produced outside of the current tile. In our case, we obtain the following

83

subsystem:

Parameters: Nl(= 0), b

Input variables:

Ain1, defined over {il, jl|il = b− 1} and corresponding to the block A[ib − 1, jb]

Ain2, defined over {il, jl|jl = b− 1} and corresponding to the block A[ib, jb − 1]

win0, defined over {il, jl|0 ≤ il, jl < b} and corresponding to the block w[ib, jb]

win1, defined over {il, jl|il = b− 1} and corresponding to the block w[ib − 1, jb]

win2, defined over {il, jl|jl = b− 1} and corresponding to the block w[ib, jb − 1]

Local variable:

Aloc, defined over {il, jl|0 ≤ il, jl < b} and corresponding to the block A[ib, jb]

Output variable: Not built yet...

Equations:

(∀il = jl = 0) Aloc[il, jl] = min(Ain1[b− 1, jl] + win1[b− 1, jl],

Ain2[il, b− 1] + win2[il, b− 1]);

(∀il = 0, jl > 0) Aloc[il, jl] = min(Ain1[b− 1, jl] + win1[b− 1, jl],

Aloc[il, jl − 1] + win0[il, jl − 1]);

(∀il > 0, jl = 0) Aloc[il, jl] = min(Aloc[il − 1, jl] + win0[il − 1, jl],

Ain2[il, b− 1] + win2[il, b− 1]);

(∀il, jl > 0) Aloc[il, jl] = min(Aloc[il − 1, jl] + win0[il − 1, jl],

Aloc[il, jl − 1] + win0[il, jl − 1]);

Finally, we just need to determine the outputs of this subsystem. After building all the subsys-

tems without their outputs, we know which values of a variable are needed outside of its tile.

In our case, we know that the last row and last column of a block of A can be asked by its

neighbor tiles ((ib, jb + 1) and (ib + 1, jb), if these tiles exist). We create two outputs variables

corresponding to the data which might be asked by these tiles, and the corresponding copy

equations from Aloc.

84

Thus, we just need to add the following output variables and equations to the subsystem we

have previously presented:

Output variables:

Aout1, defined over {il, jl|il = b− 1} which might be asked by the block A[ib + 1, jb]

Aout2, defined over {il, jl|jl = b− 1} which might be asked by the block A[ib, jb + 1]

Equations:

Aout1[il, jl] = Aloc[il, jl];

Aout2[il, jl] = Aloc[il, jl];

Building the main system The main system of the tiled program contains the use equations,

and do not contains any actual information. For our example, the main system is described

in Figure 4.3. Because we have 4 kinds of tile, we have 4 use equations, calling the 4 different

subsystems. We have one local variable per output of the use equations (the AoutXY , where

X = 1 . . . 4 and Y = 1, 2)

About the inputs of the use equations, because the values passed might come from a tile which

belongs to a different kind of tile, we need to have a local variable to gather the values of all

the outputs of the same type (Aout1 and Aout2 for the last row and last column respectively).

These variables are used inside the input expressions of the use equations.

In the rest of this section, we will describe formally the concepts and algorithms we used on

this example to obtain the tiled program.

4.2.2 Preprocessing - Preparing for the outlining

First of all, we need to separate physically each computation, according to the block to which

they belong. In the previous chapter, we applied the monoparametric partitioning transforma-

tion syntactically, before normalizing the result. After the normalization step, each variable

85

Parameters: Nb, Nl(= 0), b
Input variable:

w, defined over {ib, jb, il, jl|0 ≤ ib, jb < Nb, 0 ≤ il, jl < b}
Output variable:Out, scalar
Local variables:

Aout1, defined over {ib, jb, il, jl|0 ≤ ib, jb < Nb, il = b− 1, 0 ≤ jl < b}
Aout2, defined over {ib, jb, il, jl|0 ≤ ib, jb < Nb, 0 ≤ il < b, jl = b− 1}

Aout11, defined over {ib, jb, il, jl|ib = jb = 0, il = b− 1, 0 ≤ jl < b}
Aout21, defined over {ib, jb, il, jl|0 = ib < jb, il = b− 1, 0 ≤ jl < b}
Aout31, defined over {ib, jb, il, jl|0 = jb < ib, il = b− 1, 0 ≤ jl < b}
Aout41, defined over {ib, jb, il, jl|0 < ib, jb, il = b− 1, 0 ≤ jl < b}
Aout12, defined over {ib, jb, il, jl|ib = jb = 0, 0 ≤ il < b, jl = b− 1}
Aout22, defined over {ib, jb, il, jl|0 = ib < jb, 0 ≤ il < b, jl = b− 1}
Aout32, defined over {ib, jb, il, jl|0 = jb < ib, 0 ≤ il < b, jl = b− 1}
Aout42, defined over {ib, jb, il, jl|0 < ib, jb, 0 ≤ il < b, jl = b− 1}

Equations:
(∀ib = jb = 0) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout11[ib, jb, il, jl];
(∀0 = ib < jb) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout21[ib, jb, il, jl];
(∀0 = jb < ib) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout31[ib, jb, il, jl];
(∀0 < ib, jb) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout41[ib, jb, il, jl];
(∀ib = jb = 0) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout12[ib, jb, il, jl];
(∀0 = ib < jb) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout22[ib, jb, il, jl];
(∀0 = jb < ib) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout32[ib, jb, il, jl];
(∀0 < ib, jb) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout42[ib, jb, il, jl];

use {ib, jb|ib = jb = 0} subsyst1[Nl, b] (w) return(Aout11, Aout12);
use {ib, jb|0 = ib < jb} subsyst2[Nl, b] (Aout2[ib, jb − 1, •, •], w, w[ib, jb − 1, •, •])

return(Aout21, Aout22);
use {ib, jb|0 = jb < ib} subsyst3[Nl, b] (Aout1[ib − 1, jb, •, •], w, w[ib − 1, jb, •, •]

return(Aout31, Aout32);
use {ib, jb|0 < ib, jb} subsyst4[Nl, b] (Aout1[ib − 1, jb, •, •], Aout2[ib, jb − 1, •, •], w

w[ib − 1, jb, •, •], w[ib, jb − 1, •, •]) return(Aout41, Aout42);
Out = A[Nb − 1, Nb − 1, b− 1, b− 1];

Figure 4.3: Main system after applying the monoparametric tiling transformation to the
example of Subsection 4.2.1. A[f(ib), g(jb), •, •] is a variable whose value at (il, jl) is
A[f(ib), g(jb), il, jl].

86

V ar of a system has a list of equations of the following form:

(∀~i ∈ D1) V ar[~i] = SExpr1[~i];

(∀~i ∈ D2) V ar[~i] = SExpr2[~i];

. . .

where the SExprk are expressions and the Dk are disjoint.

As shown in Theorems 3.2 and 3.3, there is a clear separation between the constraints on the

block indices and the local indices. Thus, it is possible to keep this separation inside a program,

to obtain the following form of (slightly modified) equation:

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,1) V ar[~ib, ~il] = SExpr1,1[~ib, ~il];

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,2) V ar[~ib, ~il] = SExpr1,2[~ib, ~il];

.

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,1) V ar[~ib, ~il] = SExpr2,1[~ib, ~il];

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,2) V ar[~ib, ~il] = SExpr2,2[~ib, ~il];

.

where the polyhedra Dbl,k only contain constraints on the block indices, and the polyhedra

Dloc,k,l only contain constraints on the local indices.

For a given Dbl,k, we can see the list of equations whose block indices belong to Dbl,k as the com-

putation performed in a tile. This computation is the same for all the tiles whose block indices

satisfy the constraints of Dbl,k. In order to classify the tiles according to their computation, we

introduce the notion of kind of tile.

Definition 4.1. A kind of tile is a collection of tiles which share the same computation, i.e.,

whose computations are Herbrand-equivalent

Theorem 4.2. For a given partitioned program, there is a finite non-parametric number of kind

of tile.

87

Proof. Note that each polyhedron and affine function we partition leads to either a union of a fi-

nite non-parametric polyhedron, or a piecewise quasi-affine function with a finite non-parametric

number of branches. Therefore, we will also have a finite non-parametric number of Dbl,k after

normalization. Thus, we will have a finite non-parametric number of kind of tile.

This property is crucial for the construction of the monoparametric tiled code: indeed, we

cannot have a parametric number of subsystems in our tiled code. It is also especially useful

for our template recognition framework. Indeed, instead of having to consider the computation

of a parametric number of tiles, we will be able to just consider the computation of a finite

non-parametric number of kinds of tile.

For each kind of tile, the local computation of this tile is described by the corresponding equa-

tions. Intuitively, the outlining transformation consists of putting this computation inside a

separated subsystem (with one subsystem per kind of tile) and managing the input/outputs of

this tile.

Example 4.3. Let us consider a computation with a Smith-Waterman pattern of dependences:

Out = A[N,N]

(∀i = j = 0) A[i, j] = w[0, 0];

(∀i = 0 < j) A[i, j] = A[i, j − 1] + w[i, j − 1];

(∀j = 0 < i) A[i, j] = A[i− 1, j] + w[i− 1, j];

(∀0 < i, j < N) A[i, j] = min(A[i− 1, j] + w[i− 1, j], A[i, j − 1] + w[i, j − 1]);

where N is a parameter of the program. We consider square tiles b× b.

If we assume that the program parameter N is divisible by the tile size b, the first row and first

column of A have a different computation than the rest of the domain of A. Therefore, the first

row and column of tile will have a different computation (respectively on their first row and on

their first column) compared to the rest of the tiles. The tile ib = jb = 0 is even more special

and has a different computation for both its first row and column. Therefore, we have 4 kinds

of tiles: (ib = jb = 0), (0 = ib < jb), (0 = jb < ib) and (0 < ib, jb).

88

i = (ib, il)

j = (jb, jl)

: Separation between the branches
of the original system

Figure 4.4: Example 4.3: different kind of tiles when the tile size parameter b does not divide
the program parameter N .

If we assume that N is not divisible by the block size, we have boundary tiles which are not full

tiles. Thus, in addition to the 4 kind of tiles discovered previously for the full tiles, we have 5

additional kind of tiles (for a total of 9 kinds of tiles), as shown in Figure 4.4:

• A small square tile •, corresponding to ib = jb = Nb.

• The left rectangle •, corresponding to ib = Nb and 0 < jb.

• The left rectangle which is the first of its column •, corresponding to ib = Nb and jb = 0.

• The bottom rectangle •, corresponding to jb = Nb and 0 < ib.

• The bottom rectangle which is the first of its row •, corresponding to jb = Nb and ib = 0.

4.2.3 Tile group

We have seen in Chapter 3 that the monoparametric partitioning transformation is just a rein-

dexing transformation, which replaces all the indices of the original program into their corre-

sponding block and local indices. This transformation does not ask for the atomicity of its

89

tiles. Now that we consider the monoparametric tiling transformation, the tiles are atomic. In

particular, we have to care about the legality condition of tiling, i.e., we need to ensure that

there is no cyclic dependences between tiles.

In order to make a tiling legal, a possibility is to adjust the domain and dependences of the

variables by using a Change of Basis transformation beforehand, as explained in Section 2.3.

Another possibility is to tile several variables together, such that the same set of tiles compute

all of them, instead of having a set of tile per variable. This information allows us to manage

cyclic dependences between variables, and avoid that such cyclic dependences occurs between

tiles.

In order to specify which variables share their tiles, we introduce the concept of tile group:

Definition 4.3. A tile group is a set of variables which will be tiled together, and will share

the same tiling spaces.

A variable can belong to at most one tile group. All the variables of the same tile group share

the same kinds of tile, thus will share the same subsystems.

In some situation, we might want to have a tile group which contains variables whose domains

do not have the same number of dimensions. In order to be able to share tiles, we need to

arrange the domain of these variables so that their domains have the same number of dimen-

sions. This process is called alignment, and can be performed through some Change of Basis

transformations. After these transformations, all the variables of the same tile group must have

the same number of dimensions.

Example 4.4. Let us consider the following modified version of Jacobi1D. In this version,

we use an additional local variable temp2 and perform some extra copy between the two local

90

variables at every time step t:

Program “Jacobi1Dcopy” : input: A (defined on {i|0 ≤ i < N})

output: B (defined on {i|0 ≤ i < N})

local: temp1 (defined on {i, t|0 ≤ i < N ∧ 0 < t < T})

temp2 (defined on {i, t|0 ≤ i < N ∧ 0 ≤ t < T})

parameters: T,N

(∀0 ≤ i < N) B[i] = temp1[i, T − 1]

(∀t = 0 ∧ 0 ≤ i < N) temp2[i, t] = A[i]

(∀0 < t < T ∧ i = 0) temp2[i, t] = temp1[i, t− 1]

(∀0 < t < T ∧ i = N − 1) temp2[i, t] = temp1[i, t− 1]

(∀0 < t < T ∧ 0 < i < N − 1) temp2[i, t] = (temp1[i− 1, t− 1]+

temp1[i, t− 1] + temp1[i+ 1, t− 1])/3;

(∀0 ≤ t < T ∧ 0 ≤ i < N) temp1[i, t] = temp2[i, t];

If we try to tile temp1 and temp2 separately, the tiling cannot be legal. Indeed, we will obtain

a cyclic dependence between the tiles of temp1 and temp2, as soon as we try to tile across

the time dimension t. Thus, we need to have a single tile group for both variables and have

a single set of tile which computes the values of both variables. Moreover, in order to make

the rectangular tiling legal, we need to apply the loop skewing transformation [85] beforehand.

Therefore, a possible way to preprocess the program in order to make the rectangular tiling legal

is the following:

• First group of tiles:

– temp1, preprocess with a Cob using the affine function: (i, t 7→ i+ t, t)

– temp2, preprocess with a Cob using the affine function: (i, t 7→ i+ t, t)

• Second group of tiles: B with no preprocessing

91

i

t
B

temp1/temp2

First alignment info

B and temp1/2 live in different tiles

i

t B

temp1/temp2

Second alignment info

B and temp1/2 live in the same tiles

Figure 4.5: Two valid preprocessings and tile groups for the modified Jacobi1D computation
introduced in Example 4.4.

Another possibility is to put all three variables into the same group of tiles. In that case, we

need to adapt the domain of B (which is 1-dimensional) to make it compatible with the other

2-dimensional domains. It is possible by applying a Cob using, for example, the following affine

function: (i 7→ i+ T − 1, T − 1). Figure 4.5 shows a graphical representation of both examples.

In the rest of this document, we will assume that the legality issues were already taken care

of. This means that we assume that the preprocessing has already been performed, and that

the tile groups are specified, such taht the rectangular tiling is legal. We can double-check

for the legality of the tiling specified by these information through the method explained in

Section 3.4. In the rest of this section, we will focus on how to perform the monoparametric

tiling transformation, using these informations.

4.2.4 Monoparametric Tiling with outlining without reduction

In the context of this document, we assume that we tile all variables across all dimensions. The

transformation can be potentially extended to tile only a subset of the dimensions, but we still

need to partition all dimensions, thus we still need to introduce the block and local indices for

all dimensions.

The main intuition of this transformation is to create one subsystem per kind of tile. Then,

the main program will call the corresponding subsystems using use equations and manage their

92

Main system:

• Variables: monoparametric tiled ver-
sion of the original system variable

• Local variables for the output of use
equations: V arOut k

• Copy equations:
(∀~i ∈ DV ark) V ar = V arOut k

• UseEquations:
use DV ark subsyst k (. . .)

returns (V arOut k)

Subsystem for the kth kind of tile:

• Inputs: data computed by other tiles,
needed by this tile

• Locals: data computed by this tile

• Outputs: copy of local variable,
needed by other tiles

• Equations corresponding to the com-
putation of this kind of tile

Figure 4.6: Form of the main system and the subsystem after applying the CART with
outlining transformation. In the main system DV ar

k is the domain of the kth kind of tiles.

inputs and outputs. The structures of the subsystems and the main program are summarized

in Figure 4.6.

Assuming that the preprocessing described in Subsection 4.2.2 was already applied, the algo-

rithm builds the main system and the subsystems in the following order:

1. Computing the kind of tiles of the program

2. Building the subsystems

(a) Computing the domains of the local variables of the subsystems

(b) Obtaining the equations of the subsystems and tracking down their inputs

(c) Adding the outputs of the subsystems

3. Building the main system

Step 1 - Computing the kind of tiles After applying the monoparametric partitioning

transformation while preparing for outlining, the obtained program has a specific form, in which

93

the constraints on the blocked and local indices are separated:

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,1) V ar[~ib, ~il] = SExpr1,1[~ib, ~il];

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,2) V ar[~ib, ~il] = SExpr1,2[~ib, ~il];

.

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,1) V ar[~ib, ~il] = SExpr2,1[~ib, ~il];

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,2) V ar[~ib, ~il] = SExpr2,2[~ib, ~il];

.

In this step, we want to distinguish the different tiles of a tile group according to their com-

putation, i.e., according to which equations contributes to this tile. In order to do this, for

each variable, we retrieve the constraints Dbl,k on the blocked indices of the domain of their

equations. These domains form a partition of the tiles in which the variable V ar contributes,

and there is, by construction, only a finite non-parametric number of them.

Then, we consider each tile group separately. If we have a single variable inside the considered

tile group, we have as many kinds of tile than domains on the block indices Dbl,k. Moreover,

the corresponding equations of the k-th kind of tile are the set of equations whose constraints

on the blocked indices are Dbl,k.

If we have multiple variables in the considered tile group, we consider each family of block

constraints (DV arbl,k)k coming from each variable V ar of the tile group. The list of non-empty

intersections of these families corresponds to the different kind of tiles. The corresponding

equation of each one of these kind of tiles are the ones which contributes to the intersection.

Step 2 - Building the subsystems For each kind of tile, we have to build the corresponding

subsystem which perform its computation. The equations of such subsystem can be obtained

by removing the blocked dimensions of every variable and dependence functions. This means

that if we have the following equation:

(∀~ib ∈ Dbl)(∀~il ∈ Dloc) V ar[~ib, ~il] = f(Var1[ub,1(~ib), ul,1(~il)], . . . ,Vark[ub,k(~ib), ul,k(~il)]);

94

we remove the blocked dimensions ~ib to obtain:

(∀~il ∈ Dloc) V ar′[~ib, ~il] = f(Var’1[~il], . . . ,Var’k[~il]);

Note that this is possible only because the block and local indices are cleanly separated in a

partitioned affine function, as shown by Theorem 3.3.

In the previous equation, V ar′ is a local variable of the subsystem, corresponding to the block

of V ar computed by the current tile. Var’1, . . . ,Var’k can be either local variable (if the data

accessed is computed in the same subsystem) or an input of the subsystem (if the data accessed

is computed outside of the subsystem). Thus, while obtaining the equations of the subsystem,

we examine these variables to determine the inputs of the subsystem. We create exactly one

input variable of the subsystem per block accessed, whose domain corresponds to the data

accessed from this block.

About the parameters of a subsystem, we need at least the local parameters ~pl and the block

size parameter b, which are still present in the equations of the subsystem. About the block

parameters ~pb, because we have removed all the block indices of the equations, there is no longer

any constraints involving the block indices or the block parameters in the subsystem. Thus, we

can omit them in the parameters of the subsystem.

The inputs can be determined by examining the dependences of the computation of the sub-

system. Because the block indices are explicit, we can immediately identify when a value

is produced outside of the current tile. For example, if we have originally a dependence

V ar[ib − 1, jb − 1, b − 1, b − 1], we can immediately deduce that we need a data from the

block (ib − 1, jb − 1) of the tile group of the variable V ar. We create one input variable in the

subsystem, per external block accessed in the computation of the subsystem.

About the outputs of a subsystem, a simple solution would be to transfer back all the data

computed in a tile to the main system. However, this causes a lot of unnecessary communications

between the subsystem and the main system, because most of these values will never be used.

A better solution consists on determining which data from a tile is needed by other tiles. We

95

classify this data according to the tile accessing it and create one output variable for each

external tile. For example, if the data of a tile is used by the tile (ib + 1, jb) and (ib, ib), we

create two outputs, the first one corresponding to the data of the tile accessed by the tile

(ib + 1, jb), the second one corresponding to the data of the tile accessed by the tile (ib, ib).

Given a tile, depending on the kind of the neighboring tiles, this set of data accessed might

change. In the example of Subsection 4.2.1, each tiles admits 2 outputs (corresponding to the

last row and the last column of the tile). However, at least one of the outputs of the tiles of

the last column or the last row are not used. To simplify the problem, we do not consider the

nature of the neighboring tiles and take the union of all the set of data which might be asked

by other tiles. This is an overapproximation compared to the exact set of output needed.

Step 3 - Building the main system Finally, we need to form the main system. In particular,

we need to gather the outputs of the subsystems to send them as input of others. The form of

the main system is given in Figure 4.6.

We first create one use equation per subsystem generated, whose extension domain correspond

to the kind of tile. We also create one new local variable per outputs of the use equation, in

order to retrieve the results of the subsystem. We also create local variables to gather the values

of all the outputs of the same type and the same variable. These variables are used inside the

input expressions of the use equations.

Example 4.5. Let us consider a Skewed Jacobi1D computation:

(∀0 < i < N) Out[i] = temp[T − 1, i+ T − 1];

(∀t = 0, 0 < i < N) temp[t, i] = A[i];

(∀t = i > 0) temp[t, i] = temp[t− 1, i− 1];

(∀t > 0, i = N − 1 + t) temp[t, i] = temp[t− 1, i− 1];

(∀t > 0, t < i < N − 1 + t) temp[t, i] = (temp[t− 1, i− 2]+

temp[t− 1, i− 1] + temp[t− 1, i])/3;

96

i = (ib, il)

j = (jb, jl)

0 N

T
Out

in

in

out

Cuts:
: ib = 0, jb = 0
: ib = jb > 0
: ib = jb +Nb
: jb = 0, 0 < ib < Nb
: ib = jb +Nb − 1
: 0 < jb < ib < jb +Nb − 1

Figure 4.7: Example 4.5: Kinds of tile for a Jacobi1D skewed program

We assume that we want to apply the monoparametric partitioning transformation with an

aspect ratio of 1×1, and that the parameters N and T are divisible by the size parameter b. The

resulting system contains about 20 different equations. We choose to put the variables temp and

Out into two separate tile groups, and no preprocessing is needed to make the tiling legal.

First of all, we compute the kinds of tile of the program. Because of the boundary conditions,

we have 7 kinds of tiles: 6 for the temp variable (listed in the figure 4.7), and one for the

Out variable. Once we have determined the equations and the inputs of each subsystem, we

determine that the output of a tile are the 2 last columns on the right and the last row (needed

for the right, above and the diagonal above-right tiles).

For example, the subsystem corresponding to the kind of tile • (ib = jb + Nb − 1) is shown in

Figure 4.8.

4.3 Monoparametric tiling with reduction

In this section, we show how to adapt the transformation described in the previous section to

manage reductions.

97

Parameters: Nl(= 0), b
Input variables:

tempin1, defined over {il, jl|b− 2 ≤ il < b} (↔ temp[ib − 1, jb])
tempin2, defined over {il, jl|jl = b− 1} (↔ A[ib, jb − 1])
tempin3, defined over {il, jl|b− 2 ≤ il < b, jl = b− 1} (↔ A[ib − 1, jb − 1])

Local variable:
temploc, defined over {il, jl|0 ≤ il, jl < b} (↔ temp[ib, jb])

Output variables:
tempOut1, defined over {il, jl|jl = b− 1} (↔ temp[ib, jb + 1])
tempOut2, defined over {il, jl|b− 2 ≤ il < b, jl < b− 1} (↔ temp[ib + 1, jb])
tempOut3, defined over {il, jl|b− 2 ≤ il < b, jl = b− 1} (↔ temp[ib + 1, jb + 1])

Equations:
(∀il = jl = 0) temploc[il, jl] = (tempin3[b− 1, b− 2] + tempin3[b− 1, b− 1]

+tempin2[b− 1, 0])/3;
(∀il = 1, jl = 0) temploc[il, jl] = (tempin3[b− 1, b− 1] + tempin2[b− 1, 0]

+tempin2[b− 1, 1])/3;
(∀1 < il < b− 1, jl = 0) temploc[il, jl] = (tempin2[b− 1, il − 2] + tempin2[b− 1, il − 1]

+tempin2[b− 1, il])/3;
(∀il = b− 1, jl = 0) temploc[il, jl] = tempin2[b− 1, b− 2];
(∀il = 0, jl > 0) temploc[il, jl] = (tempin1[jl − 1, b− 2] + tempin1[jl − 1, b− 1]

+temploc[jl − 1, il])/3;
(∀il = 1, jl > 0) temploc[il, jl] = (tempin1[jl − 1, b− 1] + temploc[jl − 1, il − 1]

+temploc[jl − 1, il])/3;
(∀il > 1, jl > 0) temploc[il, jl] = (temploc[jl − 1, il − 2] + temploc[jl − 1, il − 1]

+temploc[jl − 1, il])/3;

(∀0 ≤ il < b, jl = b− 1) tempOut1[il, jl] = temploc[il, jl];
(∀b− 2 ≤ il < b, jl < b− 1) tempOut2[il, jl] = temploc[il, jl];
(∀b− 2 ≤ il < b, jl = b− 1) tempOut3[il, jl] = temploc[il, jl];

Figure 4.8: Subsystem of the kind of tile (ib = jb +Nb − 1) in Example 4.5.

4.3.1 Monoparametric partitioning with reductions

A reduction introduces extra dimensions which are projected by the projection function. These

dimensions are partitioned by the monoparametric partitioning transformation and also need

to be considered in the tiling. We recall that all reductions of a program are preprocessed to

make their projection function canonic (i.e., of the form (~i1, ~i2 7→ ~i1), see Subsection 3.2.2).

Motivating Example We first consider an example to provide an intuition of how reductions

can be managed during the monoparametric tiling transformation. Let us consider a matrix

98

multiplication program with reduction:

(∀0 ≤ i, j < N) C[i, j] =
N−1∑
k=0

A[i, k] ∗B[k, j]

If we simply apply the partitioning transformation and assuming that N is divisible by the block

size b, we obtain the following program:

(∀0 ≤ ib, jb < Nb)(∀0 ≤ il, jl < b) C[ib, jb, il, jl] =
∑
kb,kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

Note that the reduction sums over several tiles (the A[ib, •] and B[•, jb]). In order to differentiate

the computation according to the tiles accessed, we can split the reduction into the following

two reductions:

C[ib, jb, il, jl] =
∑
kb

TempRed[ib, jb, kb, il, jl];

TempRed[ib, jb, kb, il, jl] =
∑
kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

in which TempRed[ib, jb, kb, il, jl] corresponds to the intermediate result of the accumulation

over the kbth tile.

As shown in Figure 4.9, all values of TempRed are summed together (in the equation defining

C) in order to obtain the value of the full reduction. Note that we are using the associativity

property of the reduction operator to group the summation of the terms inside a tile, thus this

transformation uses the semantic properties of a reduction. The equation of TempRed only

uses one block of A and one block of B instead of the whole row/column.

General Case In general, let us consider a reduction of the form:

V ar[~i1] =
∑

π(~i1,~i2)=~i1

Expr[~i1,~i2]

99

A

B

C

Σ

•

•

•

TempRed

Figure 4.9: Representation of the partitioned matrix multiplication program. In order to
compute a tile of C, we have a summation over the tiles of A from the same row, and the tiles
of B from the same column. We introduce a new temporary variable called TempRed which
corresponds to the partial results of this summation. Then we sums all the values of TempRed
to obtain the value of the tile of C.

, where π : (~i1, ~i2 7→ ~i1). After partitioning, this reduction becomes:

V ar[~ib,1,~il,1] =
∑
~ib,2

∑
~il,2

Expr[~ib,1,~ib,2,~il,1,~il,2]

We are able to separate the two summations because of the associativity and commutativity

property of the reduction operator.

We introduce a new variable TempRed[~ib,1, ~ib,2, ~il,1] to represent the intermediate result of the

summation on one block of the reduction (corresponding to the result of the second summation

in the previous equation). The original reduction equation becomes:

V ar[~i] =
∑
~ib,2

TempRed[~ib,1,~ib,2,~il,1]

The equation of TempRed is:

TempRed[~ib,1,~ib,2,~il,1] =
∑
~il,2

ˆExpr[~ib,1,~ib,2,~il,1,~il,2];

100

where ˆExpr is the partitioned version of Expr. Both equations can be put under the form

introduced in Subsection 4.2.2, in which the blocked and local constraints and dependences are

separated.

Note that we use the associativity property of the reduction operator, when we separate the

reduction over (~ib,2,~il,2) into two reductions (one over ~ib,2, and one over ~il,2)).

4.3.2 Tile groups and reduction

In the previous subsection, we showed that reductions can be supported by introducing a

new variable TempRed for each reduction. Because the tile groups were specified before the

monoparametric partitioning transformation, it does not contain any informations about how

to tile TempRed. In the rest of this subsection, we show how to infer automatically in which

tile group we should include TempRed.

The main intuition is the following: because the tile space of TempRed has more dimensions of

the tile group it originates, we choose to create a new tile group for them. However, we might

have some cyclic dependences between the tiles of TempRed and a tile from the original tile

group. We show how to identify these tiles and split them from the rest of the tiles of TempRed.

Let us consider an equation containing a reduction: V ar[~ib, ~il] =
∑
kb

TempRed[~ib, ~kb, ~il] where

TempRed is the variable introduced by the partitioning of the reduction. In which tile group

should we add TempRed, such that the tiling is still legal (i.e., no cycle between tiles is intro-

duced)?

Let us consider a tile (~ib, ~kb) of TempRed, and let us study the dependences involving this tile.

Figure 4.10 presents the possible dependences involving a tile TempRed[~ib, ~kb, ~il].

By construction, a variable TempRed is introduced every times we have a reduction, and occurs

only on the right-hand side of the equation of V ar. Thus, the only dependence whose destination

is a tile TempRed[~ib, ~kb] comes from V ar[~ib]. The dependences coming from TempRed are the

ones from the reduction body. They can either go to another variable not in the same tile group

of V ar (called V arExti in Figure 4.10). Because the tiling was already valid before introducing

101

V arExt1 V arExt2 V arExt3

TempRed[~ib, •]

V ar[~ib] V ar[~ib
′
] V ar2[~ib

′′
]

f1 f2

Tile group

Tile group Tile group

If ib = i′b then cycle
Else, no cycle

Figure 4.10: Dependences across tiles involving the tile TempRed[~ib, ~kb]. A rectangle repre-
sents a tile and an arrow from a tile X to a tile Y means that the tile X depends on the tile Y. ~ib,
~ib
′

and ~ib
′′

are instances of tiles for the tile group of V ar. V arExt1, V arExt2 and V arExt3 are
variables from other tile groups. f1 and f2 are block components of the dependence functions.

TempRed, there is no cycle possible involving the tile V ar[~ib] and a tile from another tile group.

Thus, the dependences leaving TempRed to V arExti cannot be part of a cycle between tiles.

Now, let us consider the dependences from the tiles TempRed[~ib, ~kb] to some tiles of variables of

the same tile group that V ar. Because of the legality of the tiling before introducing TempRed,

there is no cycle between the tile computing V ar[~ib] and any other tile (computing V ar[~ib
′
],

where ~ib
′ 6= ~ib). Thus, if a dependence is going to V ar1[~ib

′
] where ~ib

′ 6= ~ib, then this dependence

cannot be part of a cycle between tiles.

Last case: if we have a dependence from TempRed[~ib, ~kb] to a tile ~ib of a variable of the same

tile group of V ar, then we have to compute TempRed[~ib, ~kb] in the same tile as V ar[~ib] to avoid

cycles across tiles. A naive solution is to compute all the TempRed[~ib, •] in the same tile which

computes V ar[~ib]. This will always give us a legal tiling. However, this implies that we do not

tile the dimensions ~kb (even if they are blocked). In many cases, this might be overkill since

it would preclude a potential legal tiling. Thus, we must do this analysis in an instance-wise

manner.

In the general case, we have to include at least the blocks TempRed[~ib, ~kb], which loop back to

V ar[~ib], in the same tile as V ar[~ib]. This means that the set of blocks to be included in the

102

. . . V ar[~ib] . . . V ar[~i′b]
. . .

. . . TempRed SG[~ib, ~kb,1] . . . TempRed[~ib, ~kb,2] . . .

f(~ib, ~kb,1) = ~ib f(~ib, ~kb,2) = ~i′b

Needs to be in
the same tile as V ar[~ib]

Can be in
a separate tile

Figure 4.11: Split of TempRed according to the tiles which can be put in a separate tile group
and those which must stay in the same tile group

same tile as V ar[~ib] must contain at least the following set of tiles of TempRed:

{~ib, ~kb | f1(~ib, ~kb) = ~ib ∨ f2(~ib, ~kb) = ~ib ∨ . . . }

where f1, f2, . . . are the blocked components of the dependence functions from TempRed[~ib, ~kb]

to a variable of the same tile group of V ar.

We use this set to split the variable TempRed into two variables, as shown in Figure 4.11:

TempRed SG (Same Group), corresponding to the tiles which must be put into the same tile

group as V ar because of the legality condition, and TempRed, corresponding to the tiles which

can be tiled separately. A similar analysis was proposed by Wonnacott [18] in “almost-tilable”

loops, but is limited for fixed-size tiling.

Example 4.6 (Forward substitution). Let us consider a program which solves the linear system

L.~x = ~b where L is a lower-triangular matrix:

(∀0 ≤ i < N) x[i] = (b[i]−
∑
k<i

L[i, k]× x[k])/L[i, i];

We assume that x and temp belong to the same tile group. The partitioning step introduces a

new variable TempRed and transform the program into the following equations, assuming that

103

kb
TempRed[ib, •]

. . .

x[ib]

x[ib − 1]

Figure 4.12: Dependences between the tiles of TempRed and the tiles of x/temp

the parameters are divisible:

(∀0 ≤ ib < Nb) (∀0 ≤ il < b) x[ib, il] = (b[ib, il]−
∑
kb≤ib

TempRed[ib, kb, il])/L[ib, ib, il, il];

(∀0 ≤ ib = kb < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<il
L[ib, kb, il, kl]× x[kb, kl];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<b
L[ib, kb, il, kl]× x[kb, kl];

Let us analyze the dependences involving TempRed to decide in which tile group we should insert

it. The only dependence which might introduce a cycle is the one corresponding to x[kb, kl] in

the equations of TempRed (as shown in Figure 4.12). A cycle is introduced when kb = ib, thus

we need to split this tile of TempRed from the other tiles. Therefore, we obtain the following

program after normalization:

(∀0 ≤ ib < Nb) (∀0 ≤ il < b) x[ib, il] = (b[ib, il]−
∑
kb<ib

TempRed[ib, kb, il]

−
∑
kb=ib

TempRed SG[ib, kb, il])/L[ib, ib, il, il];

(∀0 ≤ ib = kb < Nb) (∀0 ≤ il < b) TempRed SG[ib, kb, il] =
∑

0≤kl<il
L[ib, kb, il, kl]× x[kb, kl];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<b
L[ib, kb, il, kl]× x[kb, kl];

We have two tile groups: one containing the variables (x and TempRed SG), and another

containing the variable TempRed. As a side note, we can notice that each tile of the first tile

group correspond to a small forward substitution computation, and that each tile of the second

tile group correspond to a small matrix multiplication.

104

Example 4.7 (Nussinov/Optimal String Parenthization [18]). Let us consider the following

program:

(∀0 ≤ i < j < N) N [i, j] = maxi≤k<j(N [i, k] +N [k + 1, j]);

After the partitioning and normalization step, we obtain the following program, a graphical

representation being shown in Figure 4.13:

(∀0 ≤ ib ≤ jb < Nb) (∀0 ≤ il < jl < b) N [ib, jb, il, jl] = maxib≤kb≤jbTempRed[ib, jb, kb, il, jl];

(∀0 ≤ ib = kb = jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = maxil≤kl<jl

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib = kb < jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = maxil≤kl<b

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib < kb = jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = max0≤kl<jl

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib < kb < jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb ≤ jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib ≤ kb < jb) (∀0 ≤ il < jl = b− 1) temp[kb, jb, kl, jl] = N [kb + 1, jb, 0, jl];

Let us analyze the dependences involving TempRed/temp to decide in which tile group we should

insert it. By examining the equations of TempRed and temp, we identify in total 3 dependences

which might introduce a loop involving N [ib, jb]:

• N [ib, kb] in the equation of TempRed[ib, jb, kb]

• N [kb, jb] in the equation of temp[ib, jb, kb]

• N [kb + 1, jb] in the equation of temp[ib, jb, kb]

Let us examine each of these dependences separately:

105

j

i

•N [i, j]

k

k

•

•

Figure 4.13: Partitioned Optimal String Parenthization. The two black lines correspond to
the data needed to compute a single point N [i, j]. The green line links the two data needed to
compute one instance of TempRed[i, j, k] and the black arrows shows how these data accessed
move according to k.
The two stripes of tiles correspond to the data needed to compute a single tile N [ib, jb]. The tiles
in red (two diagonal and middle one) corresponds to the tiles of TempRed[ib, jb, kb] which have
a cycle with the tile N [ib, jb], thus which must be separated from the rest of the computation
of TempRed[ib, jb, kb].

• The first dependence introduces a loop between tiles iff (ib, kb) = (ib, jb), i.e., when kb = jb.

Physically, this situation corresponds to the case where the data needed by N [i, k] belongs

to the tile N [ib, jb] which is currently computed.

• The second dependence introduces a loop between tiles iff (kb, jb) = (ib, jb), i.e., when kb =

ib. Physically, this situation corresponds to the case where the data needed by N [k + 1, j]

belongs to the tile N [ib, jb] which is currently computed.

• The third dependence introduces a loop between tiles iff (kb + 1, jb) = (ib, jb), i.e., when

kb + 1 = ib. Because of the constraints of the equations in which this dependence happens

(ib ≤ kb), this situation never occurs.

106

Therefore, the only tiles of TempRed/temp which we have to include into the same tile group

as N are kb = ib and kb = jb. After splitting, we obtain the following program:

(∀0 ≤ ib ≤ jb < Nb) (∀0 ≤ il < jl < b) N [ib, jb, il, jl] = max(TempRed SG[ib, jb, ib, il, jl],

T empRed SG[ib, jb, jb, il, jl],maxib<kb<jbTempRed[ib, jb, kb, il, jl];

(∀0 ≤ ib < kb < jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb ≤ jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib ≤ kb < jb) (∀0 ≤ il < jl = b− 1) temp[kb, jb, kl, jl] = N [kb + 1, jb, 0, jl];

(∀0 ≤ ib = kb ≤ jb) (∀0 ≤ il < jl < b) TempRed SG[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp SG[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb = jb) (∀0 ≤ il < jl < b) TempRed SG[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp SG[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb = jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp SG[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib = kb ≤ jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp SG[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib = kb < jb) (∀0 ≤ il < jl = b− 1) temp SG[kb, jb, kl, jl] = N [kb + 1, jb, 0, jl];

We have two tile groups: one which contains the variables (N,TempRed SG, temp SG) and

another which contains the variables (TempRed, temp).

Example 4.8 (Recursive reduction). Let us consider the following program:

(∀0 < i < N) A[i] =
∑

0≤k<i
A[i− 1] ∗A[k];

(∀i = 0) A[i] = 1;

After partitioning, we obtain the following program:

(∀0 < ib < Nb) (∀0 ≤ il < b) A[ib, il] =
∑

0≤kb≤ib
TempRed[ib, kb, il];

(∀ib = 0) (∀0 < il < b) A[ib, il] =
∑

0≤kb≤ib
TempRed[ib, kb, il];

(∀ib = 0) (∀il = 0) A[ib, il] = 1;

107

(∀0 ≤ kb = ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<il
temp[ib, kb, il, kl] ∗A[kb, kl];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<b
temp[ib, kb, il, kl] ∗A[kb, kl];

(∀0 ≤ kb ≤ ib < Nb) (∀0 = il ≤ kl < b) temp[ib, kb, il, kl] = A[ib − 1, b− 1];

(∀0 ≤ kb ≤ ib < Nb) (∀0 < il ≤ kl < b) temp[ib, kb, il, kl] = A[ib, il − 1];

After analyzing the equations of TempRed/temp, we identify 3 dependences which might intro-

duce a loop:

• A[kb] in the equation of TempRed[ib, kb]

• A[ib − 1] in the equation of temp[ib, kb]

• A[ib] in the equation of temp[ib, kb]

Let us examine each dependences separately:

• The first dependence introduces a cycle between tiles iff kb = ib.

• The second dependence introduces a cycle between tiles iff ib− 1 = ib, which is not feasible

• The third dependence introduces a cycle between tiles iff ib = ib, i.e., always. This means

that every block of TempRed[ib, kb] requires some data coming from the block A[ib], thus

that we have a cycle between the tile A[ib] and every tiles TempRed[ib, •].

Therefore, we have to keep a single tile group. Each tile of this tile group will compute the blocks

A[ib] and the whole stripes TempRed[ib, •] and temp[ib, •]. Physically, this means that it is not

possible to tile the dimension of the reduction.

4.3.3 Monoparametric Tiling with reductions

Now, let us show how to adapt the algorithm presented in Subsection 4.2.4 to manage reductions.

We recall that the three steps of this algorithm were the following:

108

1. Computing the kind of tiles of the program

2. Building the subsystems

(a) Computing the domain of the local variables of the subsystems

(b) Obtaining the equations of the subsystems and tracking down their inputs

(c) Adding the outputs of the subsystems

3. Building the main system

The main difference with the previous algorithm is that we might not remove all the block

indices of a variable inside a tile group, which happens only for the variables TempRed SG.

For example, if we consider the variables inside Example 4.6, the variable TempRed SG[ib, kb, il]

is inside the same tile group as the variable x[ib, il]. Thus, the subsystem computing the tile

x[ib, •] will also compute TempRed SG[kb, •] for kb = ib and the dimension corresponding to kb

will stay in the equations of the subsystem. The fact that block indices are not fully removed

can means that an entire slice of TempRed SG is computed inside a tile.

Because some blocked indices remain in the subsystem and because these indices might interact

with the other blocked indices (through constraints, like “kb ≤ ib” in Example 4.8), thus we

need to keep all the previously removed blocked indices as parameters.

The main modification of the algorithm comes in step 2, when we form the equations of the

subsystem while tracking down the inputs and outputs. Indeed, variables whose block indices

are not fully removed must be handled slightly differently. We have 4 kinds of dependences:

• Dependences going from a normal variable to a normal variable (this was always the case

in the previous algorithm)

• Dependences going from a normal variable to a TempRed SG variable

• Dependences going from a TempRed SG variable to a normal variable

• Dependences going from a TempRed SG variable to a TempRed SG variable

109

By construction of the TempRed variable, all dependences toward a TempRed SG variable

are identity dependences and remain inside the same tile group (thus do not create inputs or

outputs), thus do not cause any issue. Let us consider the dependences from a TempRed SG

variable to a normal variable: because not all block indices are removed, such block indices

might impact the tiles accessed, meaning that we might require a collection of block as an

input, instead of a single one. For example, if we consider the dependence from TempRed to A

in Example 4.8, we need all the A[kb] where kb ≤ ib as an input of a tile to be able to compute a

tile of TempRed. We need to differentiate the tiles accessed by such dependences when the data

required is coming from the tile itself. For example, if kb = ib, the data asked by the dependence

A[kb, kl] is computed internally, thus has to be separated from the data coming from other tiles

(kb < ib, constituting the inputs).

The rest of the algorithm is similar to the outlining algorithm without reduction.

Example 4.9 (Cholesky). Let us consider the Cholesky computation, in which A is the input

(N ×N matrix) and L is the output (lower triangular matrix), where A = L.LT is a symmetric

semi-definite positive matrix:

(∀i = j = 0) L[i, j] =
√
A[i, i];

(∀i = j > 0) L[i, j] =
√
A[i, i]−

∑
k<j

L[i, k] ∗ L[i, k];

(∀i > j = 0) L[i, j] = A[i, j]/L[j, j];

(∀i > j > 0) L′[i′, j′] =

(
A[i, j]−

∑
k<j

L[i, k] ∗ L[j, k]

)
/L[j, j];

Let us assume that the aspect ratio of L and A are both 1× 1. After partitioning, we obtain the

system described in Figure 4.14. We have only one variable originally, thus a single tile group

at the start.

After analyzing all the dependences involving TempRed1 and TempRed2, we find that the

tiles TempRed1[ib, jb, jb] and TempRed2[ib, jb, jb] are the only tiles which admit a cyclic de-

pendence with the tile L[ib, jb] (physically, they correspond to the portions of TempRed1/2

which needs values from the tile L[ib, jb] to be computed). Therefore, we split these tiles of

110

(∀ib = jb = 0) (∀il = jl = 0) L[ib, jb, il, jl] =
√
A[ib, ib, il, il];

(∀ib = jb = 0) (∀il = jl > 0) L[ib, jb, il, jl] =
√
A[ib, ib, il, il]−

∑
kb≤ib

TempRed1[ib, jb, kb, il, jl];

(∀ib = jb = 0) (∀il > jl = 0) L[ib, jb, il, jl] = A[ib, jb, il, jl]/L[jb, jb, jl, jl];

(∀ib = jb = 0) (∀il > jl > 0) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀Nb > ib > jb = 0) (∀0 = jl ≤ il < b) L[ib, jb, il, jl] = A[ib, jb, il, jl]/L[ib, ib, il, il];

(∀Nb > ib > jb = 0) (∀0 ≤ il < b, jl > 0) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀Nb > ib = jb > 0) (∀0 ≤ il = jl < b) L[ib, jb, il, jl] =
√
A[ib, ib, il, il]−

∑
kb≤ib

TempRed1[ib, jb, kb, il, jl];

(∀Nb > ib = jb > 0) (∀0 ≤ jl < il < b) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀Nb > ib > jb > 0) (∀0 ≤ il, jl < b) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀0 ≤ kb = jb = ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed1[ib, jb, kb, il, jl] =∑
0≤kl<jl

L[ib, kb, il, kl] ∗ L[ib, kb, il, kl]

(∀0 ≤ kb < jb = ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed1[ib, jb, kb, il, jl] =∑
0≤kl<b

L[ib, kb, il, kl] ∗ L[ib, kb, il, kl]

(∀0 ≤ kb = jb ≤ ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed2[ib, jb, kb, il, jl] =∑
0≤kl<jl

L[ib, kb, il, kl] ∗ L[jb, kb, jl, kl]

(∀0 ≤ kb < jb ≤ ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed2[ib, jb, kb, il, jl] =∑
0≤kl<b

L[ib, kb, il, kl] ∗ L[jb, kb, jl, kl]

Figure 4.14: Cholesky computation after the partitioning transformation and the introduction
of the temporary variables TempRed

111

i = 〈ib, il〉

j = 〈jb, jl〉

b

b

L̂[0, 0]

L̂[1, 1]

L̂[2, 2]

L̂[1, 0]

L̂[2, 0] L̂[2, 1]

L[i, j] =



i = j = 0 :
√
A[i, i]

i = j > 0 :
√
A[i, i]−

∑
k<i

L[i, k]× L[i, k]

i > j = 0 : A[i, j]/L[j, j]

i > j > 0 :

(
A[i, j]−

∑
k<j

L[i, k]× L[j, k]
)
/L[j, j]

Operations:

Cholesky on Â[ib, ib]

Cholesky on Â[ib, ib]−
∑

kb<jb

L̂[ib, kb]× L̂[ib, kb]T

(L−1.X)T on L = L̂[jb, jb] and X = Â[ib, 0]

(L−1.X)T on L = L̂[jb, jb]

and X = Â[ib, jb]−
∑

kb<jb

L̂[ib, kb]× L̂[jb, kb]T

Figure 4.15: Cholesky - blocked computation with a tile size b× b. We start from the system
of equations in the top-right part of the figure. The left diagram represent the domain of L.
After tiling the computation, we can regroup the tiles according to their computation (as shown
by the color coding). Finally, we can recognize each kind of tiles as a combination of matrix
operations.

TempRed1 and TempRed2 from the rest of the computation, forming in total 3 tiles groups

(L, TempRed1 SG, TempRed2 SG), (TempRed1) and (TempRed2).

Because the first tile group admit 4 kinds of tiles, we will obtain 6 subsystems in total:

1. One computing L[0, 0], TempRed1 SG[0, 0, 0] and TempRed2 SG[0, 0, 0].

2. One computing L[ib, 0]and TempRed2 SG[ib, 0, 0] for ib > 0.

3. One computing L[ib, ib], TempRed1 SG[ib, ib, ib] and TempRed2 SG[ib, ib, ib] for ib > 0.

4. One computing L[ib, jb] and TempRed2 SG[ib, jb, jb] for ib > jb > 0

5. One computing TempRed1[ib, jb, kb] for kb < jb (corresponding to the accumulation needed

to compute L[ib, jb])

6. One computing TempRed2[ib, jb, kb] for kb < jb (corresponding to the accumulation needed

to compute L[ib, jb])

112

As showed by Figure 4.15, we can recognize the computation performed inside these subsystem

as matrix operations: subsystems 1 and 3 corresponding to a mini-Cholesky computation, 2 and

4 corresponding to the operation ”(L−1.X)T” (which is an instance of the xTRSM operation

in BLAS), 5 and 6 corresponding to a transposed matrix product. In Chapter 5, we will present

a method to recognize these operations from the subsystem we obtained in this section.

4.4 Experimental Validation

In this section, we present our implementation of the monoparametric tiling transformation and

evaluate its scalability.

Implementation The rectangular monoparametric tiling transformation has been imple-

mented in Java, using the AlphaZ compiler framework [89], on top of our monoparametric

partitioning transformation presented in Subsection 3.2.3.

We have implemented several options to the monoparametric tiling transformation, in addition

to the options to the monoparametric partitioning transformation:

• We can remove the classification per tile of the outputs of the subsystem. For the Smith-

Watterman example of SubSection 4.2.1, this means that instead of having 2 outputs

(corresponding to the values sent to the tile on the right and on the top), we will have a

single output, which domain is the set of data needed outside of the tile (i.e., the corner

formed by the last column and the last row).

• We can homogenize the domains of the outputs of the subsystems across the different

kind of tiles. For the Jacobi1D example (Example 4.5 Page 96), if we consider the set of

values sent to the tile diagonally above-right in Figure 4.7, we either send 0, 1 or 2 values,

depending on the kind of tile of the current tile. By default, when we regroup the values

of all these outputs in the main system in a single variable, the domain of this variable

will be a union of at least 3 polyhedra. The union of this domain can be much larger for

other programs and slow down the following analyses.

113

We solve this issue by padding the smallest domains. For the Jacobi1D example, this

means that we will systematically send 2 values, by adding 0 values for the missing parts.

Thus, the domain of the local variable of the main system which regroups all of the

corresponding outputs will be a single polyhedron, at the price of a slight increase in the

communication.

By default, each variable is placed in a different tile group, with no change of basis preprocessing

step.

Experiment on the scalability of the monoparametric tiling transformation We want

to study the scalability of our implementation of the monoparametric tiling transformation. This

means that we want to check that the time performed by our transformation in a compiler is

reasonable.

As our set of benchmark, we use Polybench/Alpha1 benchmarks, an hand-written Alpha imple-

mentation of the Polybench 4.0 benchmark suite. We run our experiment on a machine with an

Intel Xeon E5-1650 CPU with 12 cores running at 1.6 GHz (max speed at 3.8GHz), and 31GB

of memory.

Because we are considering a tiling, we have to consider the legality condition. We found that

the default rectangular tiling (all variables are tiled separately) is legal for all benchmarks,

except:

• Some of the linear algebra solvers (durbin, gramschmidt, lu, ludcmp)

• All of the stencils (adi, fdtd-2d, jacobi-1d, jacobi-2d, seidel-2d, heat-3d).

For durbin and lu, because of mutual dependences, we need to have a single tile group for all

the variables of these programs. ludcmp is the same than a lu, plus two forward substitution

computations (~x = L−1.~b) which can be tiled in separate tile groups.

1http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.

polybench/polybench-alpha-4.0/

114

http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/

For gramschmidt, this program does not admit a legal two-dimensional tiling. Because our cur-

rent implementation of the monoparametric tiling transformation forces us to tile all dimensions,

we cannot apply it legally.

For the stencils kernels, it is possible to obtain a legal tiling by skewing the iteration space

beforehand, and, in the case of adi and fdtd-2d, tiling the mutual dependent local variables

together.

For each kernel, we apply the monoparametric tiling transformation and report the following

informations:

• The time taken by the monoparametric partitioning transformation.

• The time taken by the preprocessing step, after the monoparametric partitioning transfor-

mation and before the monoparametric tiling part. In particular, this preprocessing step

includes the management of reductions, the normalization of the program, if the newly

introduced variables TempRed are split. We also compute the context domain of the

subexpressions of the form V ar[ub(~ib), ul(~il)], because this information is needed in order

to determine the inputs and outputs of a subsystem.

• The time taken by the three steps of the monoparametric tiling transformation (computing

the kinds of tile, building the subsystems and building the main system).

• The total time spent in the transformation.

• The time taken by the computation of the context domains of all the subexpressions

of the program (in order to compare this time with the ones from the monoparametric

partitioning)

• The number of subsystems generated.

• The average number of nodes in the AST of a subsystem, in order to give an idea of the

size of a subsystem.

• The number of equations inside the main program, in order to give an idea of the size of

the main system.

115

Time taken (ms)

co
rr

el
at

io
n

co
va

ri
an

ce

ge
m

m

ge
m

v
er

g
es

u
m

m
v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2m
m

3m
m

Partitioning 166 102 109 91 53 190 110 69 66 233 433

Preprocessing 432 322 276 160 137 905 244 126 296 259 382

Step 1
Kind of tiles

4 3 2 2 1 6 2 1 2 4 7

Step 2
Subsystems

382 277 282 75 55 660 176 112 87 646 1479

Step 3
Main System

34 18 12 18 7 19 13 9 8 25 44

Total Time 1206 817 754 457 309 1928 658 383 516 1297 2471

Context Domain 1030 651 390 363 237 2617 456 274 277 632 837

Num SubSystem 10 6 2 5 3 12 3 2 3 4 6

Average num of
nodes in subsystem

14 14 12 11 11 15 13 12 9 10 8

Num Equations Main 24 14 5 15 7 25 7 5 7 9 13

Time taken (ms)

at
ax

b
ic

g

d
oi

tg
en

m
v
t

ch
ol

es
k
y

d
u

rb
in

gr
am

sc
h

m
id

t

lu

lu
d

cm
p

tr
is

ol
v

d
er

ic
h

e
Partitioning 71 217 152 62 165 177 − 313 450 52 329

Preprocessing 144 175 178 143 1139 1130 − 1522 1946 193 546

Step 1
Kind of tiles

1 7 3 1 4 4 − 6 7 1 4

Step 2
Subsystems

148 236 406 68 224 230 − 304 426 52 227

Step 3
Main System

12 13 18 9 25 49 − 33 53 7 69

Total Time 436 706 828 346 1806 1772 − 2350 3188 363 1928

Context Domain 871 273 300 265 1057 2143 − 1555 2444 358 1719

Num SubSystem 4 4 2 4 7 8 − 10 16 3 24

Average num of
nodes in subsystem

7 7 8 8 36 70 − 33 30 23 30

Num Equations Main 9 10 5 10 31 63 − 44 67 9 59

Figure 4.16: Time taken by the hyperrectangular monoparametric tiling transformation inside
the compiler - Part 1. We also report the number of subsystems produced, the average number
of nodes of a AST of a subsystem, and the number of equations (use and normal) in the main
system.

116

Time taken (ms)

fl
oy

d
-w

ar
sh

al
l

n
u

ss
in

ov

ad
i

fd
td

-2
d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

se
id

el
-2

d

h
ea

t-
3
d

Partitioning 72 248 1907 1301 119 529 538 6088

Preprocessing 78 3605 18535 19138 867 19037 28497 8m2s

Step 1
Kind of tiles

2 8 72 122 4 28 28 297

Step 2
Subsystems

19 592 1874 2740 107 1764 2823 88267

Step 3
Main System

28 51 427 940 28 242 215 2905

Total Time 302 4689 23719 24871 1251 21859 32474 9m40s

Context Domain 629 4968 53348 98721 1252 28482 34515 21m44s

Num SubSystem 3 25 48 53 9 33 33 129

Average num of
nodes in subsystem

16 45 319 234 54 184 259 1029

Num Equations Main 15 118 676 1067 45 293 333 1985

Figure 4.17: Time taken by the hyperrectangular monoparametric tiling transformation inside
the compiler - Part 2. We also report the number of subsystems produced, the average number
of nodes of a AST of a subsystem, and the number of equations (use and normal) in the main
system. All the considered stencil have an order of 1.

The result of our experiments are presented in Figure 4.16 and 4.17.

Most of the time is spent during the preprocessing step and the construction of the subsys-

tems. The preprocessing step contains a traversal of the monoparametric partitioned program,

in order to compute the context domain of the subexpressions of the form V ar[ub(~ib), ul(~il)].

Notice that this step is faster compared to the full context domain computation we considered

in Subsection 3.2.3, because we do not need to compute the context domain for all the subex-

pressions of the program. The construction of the subsystems also contains a traversal of the

monoparametric partitioned program, in order to build the equations of the subsystems. Thus,

the time taken by this transformation is mostly caused by the size of the program after applying

the monoparametric partitioning transformation.

We also notice that the time taken by a context domain computation following the monopara-

metric tiling transformation is reduced compared to the time taken by the same polyhedral

117

analysis after the monoparametric partitioning transformation (cf Figure 3.9 Page 59). Thus,

distributing the computation across subsystem helps reducing the time taken by the polyhedral

analysis on the transformed program.

We cannot reduce the size of the tiled program while keeping the full representation of the tiled

program. Indeed, each subsystem contains a different computation (by definition of the kind

of tiles), thus need to be generated. We also remark that the size of the program after tiling

is independent from the monoparametric nature of the transformation, and is caused by our

choice of keeping the full representation of the tiled program.

118

Chapter 5

Template Recognition

In Chapters 3 and 4, we introduced monoparametric tiling. This transformation allows us to

partition the computation of a program into tiles, and isolate the computation of each tile into

a separate subsystem. These subsystems are studied separately by our template recognition

framework described in Chapter 6.

In this chapter, we present our template recognition algorithm, which is used by our framework

to detect linear algebra operations. This template recognition algorithm is an adaptation of

the equivalence algorithm from Barthou et al. [8], whose main concepts are briefly reviewed in

Section 5.1. We present the algorithm itself in Section 5.2 and present some examples of its

application in Section 5.3.

In Section 5.4, we present several adaptations of our algorithm in order to manage the semantic

properties commonly encountered in linear algebra computations, such as the associativity and

commutativity of binary operators. Finally, we evaluate our algorithm in Section 5.5 before

concluding this chapter with some additional remarks in Section 5.6.

119

5.1 Barthou’s equivalence algorithm

Barthou’s equivalence algorithm [8] (see Section 2.4) consists of two steps: the first step builds

an equivalence automaton and the second step checks some reachability properties in this au-

tomaton. The equivalence automaton captures the equivalence problem between two programs.

Each state of the equivalence automaton corresponds to a comparison between two computa-

tions. Progressing in this automaton corresponds to unrolling both programs, and progressively

eliminating the matching computation encountered. The final states of the automaton corre-

sponds to comparison where nothing can be eliminate or further unrolled. There are two kinds

of final states: failure states (which denotes comparisons between two expressions which are ob-

viously not equivalent) and accept states (which denotes comparisons between two expressions

which might be equivalent, depending on the indices of the expressions).

After building the equivalence automaton, we examine the reachability set of the success and

failure states. The two compared programs are equivalent iff any path in the automaton which

starts from the initial states with equal indices for the output of both programs (i) does not

reach any failure state (ii) reaches an accept state only when the indices of both inputs of the

accept state are equal. If these properties are satisfied, the two programs are performing exactly

the same sequence of operations, i.e. they are Herbrand-equivalent.

5.2 Adapting the equivalence algorithm into a template algo-

rithm

The main difference between an equivalence algorithm and a template recognition algorithm is

that the inputs of a template are unknown and might correspond to an arbitrarily elaborate

computation. Thus, one of the main challenges of template recognition is to deduce these

inputs. In particular, if an input appears in several places in a template, we should check that

the corresponding computation is coherent across all of these places.

120

Step 1 - Construction of the equivalence automaton In this step, we reuse the equiva-

lence automaton construction process of Barthou [8], while modifying the notion of success and

failure state of a equivalence automaton to account for the inputs of a template.

Definition 5.1 (Template final state). Considering an equivalence automaton between a pro-

gram P and a template P ′:

• A template-accept state is a state which is labeled by an equation of the form Expr = I ′,

where I ′ is an input of the template. This is more relaxed compared to the notion of

accept state, which imposes that exactly the same computation occurs in both side of the

equation.

• A template-failure state is a state which is labeled by an equation of either:

– f(. . .) = f ′(. . .) where f and f ′ are different operators

– I = f ′(. . .) where f ′ is an operator and I is an input of the program

Intuitively, a template-failure state corresponds to a comparison between a sub-expression of a

program and of a template, which trivially cannot match, whatever values of the input of the

template. The notion of template-accept state is more relaxed than the notion of accept state

and the notion of template-failure state is more restricted than the notion of failure state. The

rest of the definitions of the equivalence automaton and its constructions rules stay unchanged.

Because we assume that the output of the template matches the output of the program, it might

impose some constraints on the parameters of the template (typically, both output arrays must

be of the same size). We extract these constraints and keep them.

Step 2 - Extracting the constraints on the inputs of the template Now that the

automaton is built, we need to check that the template-failure states are not accessible, and we

need to check that there exist some valid input of the template which simultaneously satisfies

all the accessible template-accept states.

121

As for the template-failure states, we compute their accessibility set and, because they are not

supposed to be reachable, we check that these sets are empty. If a template-failure state is

accessible for any values of the template parameters, then we can conclude that the template

does not match. If a template-failure state is never accessible, for any values of the template

parameters, we can safely ignore it for the rest of the algorithm. If a template-failure state is

accessible only for certain values of the template parameters, we can extract the constraints on

the template parameters which makes the corresponding accessibility set empty and consider

them as constraints on the parameters of the template.

For example, if we compare a program O = I1 + I2 and we try to match it to a template

O′ = I ′ + I ′, we obtain two template-accept states: I1 = I ′ and I2 = I ′. The first template-

accept state can be satisfied by taking I ′ = I1 as the input of the template. The second

template-accept state can be satisfied by taking I ′ = I2 as the input of the template. However,

it is not possible to satised both template-accept state at the same time, when both of them

are accessible. Therefore, the template does not match with the program.

We examine the automaton and extract the constraints on the inputs of the template by examin-

ing the template-accept state. Because a template-accept state is always of the form Expr = I ′,

for each input of the template I ′, we can list the Expr that are matched to this input, and

compute the corresponding accessibility set. Formally, we obtain the following list, for every

template input I ′: 
. . .

(∀(~i, ~i′) ∈ SI′,k) I ′[~i′] = Exprk[~i]

. . .

where SI′,k is the accessibility set of the template-accept state Exprk[~i] = I ′[~i′].

Step 3 - Determining the inputs of the template We independently consider each input

I ′ of the template and its associated constraints, and try to determine a valid value of such input.

For each ~i′, we examine how many pairs (k,~i) there exist such that I ′[~i′] = Exprk[~i], (~i, ~i′ ∈ SI′,k),

i.e., how many expressions Exprk[~i] are matched to the same ~i′.

122

In practice, it is not possible to iterate over all ~i′, because there is a parametric number of them.

Instead, we can compute separately the projections of the SI′,k on ~i′, then consider the non-

empty intersections pieces between a subset of these projected sets. There is only a finite non

parametric number of these intersections, and, in any of these intersections, all the ~i′ will have

the same expressions Exprk[~i] mapped to them. Thus, by iterating over these intersections, we

can cover all the cases encountered by the ~i′.

If there is only one expression Exprk[~i] for a given template input ((∀(~i, ~i′) ∈ SI′) I ′[~i′] = Expr[~i]

) and if, for every ~i′, there is only one single expression Expr[~i], then we can trivially set as the

value of our template:

I[~i′] = Expr[u(~i′)] where ~i = u(~i′)

If there are several expressions Exprk[~i] associated to a given template input, but, for each ~i′,

there exist only one pair (k,~i), then we can set the value of our template input as a disjunction

of values, defined over disjoint domains:

(∀~i′ ∈ π(SI′,k)) I[~i′] = Exprk[uk(~i′)] where ~i = uk(~i′)

where π(~i, ~i′) = ~i′ is a projection function.

In general, we might have several expressions Exprk[~i] which are mapped to the same I ′[~i′].

In that situation, we have to ensure that the pairs are equivalent before selecting one of them

as the value of our template input. If this is not the case, this means that two non-equivalent

expressions are mapped to the same portion of the same input of the template, thus that the

program does not match the template. If all the pairs mapped to the same I ′[~i′] are equivalent,

we can select any of them. Another possibility is that the pairs are equivalent only for some

values of the parameters: in that case, we extract the constraints on the parameters.

Final step If a value is found for every input of the template, and if the constraints on the

parameters are satisfiable, then the template matches the program. In some situations, several

values of the template parameters are valid: in that case, we choose to select the biggest values

123

of the parameters, such that we match as much operations as possible from the program with

the template.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Template Recognition Algorithm adapted from Barthou’s equivalence algorithm

Require: Program P , Template T
Ensure: Does the template match the program? If yes, valid inputs of the template

1: Build the template-equivalence automaton . Building the automaton
2: Extract the constraints on the template parameters from the outputs

3: for each template-failure state do . Template-failure states
4: Compute the accessibility set of this state
5: Compute the set of template parameters for which this set is accessible
6: Add their negation to the constraints on the template parameters
7: If the constraints on the template parameters are not satisfiable, return “DO NOT

MATCH”
8: end for

9: for each template-access state “Expr[~i] = I ′[~i′]” do . Template-accept states
10: Compute the accessibility set
11: Add it to the list of constraint on the template input I ′

12: end for

13: for each template input I ′ do . Solving the constraints
14: for all ~i′ such that I ′[~i′] is matched to several expressions do
15: Use an equivalence algorithm to check if these expressions are equivalent on the

domain they intersect.
16: If they are equivalent only for some conditions on the template parameters, add them

to the constraints on the template parameters
17: If they are not equivalent or if the constraints on the template parameters are not

satisfiable, return “DO NOT MATCH”
18: end for
19: Select one expression which is matched to I ′[~i′] as the value of the input of the template

on this domain.
20: end for

21: Return “MATCH”, and the list of inputs found for the template.

It is possible to speed up the recognition algorithm (resp. the equivalence algorithm) by de-

tecting when a (template) failure state is trivially accessible. While building the automaton, we

can compute a subset of the accessibility set on-the-fly, corresponding to the set (~i, ~i′) on which

we might end up on a given state, without taking any loops. If this subset is not empty for

124

a failure state, we can immediately interrupt the construction of the automaton, and conclude

that the template does not match the program (resp. both programs are not equivalent).

The effectiveness of this optimization overlaps with the scalar operation classification of our

template library: if the first operator encountered by our template and the library are different,

then we can trivially conclude that the template does not match.

As with Barthou’s equivalence algorithm, this template recognition algorithm relies on a tran-

sitive closure, which might not be exact. If we have an overapproximation of the transitive

closure instead, then the template recognition algorithm is still sound:

• If the reachability set of a template failure-state is overapproximated, because we consider

its negation to extract constraints on the parameters, these constraints might be more

restrictive than needed, but are sound.

• If the reachability set of a template accept-state is overapproximated, then we have a

constraint on an input of a template which spans over a larger domain than needed. It

might create an intersection with another constraint (and trigger a check of equivalence

between the two conflicting constraints) and might fail the algorithm. Nevertheless, the

algorithm stays also sound on that part.

5.3 Examples

Example 5.1. Let us consider the following (simple) program

(∀0 ≤ i < N) O[i] = A[i] + (B[i]× C[i]);

where A, B and C are inputs of the program. Let us try to match this program with the following

template (corresponding to the addition of two vectors of size N ′):

(∀0 ≤ i′ < N ′) O′[i′] = I ′1[i
′] + I ′2[i

′];

125

where I ′1 and I ′2 are inputs of the template.

First of all, we build the equivalence automaton:

O[i] = O′[i′]

A[i] + (B[i]× C[i]) = I ′1[i
′] + I ′2[i

′]

A[i] = I ′1[i
′] B[i]× C[i] = I ′2[i

′]

(Comp × 2)

(Dec)

We have one constraints on the parameters coming from the outputs: the size of O′ must be

the same than the size of O. Therefore, N = N ′. We also have two template-accept state:

A[i] = I ′1[i
′] and B[i]× C[i] = I ′2[i

′]. The accessibility set of both template-accept state are both

{i, i′ | 0 ≤ i = i′ < N = N ′}.

Let us consider the first input of the template I ′1: for every 0 ≤ i′ < N ′, there is only one

expression which is mapped to I ′1[i
′] in the automaton, which is A[i], where i = i′. Therefore,

I ′1[i
′] = A[i′] is a valid input of the template.

Let us consider the second input of the template I ′2: for every 0 ≤ i′ < N ′, there is only

one expression which is mapped to I ′2[i
′] in the automaton, which is B[i] × C[i], where i = i′.

Therefore, I ′2[i
′] = B[i′]× C[i′] is a valid input of the template.

The constraints on the parameters of the template are satisfiable (N ′ = N) and we found valid

inputs of the template, thus we conclude that the template matches.

Example 5.2. Let us consider the following program:

(∀0 ≤ i < N) O[i] = A[i] + (B[i]× C[i]);

where A, B and C are inputs of the program. Let us try to match this program with the following

template (corresponding to the addition between a vector of size N ′ and its reverse):

(∀0 ≤ i′ < N ′) O′[i′] = I ′[i′] + I ′[N ′ − i′];

126

where I ′ is the input of the template.

First of all, we build the equivalence automaton:

O[i] = O′[i′]

A[i] + (B[i]× C[i]) = I ′[i′] + I ′[N ′ − i′]

A[i] = I ′[i′] B[i]× C[i] = I ′[N ′ − 1 + i′]

B[i]× C[i] = I ′[i′]

(Comp × 2)

(Dec)

i′ = N ′ − 1 + i′

We have one constraints on the parameters coming from the outputs, which imposes N = N ′.

We have two template-accept state: A[i] = I ′[i′] and B[i] × C[i] = I ′[i′]. The accessibility set

are both {i, i′ | 0 ≤ i = i′ < N = N ′}.

Let us consider the unique input of the template I ′. We have two expressions mapped to I ′[i′] for

every 0 ≤ i′ < N ′, which are A[i] (where i = i′) and B[i]× C[i] (where i = N ′ − i′). However,

these expressions are not equivalent. Therefore, we conclude that the template does not match

(because there is no value for the input I ′ which satisfies both template-accept states at the same

time).

Example 5.3. Let us consider the following program:

(∀0 ≤ i < N) O[i] = (A[i] +B[i])× (temp[i] +B[i]);

(∀0 ≤ i < N) temp[i] = A[i];

where A and B are inputs of the program. Let us try to match this program with the following

template (corresponding to the multiplication between a vector of size N ′ with itself):

(∀0 ≤ i′ < N ′) O′[i′] = I ′[i′]× I ′[i′];

where I ′ is the input of the template.

127

First of all, we build the equivalence automaton:

O[i] = O′[i′]

(A[i] +B[i])× (temp[i] +B[i]) = I ′[i′]× I ′[i′]

A[i] +B[i] = I ′[i′] temp[i] +B[i] = I ′[i′]

(Comp × 2)

(Dec)

We have one constraints on the parameters coming from the outputs, which imposes N = N ′. We

have two template-accept state: A[i] +B[i] = I ′[i′] and temp[i] +B[i] = I ′[i′]. The accessibility

set are both {i, i′ | 0 ≤ i = i′ < N = N ′}.

Let us consider the unique input of the template I ′. We have two expressions mapped to I ′[i′]

for every 0 ≤ i′ < N ′, which are A[i] +B[i] (where i = i′) and temp[i] +B[i] (where i = i′). We

need to check if both expressions are equivalent on the domain 0 ≤ i < N . The corresponding

equivalence automaton is:

A[x] +B[x] = temp[x′] +B[x′]

A[x] = temp′[x′] B[x] = B[x′]

A[x] = A[x′]

(Dec)

(Comp)

Both accept states are accessible, and compare the same array cells. Thus, both expressions

are equivalent. Stepping back, this means that both A[i′] + B[i′] and temp[i′] + B[i′] are valid

values for the input of the template I ′[i′], for 0 ≤ i′ < N ′. Thus, we conclude that the template

matches, and the input of the template will be I[i′] = A[i′] +B[i′] (or I[i′] = temp[i′] +B[i′], if

we pick the other expression).

Example 5.4. Let us consider the following program, corresponding to a serialized reduction

over two arrays of size N (I2 and I1, I2 being summed in the reverse order), and an element

128

I0[0]:

O = Temp[2N − 1]

(∀N ≤ i < 2N) Temp[i] = Temp[i− 1] + I2[2N − 1− i]

(∀0 < i < N) Temp[i] = Temp[i− 1] + I1[i]

(∀i = 0) Temp[i] = I0[0]

where I0, I1 and I2 are inputs of the program. Let us try to match this program with the following

template (corresponding to a serialized reduction along an array of size N ′):

O′ = Temp′[N ′ − 1]

(∀0 < i′ < N ′) Temp′[i′] = Temp′[i′ − 1] + I ′[i′]

(∀i′ = 0) Temp′[i′] = I ′[0]

First of all, we build the equivalence automaton:

129

O = O′

Temp[2N − 1] = Temp′[N ′ − 1]

Temp[i] = Temp′[i′]

I0[0] = Temp′[i′]

Temp[i− 1] + I1[i] = Temp′[i′]

Temp[i− 1] + I2[2N − 1− i] = Temp′[i′]

I0[0] = I ′[0]

I0[0] = Temp′[i′ − 1] + I ′[i′]

Temp[i− 1] + I1[i] = I ′[0]

Temp[i− 1] + I1[i] = Temp′[i′ − 1] + I ′[i′]

Temp[i− 1] = Temp′[i′ − 1] I1[i] = I ′[i′]

Temp[i− 1] + I2[2N − 1− i] = I ′[0]

Temp[i− 1] + I2[2N − 1− i] = Temp′[i′ − 1] + I ′[i′]

Temp[i− 1] = Temp′[i′ − 1]I2[2N − 1− i] = I ′[i′]

?

(Comp × 2)

i = 2N − 1, i′ = N ′ − 1

i = 0

0 < i < N

N ≤ i < 2N

i′ = 0 0 < i′

i′ = 0 0 < i′

i = i− 1

i′ = i′ − 1

i′ = 0
0 < i′

i = i− 1

i′ = i′ − 1

The outputs of the template and the program are both scalar, thus we do not have any constraint

on the parameters of the template coming from them. While computing the accessibility set and

applying a transitive closure, we find that the accessibility set of the state “ Temp[i] = Temp[i′]”

(the state besides the star ?) is {i, i′|(∃k)i = 2N−1−k ∧ i′ = N ′−1−k} = {i, i′|i = 2N−N ′+i′}.

We have one template-failure state I0[0] = Temp′[i′−1]+I ′[i′], whose accessibility set is {i, i′|i′ =

N ′ − 2N + i ∧ i = 0 ∧ 0 < i′} = {i, i′|2N < N ′ ∧ i = 0 ∧ 0 < i′}. Therefore, so that

this set is no longer accessible, we have the constraint N ′ ≤ 2N . Physically, this means that

the reduction we try to detect with our template must not be too long: N ′ = 2N corresponds to

detecting the whole program as a reduction (with a piece-wise input) and N ′ < 2N corresponds

to detecting only part of the program as a reduction.

130

Let us examine the template-success state. We have 5 of them, all of them on the template input

I ′, the corresponding constraints being:

• (i, i′) ∈ {i, i′|i = i′ = 0 ∧ i = 2N −N ′ + i′} I0[0] = I ′[0]

• (i, i′) ∈ {i, i′|0 < i < N ∧ i′ = 0 ∧ i = 2N −N ′ + i′} Temp[i− 1] + I1[i] = I ′[0]

• (i, i′) ∈ {i, i′|0 < i < N ∧ 0 < i′ ∧ i = 2N −N ′ + i′} I1[i] = I ′[i′]

• (i, i′) ∈ {i, i′|N ≤ i < 2N ∧ i′ = 0 ∧ i = 2N−N ′+ i′} Temp[i−1]+I2[2N− i−1] = I ′[0]

• (i, i′) ∈ {i, i′|N ≤ i < 2N ∧ 0 < i′ ∧ i = 2N −N ′ + i′} I2[2N − i− 1] = I ′[i′]

Let us determine the value of the template input I ′. For i′ = 0, we have 3 constraints which maps

3 different expressions to I ′[0] (I0[0], Temp[i− 1] + I1[i] and Temp[i− 1] + I2[2N − i− 1]). The

first constraint imposes that the template parameter N ′ is equal to 2N . The second constraint

imposes that 0 < 2N −N ′ < N , i.e., N < N ′ < 2N and the third one that N ≤ 2N −N ′ < 2N ,

i.e. 0 < N ′ ≤ N . Therefore, these 3 constraints are disjoints, and we have:

I ′[0] =


N ′ = 2N : I0[0]

N < N ′ < 2N : Temp[2N −N ′ − 1] + I1[2N −N ′]

0 < N ′ ≤ N : Temp[2N −N ′ − 1] + I2[N
′ − 1]

For 0 < i′, we have 2 constraints which maps 2 different expressions to I ′[i′] (I1[i] and I2[2N −

i − 1]). The first constraint imposes 0 < 2N − N ′ + i′ < N , i.e., N ′ − 2N < i′ < N ′ − N .

Because we have already determined that N ′ ≤ 2N , 0 ≤ i′ < N ′ − N . The second constraint

imposes N ≤ 2N −N ′ + i′ < 2N , i.e., N ′ −N ≤ i′ < N ′. Thus, both of them are disjoints and

we have:

I ′[i′] =

 0 < i′ < N ′ −N : I1[2N −N ′ + i′]

N ′ −N ≤ i′ < N ′ : I2[N
′ − 1− i′]

131

Therefore, the template matches for any N ′ ≤ 2N . To maximize the part of the program covered

by the template, we pick N ′ = 2N , which gives us, as the input of the template:

(∀i′ = 0) I ′[i′] = I0[0]

(∀0 < i′ < N) I ′[i′] = I1[i
′]

(∀N ≤ i′ < 2N) I ′[i′] = I2[2N − 1− i′]

Therefore, we conclude that the template matches.

Example 5.5. Let us consider a Cholesky computation and let us apply the transformation

we have presented in the previous chapter, for square tile sizes (b × b). This example was

already discussed in Example 4.9 and Figure 4.15 subsumes the different blocks we obtain. Let

us consider the equations obtained for the dark green tiles (tiles whose blocked indices satisfy

0 < jb and ib = jb):

(∀0 = jl = il < b) Lloc[il, jl] =
√
Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl];

(∀0 < jl = il < b) Lloc[il, jl] =
√
Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl]− TR0 SG[ib, il, jl];

(∀0 = jl < il < b) Lloc[il, jl] =

(
Ain[il, jl]−

∑
kb<ib

TR1in[kb, il, jl]

)
/Lloc[jl, jl];

(∀0 < jl < il < b) Lloc[il, jl] =

(
Ain[il, jl]−

∑
kb<ib

TR1in[kb, il, jl]− TR1 SG[ib, il, jl]

)
;

/Lloc[jl, jl];

(∀kb = ib, 0 < jl = il < b) TR0 SG[kb, il, jl] =
∑
kl<jl

Lloc[jl, kl]× Lloc[jl, kl];

(∀kb = ib, 0 < jl < il < b) TR1 SG[kb, il, jl] =
∑
kl<jl

Lloc[il, kl]× Lloc[jl, kl];

where b, ib, jb are parameters of the program. Ain[il, jl], TR0in[kb, il, jl] and TR1in[kb, il, jl] are

inputs of the program. Ain corresponds to the block A[ib, jb] of the program, TR0in[kb, il, jl]

corresponds to the partial accumulation of the
∑
k

L[j, k] × L[j, k] over the block (ib, jb, kb) and

TR1in[kb, il, jl] corresponds to the partial accumulation of the
∑
k

L[i, k]× L[j, k] over the block

(ib, jb, kb).

132

Let us compare this program with the following template, corresponding to a scalar Cholesky

computation:

(∀i′ = j′ = 0) L′[i′, j′] =
√
A′[i′, i′];

(∀0 < j′ = i′ < N ′) L′[i′, j′] =
√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′];

(∀0 = j′ < i′ < N ′) L′[i′, j′] = A[i′, j′]/L′[j′, j′];

(∀0 < j′ < i′ < N ′) L′[i′, j′] =

(
A′[i′, j′]−

∑
k′<j′

L′[i′, k′]× L′[j′, k′]

)
/L′[j′, j′];

where A′ is the input of the template and N ′ a parameter of the template.

Some of the operators considered are associative and commutative. The template recognition

algorithm can manage these semantic properties, as it will be shown in Section 5.4, by consid-

ering the possible permutations of their elements. However, in the context of this example, we

will not consider these semantic properties.

In particular, this means that we consider a reduction as an operator, admitting a parametric

number of elements. Thus, two reductions are considered equivalent iff every subexpression at

the same position in both sides are equivalent (i.e., the third subexpression of the left reduction

must be equivalent to the third subexpression of the right reduction, and no reordering of the

subexpressions under both reductions is allowed). Also, because the considered reduction operator

admit a parametric number of elements, this number must be the same, giving us an additional

constraint on the template parameters.

The equivalence automaton is shown in two parts, in Figure 5.1 and Figure 5.2.

We have one constraints on the parameters coming from the outputs: b = N ′. While computing

the accessibility sets and applying a transitive closure, we find that the accessibility set of the

state Lloc[il, jl] = L′[i′, j′] is {il, jl, i′, j′ | jl = j′ ≤ il = i′}. Because of this, none of the

template-failure states are accessible in the automaton, thus we do not have any additional

constraints on the parameters of the template.

133

Lloc[il, jl] = L′[i′, j′]

Lloc[il, jl] =
√
A′[i′, i′]

√
ℵ =

√
A′[i′, i′]

ℵ = A′[i′, i′]

√
ℵ − TR0 SG[ib, il, jl] =

√
A′[i′, i′]

ℵ − TR0 SG[ib, il, jl] = A′[i′, i′]

. . . / · · · =
√
A′[i′, i′]

. . . / · · · =
√
A′[i′, i′]

Lloc[il, jl] =
√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

√
ℵ =

√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

Ain[jl, jl] = A′[i′, i′]

TR0in[kb, il, jl] = L′[i′, k′]× L′[i′, k′]

√
ℵ − TR0 SG[ib, il, jl] =

√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

ℵ = A′[i′, i′]
TR0in[kb, il, jl] =

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

∑
kl<jl

Lloc[jl, kl]× Lloc[jl, kl] =
∑

k′<j′
L′[i′, k′]× L′[i′, k′] Lloc[jl, kl] = L′[i′, k′]

. . . / · · · = √. / · · · = √. . .

i′ = j′ = 0

il = jl = 0 0 < il = jl

0 = jl < il

0 < jl < il

0 < j′ = i′

il = jl = 0 0 < il = jl

j′ = k′

il = jl

jl = kl

0 = jl < il 0 < jl < il

Part 2 (Figure 5.2)

0 = j′ < i′ 0 < j′ < i′

Figure 5.1: Equivalence automaton of Example 5.5 (Part 1), where a diagonal parametrized
tile of a Cholesky computation is checked for a recursive Cholesky call. To reduce the space
taken by the drawing of this automaton, we use the following shortcuts: ℵ = Ain[jl, jl] −∑
kb<ib

TR0in[kb, il, jl]

Let us examine the template-accept states. Only 4 of them are accessible, and their constraints

are the following:

• (∀il = jl = 0 = i′ = j′ = 0) ℵ = A′[i′, i′] (top-left element of A′)

• (∀0 < il = jl = i′ = j′) ℵ = A′[i′, i′] (other diagonal elements of A′)

• (∀0 = jl = j′ < il = i′) i = A′[i′, j′] (first column of non-diagonal elements of A′)

• (∀0 < jl = j′ < il = i′) i = A′[i′, j′] (other non-diagonal elements of A′)

134

Lloc[il, jl] = L′[i′, j′]

Lloc[il, jl] = A′[i′, j′]/L′[j′, j′]

i/Lloc[jl, jl] = A′[i′, j′]/L′[j′, j′]

i = A′[i′, j′]

Lloc[jl, jl] = L′[j′, j′]

(i− TR1 SG[ib, il, jl])/Lloc[jl, jl] = A′[i′, j′]/L′[j′, j′]

i− TR1 SG[ib, il, jl] = A′[i′, j′]

√
. . . = . . . / . . .

√
. . . = . . . / . . .

Lloc[il, jl] = (A′[i′, j′]−
∑

k′<j′
L′[i′, k′]× L′[j′, k′])/L′[j′, j′]

i/Lloc[jl, jl] = (A′[i′, j′]−
∑

k′<j′
L′[i′, k′]× L′[j′, k′])/L′[j′, j′]

Ain[il, jl] = A′[i′, j′]

TR1in[kb, il, jl] = L′[i′, k′]× L′[j′, k′]

(i− TR1 SG[ib, il, jl])/Lloc[jl, jl] = (A′[i′, j′]−
∑

k′<j′
L′[i′, k′]× L′[j′, k′])/L′[j′, j′]

i = A′[i′, j′]
TR1 SG[ib, il, jl] =

∑
k′<j′

L′[i′, k′]× L′[j′, k′]

∑
kl<jl

Lloc[il, kl]× Lloc[jl, kl] =
∑

k′<j′
L′[i′, k′]× L′[j′, k′] Lloc[il, kl] = L′[i′, k′]

Lloc[jl, kl] = L′[j′, k′]

√
. . . = . . . / . . .

√
. . . = . . . / . . .

0 = j′ < i′

0 = jl < il

il = jl

i′ = j′

0 < jl < il

0 = jl = il

0 < jl = il

0 < j′ < i′

0 = jl < il

0 < jl < il

jl = kl, j
′ = k′

jl = kl, j
′ = k′

il = jl, i
′ = j′

0 = jl = il 0 < jl = il

Part 1 (Figure 5.1)

0 = j′ = i′ 0 < j′ = i′

Figure 5.2: Equivalence automaton of Example 5.5 (Part 2), where a diagonal parametrized
tile of a Cholesky computation is checked for a recursive Cholesky call. To reduce the space
taken by the drawing of this automaton, we use the following shortcuts: i = Ain[il, jl] −∑
kb<ib

TR1in[kb, il, jl]

135

where ℵ = Ain[jl, jl]−
∑
kb<ib

TR0in[kb, il, jl] and i = Ain[il, jl]−
∑
kb<ib

TR1in[kb, il, jl].

Let us determine the value of the template input A′: there is 4 associated constraints, but each

one of them are concerning disjoints portions of A′. Therefore, we can simply take as the

template input:

(∀j′ = i′ = 0) A′[i′, j′] = Ain[0, 0]−
∑
kb<ib

TR0in[kb, il, jl]

(∀0 < j′ = i′) A′[i′, j′] = Ain[j′, j′]−
∑
kb<ib

TR0in[kb, il, jl]

(∀0 = j′ < i) A′[i′, j′] = Ain[i′, 0]−
∑
kb<ib

TR1in[kb, il, jl]

(∀0 < j′ < i) A′[i′, j′] = Ain[i′, j′]−
∑
kb<ib

TR1in[kb, il, jl]

Therefore, we conclude that the template matches the program, and we just have recognize a

recursive call to a smaller Cholesky at the level of the diagonal blocks of a Cholesky computation.

5.4 Managing semantic properties

In Section 5.2, we described a template matching algorithm, based on Barthou’s equivalence

algorithm (cf Sections 2.4 and 5.1). Both algorithms do not consider any semantic properties. In

this section, we show how to extend the template matching algorithm to deal with the common

semantic properties usually encountered in a linear algebra computation.

The computation considered in our template library are linear algebraic operations, whose data

belongs to a ring (R,+,×). Because of the algebraic properties of this ring, given a program,

there exist several variations which computes the same result. For example, in Example 5.5, we

compare

(
Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl]

)
−TR0 SG[ib, il, jl] with

(
Ain[jl, jl]−

∑
kb<ib

TR1in[kb, il, jl]

)
−

TR1 SG[ib, il, jl], but these three terms might be reordered differently (using the associativity

and commutativity properties of the addition). If we do not take account of these algebraic prop-

erty, the slightest variation of the computation will make the template recognition algorithm

fails.

136

In this section, we show how to deal with some of the semantic properties encountered for the

linear algebra operations, in order to improve the capability of our template recognition algo-

rithm. All of these properties, other than associativity, commutativity and distributivity, are

managed through a set of rewriting rules. The implementation of our templates are already nor-

malized according to these rules, and the compared program are normalized through these rules.

The associativity and commutativity properties are managed within the template recognition

algorithm, instead of being a preprocessing step.

Managing semantic properties through rewriting rules We deal with most of the se-

mantic properties by using rewriting rules, to be applied to both the program and the template

before performing the template recognition algorithm. Because our templates are stored in

a library, we can apply this preprocessing step once and for all. The rewriting rules are the

following:

• Neutral element: we remove the useless contribution

– 0 +A→ A, A+ 0→ A

– 1.A→ A, A.1→ A

• Annihilator element: we propagate it

– 0.A→ 0

• Inverse: we explicit the addition/multiplication

– A−B → A+ (−B)

– A/B → A.(1/B)

• Reduction over a single element: we remove the reduction

–
∑

k=f(~i,~p)

Expr[k]→ Expr[f(~i, ~p)], where f(~i, ~p) is an affine function of the surrounding

indices ~i and parameters ~p.

137

These rules allows us to partially normalize the expression of a template or program, to allow

our template recognition algorithm to recognize equivalent pattern, while taking these algebraic

properties into account. Note that all of these rules are local modifications of the expression

syntactic tree, thus can be applied easily.

Distributivity management We cannot deal with the distributivity semantic rule by using

a rewriting rule. Indeed, we have the choice of either distributing (A×(B+C)→ A×B+A×C)

or factorizing (A×B+A×C → A× (B+C)) the terms. However, each case, we might prevent

the other template from being recognized.

Indeed, if our program is Out = (A+B)×C and our template Out′ = I ′1×I ′2, distributing C over

(A+B) prevents this template to be matched. Likewise, if our program is Out = A×C+B×C

and our template Out′ = A′ + B′, factorizing C prevents this template to be matched. Thus,

forcing either way through a rewriting rule might hurt the recognition process.

In our context, we partially solve this problem by creating multiple versions of the template in

which the distributivity property might apply: one in which the terms are factorized, one in

which the terms are distributed.

Associativity and commutativity management We deal with associativity and commu-

tativity rules by generating several variants of the template equivalence automaton, during the

template recognition algorithm. For example, given a state of a template equivalence automa-

ton A + B = A′ + B′, we can match A with either A′ or B′ (resp. B with either B′ or A′).

Therefore, we generate two versions of the automaton: one in which the state A+B = A′ +B′

leads to the states A = A′ and B = B′ through a computation rule, and another one in which

this state leads to the states A = B′ and B = A′ through a computation rule (corresponding to

the choice we are taking).

138

Let us first consider a state, during the construction of the template equivalence automaton,

comparing two summations in which no term is a reduction:

SExpr1 ⊕ · · · ⊕ SExprk = SExpr’1 ⊕ · · · ⊕ SExpr’k′

The main idea is that a term SExpr’i′ on the template (right) side is mapped to one or many

term(s) SExpri on the program (left) side. Therefore, if we have fewer terms on the program

side than on the template side (i.e., if k < k′), we cannot match a term on the template side

with a term on the program side, thus fall back into the default strategy of considering the

operator as non-commutative and non-associative.

If we have at least as many terms on the program side as in the template side, then we can

associate at least one term of the program side to the template side. Therefore, we generate

all possible combinations and create the corresponding automaton for each combination. If the

number of terms in each side is equal, it amounts to considering all the permutations [80].

The maximum number of terms in a summation does not exceed the maximum number of terms

in a summation inside the input program or template and is, in practice, reasonably small. Thus,

the number of automaton generated stays reasonable in practice.

This method of managing associativity and commutativity is not perfect. For example, one

limitation is that, once we pick a combination, the choice is fixed once for all for this automaton,

even if we encounter exactly the same state later. Indeed, when we try to add a new state to

the template equivalence automaton, we check first if the state already exists, and, if it does,

we reuse this existing state (this is the mechanism which allows us to have loops inside the

template equivalence automaton). Therefore, if we have a comparison between two summations

inside a loop of the template equivalence automaton, because the states were created the first

time they were encountered, the choice made the first time cannot be changed. However, in the

context of recognizing linear algebra operations, our method is enough.

In the general case, let us consider a state during the construction of the template equivalence

automaton, comparing two summations (for any associative and commutative binary operator),

139

some terms being potentially reductions:

SExpr1 ⊕ · · · ⊕ SExprk ⊕
⊕

SExprRed1 ⊕ · · · ⊕
⊕

SExprRedl =

SExpr’1 ⊕ · · · ⊕ SExpr’k ⊕
⊕

SExprRed’1 ⊕ · · · ⊕
⊕

SExprRed’l

A reduction can be viewed as the summation over a parametric number of terms, therefore, the

natural extension of the previous strategy consist on mapping any term of the template side

(including a specific term inside a reduction) to one or many term(s) of the program side. In

particular, this allows potential permutations of the summation order in the reductions. This

idea was applied for an equivalence checking algorithm in order to manage reduction by Iooss

and al. [34].

In our case, in order to simplify the template equivalence algorithm (and to avoid inferring a

suitable permutation), we choose not to exploit potential permutations of the order of summa-

tion inside a reduction. It means that a reduction
⊕

SExprRedk is considered as some kind

of unary operator. Also, when comparing two reductions, we need to check that the number

of terms summed is the same. This can introduce some constraints on the parameters of the

template (for example, if we compare a reduction over N terms in the program side with a

reduction over N ′ terms in the template side, we must have N = N ′).

A reduction term of the template side (SExprRed’i′) must be mapped to a single reduction term

on the program side (SExprRedi). A non-reduction term of the template side can be mapped

to any combination of terms on the program side. Therefore, to be able to apply this strategy,

we need at least as many reductions on the program side as in the template side, and the total

number of terms on the program side must be greater than or equal to the number of terms on

the template side. We generate all the possible combinations, then generate one version of the

template equivalence automaton per combination.

140

5.5 Experimental validation

In this section, we evaluate the scalability of our implementation of the template recognition

algorithm described previously in this section. The implementation was done in Java, using the

AlphaZ compiler framework [89]. The Integer Set Library (isl [79]) was used in order to perform

the transitive closure.

Our set of test cases consist in the examples we have developed in the previous sections, plus

the following additional template recognition problems:

• Matmult : compares a matrix multiplication computation (with reduction, i.e., (∀i, j)

C[i, j] =
∑

k A[i, k] ∗ B[k, j]) with a matrix multiplication template containing the same

equation. This is a simple test case with a reduction to be managed.

• Cholesky Lbl Tile1 : the program corresponds to one of the subsystems we obtain after

applying the monoparametric tiling transformation with outlining on a Cholesky compu-

tation (see the light blue tiles of the left column in Figure 4.15, Page 112). The compared

template corresponds to the linear algebra computation C ← B.U−1 (xTRSM in BLAS).

• Cholesky Commutation: the computation is the same as the one of Example 5.5. However,

the order of the summations was changed.

We run our experiments on a machine with an Intel Xeon E5-1650 CPU with 12 cores running

at 1.6 GHz (max speed at 3.8GHz), and 31GB of memory. Figure 5.3 reports the time taken

by each step of the algorithm. We also report the number of equivalence automata built during

step 1 (the multiple versions being caused by the associativity and commutativity properties).

We report the number of template equivalence automata we have considered in Step 2 and 3,

until a matching was found, or all the automata were checked.

The steps 1 (equivalence automata construction) and 2 (constraint extraction) are the main

contributors toward the total time. About the equivalence automata construction step of the

algorithm, this step takes a lot of time when the number of variants is large. In Chapter 6, we will

use this algorithm intensively in order to identify linear algebra operations inside a computation,

141

Template
Matching
Problem

S
te

p
1

-
T

im
e

A
u

to
m

a
to

n
C

on
st

ru
ct

io
n

A
u

to
m

a
ta

C
on

si
d

er
ed

/
A

u
to

m
a
to

n
B

u
il

t

S
te

p
2

E
x
tr

ac
ti

n
g

C
on

st
ra

in
ts

S
te

p
3

D
et

er
m

in
in

g
In

p
u

ts

N
u

m
b

er
of

S
ta

te
s

of
th

e
A

u
to

m
a
ta

C
on

si
d

er
ed

T
o
ta

l
T

im
e

Example 5.1 Page 125
(Simple)

49 1/2 20 9 5 82

Example 5.2 Page 126
(NMatch)

41 2/2 23 89 12 156

Example 5.3 Page 127
(Unroll)

45 1/2 20 78 5 146

Matmult 58 1/2 35 8 10 104

Example 5.4 Page 128
(Reduction)

317 1/2 260 6 35 585

Example 5.5 Page 132
(Cholesky Tile2)

617 1/4 371 15 80 1008

Cholesky
Lbl Tile1

1806 1/28 628 24 41 2461

Example 5.5 Modified
(Cholesky Comm)

7406 4/9 2460 18 396 9884

Figure 5.3: Experimental validation of our template recognition algorithm. The times are in
milliseconds (ms). Because Step 1 is generating a list of automata (corresponding to several
version of matching, due to the associativity and commutativity properties), we consider them
one by one during Step 2 and 3, until a matching is found (or all of them are considered). The
number of state of the automata considered are the sum of the number of states of the automata
on which we went through step 2 and 3. The times reported for Step 2 (resp. 3) are the sums
of the time spent in each Step 2 (resp. 3) phase, for each automata considered

and some of the instances of the template equivalence algorithm reach the hundreds of automata

built. In the constraint extraction step, the most expensive operation is the transitive closure.

5.6 Discussion

Equivalence of reduction We have proposed [34] an extension to Barthou’s equivalence

algorithm to manage the associativity and commutativity properties of reductions. Because of

142

the properties of the reduction operator, the terms accumulated might be in a different order.

Hence, the main challenge in this extension is to find a mapping between the terms of two

compared reductions, so that we can conclude for equivalence or not.

The extension is performed in the following manner:

• Equivalence automaton construction: we add a new rule to manage reductions, called

Decompose Reduce.

⊕
π(~k)=~i

E[~k] =
⊕

π′(~k′)=~i′
E′[~k′]

E[~k] = E′[~k′]

σ(~k) = ~k′

The idea of this rule is to map every instance of the left reduction E[~k] to an equivalent

instance E′[~k′] on the right reduction, such that these two instances are equivalent. In

other words, if we manage to find a bijection σ between the instances ~k of the left reduction

and the occurrences ~k′ of the right reduction such that E[~k] is equivalent to E′[~k′], then

both reductions are equivalent. During the equivalence automaton construction step, we

leave σ as a symbolic function (it does not impact the construction of the rest of the

automaton). However, we still need to prove the existence of such σ, and the rest of the

algorithm will focus on inferring it.

Because this rule is based on a bijection which associates exactly one instance from the

left reduction to another from the right reduction, we cannot manage situations where

a left-instance must be mapped to the sum of several right-instances (or vice versa). In

such situations, we will not be able to find a correct σ and we will be unable to conclude

if both reductions are equivalent or not. However, in the situation of our transformation,

this case should not happen.

• Derivation of the mapping σ: Once the equivalence automaton is built, if we did encounter

a reduction, we need to prove the existence of σ, the bijection which associates equivalent

terms from both reductions. We do this constructively, by inferring it, from the equivalence

143

automaton (which contains all the information needed). The inference algorithm consists

of 3 steps:

– Extracting the constraints on σ: this step is just the computation of accessibility

relations.

– Rearranging the constraints in order to obtain partial bijection σ̃i. A partial bijec-

tion is a bijection which is defined only on a subset of a domain. The constraints

extracted on σ have a special form: the only constraints in which we have indices

from both programs are equalities (i.e., the indices of both programs do not mix in

our constraints, except for some equality constraints). Using this property, we can

transform our constraints into partial bijections σ̃.

– Combining the partial bijections σ̃ into a full bijection σ, which is our mapping.

This problem is an instance of the bipartite graph perfect matching problem, over

a particular kind of graph: the set of nodes of this graph corresponds to all the

points of the antecedent and the image domain, and the edges corresponds to the

partial bijections. Thus, this graph has a parametrized number of nodes, but has

only a finite number of “type” of edges (one type for each partial bijections). We

have proposed [34] several heuristics to find a perfect matching on such a graph: a

greedy algorithm and one inspired of the augmenting path algorithm, which solves

the perfect matching problem for finite graphs.

More details about this adaptation of the equivalence algorithm can be found in our paper [34].

This work can probably be extended to a template equivalence algorithm which manages the

associativity and commutativity properties of reductions (like what we did in Section 5.2 with

the original Bathou’s equivalence algorithm). However, we will have to infer both the expression

corresponding to the inputs of the template, and the bijection σ at the same time.

Moreover, in the context of our work, this level of flexibility for the associativity and com-

mutativity properties of reduction operators is not needed. Indeed, in practice, we only need

these properties to cut a reduction according to the tiling considered. This is already done

automatically during the monoparametric tiling transformation (see Section 4.3).

144

Adjusting the domain of output variables As shown in Algorithm 1 Page 124, we extract

some constraints between the parameters of the program and the template through the domain

of output variables. This is done by comparing the domain of the output of the program with

the domain of the output of the template, and by deducing the constraints on both sets of

parameters to make them match.

During the application of our template detection framework, we might encounter subsystems

which are parts of a larger linear algebra operation. For example, we can have a subsystem

whose output is the strict lower triangular part of the result of a matrix multiplication between

two square N ×N matrices A and B:

(∀0 ≤ j < i < N) C[i, j] =
∑

0≤k<N
A[i, k]×B[k, j]

If we try to compare this subsystem with the matrix multiplication template, because the

domain of the output of the subsystem has a triangular shape and the domain of the template

a rectangular shape, we will conclude that the subsystem does not match the template.

A first possible option to fix that issue is to create a new template per output shape (for

example, a matrix multiplication template with a lower triangular output, then another one

with an upper triangular output). However, this option forces us to duplicate many templates,

which will slow down the recognition process.

Another option is to adapt the template recognition algorithm to allow the inclusion of the

domain of the output variable of the subsystem in the domain of the output variable of the

template, instead of an equality. However, such an extension causes the algorithm to fail when

we try to fix the actual value of the template. For example, we would be able to match a matrix

multiplication between two N × N matrices with a matrix multiplication template between a

N ′ × N matrix and a N × N ′ matrix, for N ′ > N . Thus, taking the maximal value of N ′

does not maximize the amount of computation matched anymore, but the number of useless

computation on such matching.

145

Finally, the option we chose is to extend the output domain of the subsystem in order to have

a rectangular shape. If the equations of the output variable are valid for the new part of the

domain of the output variable, we reuse them. Else, we add a new equation which sets the

domain of the output variable to 0 in this new part. For example, if we consider the triangular

subset of a matrix multiplication equation we considered previously, because the expression∑
0≤k<N A[i, k]×B[k, j] can be defined other the whole square domain {i, j|0 ≤ i < N, 0 ≤ j <

N}, we can extend this equation before comparing the subsystem with the matrix multiplication

template.

Using a similar reasoning, if the output domain of a subsystem contains equalities which reduce

its dimensionality (for example, {i, j | i = j . . . }), we transform it to make it full dimensional (for

the last example, we transform the 2D domain into a 1D domain) and adapt the corresponding

equations.

146

Chapter 6

Recognizing subcomputations

In this chapter, we present our linear algebra subcomputation recognition framework. This

framework is based on the contributions presented in the previous chapters, i.e., the monopara-

metric tiling transformation from Chapter 3 and 4, and the template recognition algorithm from

Chapter 5. We present the remaining pieces in this chapter.

The main idea is to first partition the computation into tiles, using the monoparametric tiling

transformation, then try to recognize the computation of each tile as a combination of linear

algebra operators. These operators are listed in a library of template, which is inspired by the

BLAS specification [46]. We present this library in Section 6.1.

Then, we present the structure of our framework in Section 6.2, and apply it to various linear

algebra and non-linear algebra applications in Section 6.3. We conclude this chapter with several

additional remarks in Section 6.4.

6.1 Template library

In this section, we present our library of linear algebra templates. Starting from the BLAS

specification, we justify our design choices, which aim at minimizing the time spent to search

for a matching template.

147

The BLAS specification The operations of the BLAS specification are classified into 3

levels, depending on the data structure returned. The output of a level 1 operator is a scalar,

the output of a level 2 operator is a vector and that of a level 3 a matrix. Each operations have

up to 4 variants, depending on the data type of the structure returned (single precision, double

precision, complex and double precision complex). We will focus only on the double precision

variant, but our approach can easily be extended to any other data types.

The list of operations and their names are described in Figure 6.1. Notice that some of these

operations (such as DGEMM) overwrite their inputs, i.e. are inplace, which is not allowed in

our program representation. Thus, we adapt these operations to add an additional copy and

have “single-assignment” templates. A simple post-processing can be applied to check if this

copy is necessary. Some templates (such as DSWAP or DCOPY) do not make sense in a such

single-assignment context, and are removed.

For example, if we consider DTRMM, the operation we will consider instead is C ← α.LX .B,

which corresponds to first copying the matrix B into the matrix C, then the in-place operation

DTRMM of BLAS. If the matrix B is not used afterward, the copy can be skipped.

Reducing the number of templates In our template recognition algorithm, we will deal

with the associativity and commutativity properties of binary operators. Other algebraic prop-

erties (such that distributivity of an operator over another, absorptive and neutral elements)

are not managed by the template recognition algorithm. Therefore, in some BLAS operations,

we have a special case when α, β = 1, 0 or −1.

For example, for α = 1, DGEMM becomes C ← AX .BX and its computation has one multi-

plication less than the same operation when α = 2, for example. Thus, to deal with the fact

that 1 is neutral for the multiplication, we need to separate (at least) the case where α = 1 and

α 6= 1 into two different templates.

To reduce the number of templates, we assume that α = 1 everywhere, and add the operations

C ← α.A (where α 6= 1). This allows us to split the operation into 2 operations (one which

contains the main matrix multiplication operation, and the other which contains the scalar

148

Level 1 BLAS:

• DSWAP : x↔ y

• DSCAL : x← α.x

• DCOPY : y ← x

• DAXPY : y ← α.x+ y

• DDOT : α← ~xT .~y

Level 2 BLAS:

• DGEMV : ~y ← α.A.~x+ β.~y

• DSYMV : ~y ← α.S.~x+ β.~y where S is symmetric

• DTRMV : ~y ← LX .~x where L is lower-triangular
~y ← UX .~x where U is upper-triangular

• DTRSV : ~y ← L−X .~x where L is lower-triangular
~y ← U−X .~x where U is upper-triangular

• DGER : A← α.~x.~yT +A

• DSYR : A← α.~x.~xT +A

• DSYR2 : A← α.(~x.~yT + ~y.~xT) +A

Level 3 BLAS:

• DGEMM : C ← α.AX .BX + β.C

• DSYMM : C ← α.S.B + β.C or C ← α.B.S + β.C where S is symmetric

• DSYRK : C ← α.A.AT + β.C or C ← α.AT .A+ β.C

• DSYR2K : C ← α.(A.BT +B.AT) + β.C

• DTRMM : B ← α.LX .B or B ← α.B.LX where L is lower-triangular
B ← α.UX .B or B ← α.B.UX where U is upper-triangular

• DTRSM : B ← α.L−X .B or B ← α.B.L−X where L is lower-triangular
B ← α.U−X .B or B ← α.B.U−X where U is upper-triangular

Figure 6.1: List of BLAS operations corresponding to linear algebra operations, for double-
precision floating point. A lower case letter (x, y, α, β . . .) denotes a scalar, a lower case letter
with an arrow (~x, ~y) denotes a vector, and an upper case letter (A,B,C, . . .) denotes a matrix.
AX = A or AT , and A−X = A−1 or A−T . We ignore the different versions caused by the
different memory storage

149

multiplication). A post-processing can be used to merge these two operations, if they are

detected in succession, so that a single BLAS kernel can be used instead of two.

We also notice that BLAS has many variants of the same operation, depending on whether or

not one of its argument is transposed. For example, for DGEMM, we have in total 4 variants

(C ← A.B, C ← A.BT , C ← AT .B and C ← AT .BT). To reduce the number of variants, we

separate the transpose operation (C ← AT) from the matrix multiplication (C ← A.B), and we

will only have to consider a single variant of the template. Once again, a post-processing can

merge the transpose operation with the matrix multiplication operation, if these operations are

detected in succession.

The list of template operations we obtain after these simplification is described in Figure 6.2.

In addition to these template, we consider the whole program (before tiling) as a potential

template, in order to recognize some tiles as a recursive call on smaller instances.

Classification per scalar operations In order to recognize a system as a linear algebra

operation, we consider each operation of the library independently and try to match it with the

system. If none of the templates in the library match, then we conclude that the current system

cannot benefit from any operation in our library. However, if the template library is big, going

over it will take a lot of time.

In order to accelerate this process, we need to reduce the number of templates considered. One

option is to classify the template of the library according to their corresponding scalar operation,

i.e., the operation obtained when we assume that the size of the matrix and vector is 1. For

example, if we consider DGEMM (C ← A.B), for matrix sizes of 1, we obtain a multiplication

between 2 scalars a and b.

In our context, we compare the template to the computation of a tile of parametric size. When

the size of this tile is 1k, the computation performed is a scalar operation. If this operation is

different from the corresponding scalar operation of a template, then there is no hope that the

template matches. Therefore, by using this classification, we can immediately restrict the set of

template which might match with a given tile.

150

Extra:

• Transpose: C ← AT

• Scalar multiplication - vector : ~y ← α.~x where α 6∈ {0, 1}
• Scalar multiplication - matrix : C ← α.A where α 6∈ {0, 1}
• Addition - vector : ~y ← ~x1 + ~x2

• Addition - matrix : C ← A+B

• Reduction - vector : ~y ←
∑
k

~xk

• Reduction - matrix : C ←
∑
k

Ak

Level 1:

• DSCAL : y ← α.x

• DDOT : α← ~xT .~y

Level 2:

• DGEMV : ~y ← A.~x

• DSYMV : ~y ← S.~x where S is symmetric

• DTRMV : ~y ← L.~x where L is lower-triangular
~y ← U.~x where U is upper-triangular

• DTRSV : ~y ← L−1.~x where L is lower-triangular
~y ← U−1.~x where U is upper-triangular

• DGER : A← ~x.~yT

• DSYR : A← ~x.~xT

• DSYR2 : A← ~x.~yT + ~y.~xT

Level 3:

• DGEMM : C ← A.B

• DSYMM : C ← S.B or C ← B.S where S is symmetric

• DSYRK : C ← A.AT

• DSYR2K : C ← A.BT +B.AT

• DTRMM : C ← L.B or C ← B.L where L is lower-triangular
C ← U.B or C ← B.U where U is upper-triangular

• DTRSM : C ← L−1.B or C ← B.L−1 where L is lower-triangular
C ← U−1.B or C ← B.U−1 where U is upper-triangular

Figure 6.2: List of templates in our library, after simplification

151

Order of template comparison We notice that some templates are actually generalization

of others templates. For example, DSYMM is a special case of DGEMM (which means that the

template DSYMM can be considered as an instance of the template DGEMM for some specific

inputs). In order to find the most specialized operation, the recognition framework considers

the most specialized one first, i.e., we try to match DSYMM before DGEMM.

This leads us to the list of templates described in Figure 6.3, classified by scalar operations and

number of dimensions of the output and ordered from the most specialized one to the most

general.

Note that the transpose operation corresponds to a scalar “no operation”. Therefore, it might

happen anytime we have a matrix. Thus, if no operation is recognized after a first pass, for any

scalar operation, we apply a “transpose” and try to recognize a new operation following. If no

operation is recognized after that, we conclude that the considered system does not correspond

to any linear algebra operation we have in our library.

In addition, we add the following templates to our library. They do not appear in BLAS, but

occur in some applications:

• Point-to-point multiplication (resp. division): the equation of the template is C[i, j] =

A[i, j]×B[i, j] (resp. C[i, j] = A[i, j]/B[i, j]).

• Diagonal matrix multiplication: this template is a specialization of a matrix multiplication:

its output is a vector corresponding to the diagonal of the output matrix. Its equation is

y[i] =
∑

k A[i, k]×B[k, i].

• Sum of triangular reduction: the computation of this template is C[i, j] = A[i, j] +∑
0≤k<j L[i, j, k].

152

• Scalar output:

– (×) DSCAL : z ← α.x

– (×) DDOT : z ← ~xT .~y

• Vector output:

– (×) DSYMV : ~y ← S.~x where S is symmetric

– (×) DTRMV : ~y ← L.~x where L is lower-triangular
~y ← U.~x where U is upper-triangular

– (×) Scalar multiplication - vector : ~y ← α.~x where α 6∈ {0, 1}
– (×) DGEMV : ~y ← A.~x

– (div) DTRSV : ~y ← L−1.~x where L is lower-triangular
~y ← U−1.~x where U is upper-triangular

– (+) Addition - vector : ~y ← ~x1 + ~x2

– (+) Reduction - vector : ~y ←
∑
k

~xk

• Matrix output:

– (×) DSYRK : C ← A.AT

– (×) DSYMM : C ← S.B or C ← B.S where S is symmetric

– (×) DTRMM : C ← L.B or C ← B.L where L is lower-triangular
C ← U.B or C ← B.U where U is upper-triangular

– (×) DSYR : A← ~x.~xT

– (×) DGER : A← ~x.~yT

– (×) Scalar multiplication - matrix : C ← α.A where α 6∈ {0, 1}
– (×) DGEMM : C ← A.B

– (div) Inverse of a triangular matrix: L−1

– (div) DTRSM : C ← L−1.B or C ← B.L−1 where L is lower-triangular
C ← U−1.B or C ← B.U−1 where U is upper-triangular

– (+) DSYR2K : C ← A.BT +B.AT

– (+) DSYR2 : A← ~x.~yT + ~y.~xT

– (+) Addition - matrix : C ← A+B

– (+) Reduction - matrix : C ←
∑
k

Ak

– (nothing) Transpose: C ← AT

Figure 6.3: Final list of template, classified by scalar operations and number of dimensions
of the output, and ordered

153

Original Program

Monoparametric tiling

Main
System

Subsystems

Template
Library
⊕ ⊗ Id

getScalarOperator

?

Unknown
Computation

No template match

Template
Recognized

Match

Recursive call
on the template

inputs

Figure 6.4: Template recognition procedure: we first apply the monoparametric tiling trans-
formation, then we consider each produced subsystem independently. The template library is
classified according to the corresponding scalar operation of each template. Each subsystem is
analyzed in order to detect its scalar operation. We retrieve the list of template corresponding
to this scalar operation, from the template library. Then, we compare the subsystem with each
template of this list, one by one. Two situations might occur: either none of the templates
match, and the computation is considered as unknown, or a template matches. Then, we check
the inputs of this template, and recursively call the template matching algorithm on each input
of the template that is not an input of the subsystem.

6.2 Linear algebra operation recognition framework

In this section, we describe how we combine the monoparametric tiling transformation (cf Chap-

ter 4) with our template matching algorithm (cf Section 5.2) in order to recognize instances of

templates from our template library (cf Section 6.1). The whole process is shown in Figure 6.4.

As a preprocessing step, we apply to the original program the rewriting rules we have presented

in Section 5.4, which allows us to manage most of the algebraic properties of a ring. This is

more efficient to do it before the monoparametric tiling transformation, such that the changes

propagate over all the subsystems.

154

Monoparametric tiling The first step of our algorithm is to apply the monoparametric

tiling transformation. We use square tiles for every variable and place each variable of the

program (i.e. identity ratios), and assign a single variable per tile group whenever possible.

This transformation produces a main program and a list of subsystems. The main program

does not contain any computation, but each subsystem contain the computation of a tile. Thus,

we consider each subsystem independently in the rest of the procedure.

In the original monoparametric tiling transformation, we compute the set of values needed by

other tiles, in order to form the outputs of the subsystems. In particular, we classify the output

data depending on which tile requires the information. However, in the context of template

recognition, we want a single output per tiled variable for each subsystem, instead of spliting it

into several output variables. Thus, as discussed in Section 4.4, we disable this feature in the

context of template recognition.

Retrieving the list of templates Given a specific subsystem, we want first to identify its

corresponding scalar operator (i.e., which operator the subsystem corresponds to, when the tile

size parameter is equal to 1), so that we can select the corresponding category in our template

library (cf getScalarOperator in Figure 6.4).

In order to determine the scalar operator, we extract the top-most operator of the operations

leading to the output of the subsystem. Several situations might occurs:

• If a scalar operator is found and is managed by our template library, we return it.

• If no operator is found (for example, the output variable of the subsystem is a constant,

or the copy of an input variable), or an operator which is not considered by the template

library is found (e.g., a square root for a Cholesky computation), then we do not retrieve

any template from our library.

• If we encounter a reduction, because the reductions inside a subsystem was created from

a larger reduction of the original program, these reductions are accumulating over a para-

metric number of elements. Thus, when the tile size of a subsystem is set to 1, the

155

reduction accumulates over a single element for a tile size of 1, thus disappears. There-

fore, we just ignore the corresponding reduction operator and continue the search inside

the reduction. If no operator occurs inside the reduction, we take the operator of the

reduction by default. Note that this strategy is not valid in general (for example, if we

have a reduction over 3 elements). However, in our context, such a situation should not

occur.

Moreover, we have to be careful about detected multiplication operators that are actually divi-

sions (because of the rewriting rule A/B → A.(1/B) we applied to our original program).

Once we obtain the scalar operator of a subsystem, we combine it with the number of dimensions

of the output to determine the corresponding template category, and to retrieve the correspond-

ing list of templates from our library (cf Figure 6.3). If no operation was found, then this list

of templates is empty.

We add at the beginning of our list of templates a special template called recursive call. The

equations of this template are exactly the ones from the original program. This template allows

us to identify the recursive call to our original program, on smaller instances. A typical example

was shown for a Cholesky computation (in Figure 4.15 Page 112) where the top most operation

in each diagonal block are smaller instances of a Cholesky.

If the domain of the output variable is two dimensional, then we have to deal with the transpose

template. Because the transpose operation is idempotent (i.e. (AT)T = A), we prevent its

template to be applied twice consecutively. Moreover, because this template does not have an

associated scalar operators, we add it at the end of our template list.

Output of the procedure and recursion The output of our procedure is a tree of templates.

Each node of this tree corresponds to a template, whose inputs are the children of this node. The

leaves of the template tree are either an input of the program, a constant, or a non recognized

computation.

156

Given a subsystem and a freshly retrieved list of templates, we start trying to match the subsys-

tem with each template of the list, using our template recognition algorithm from Section 5.2.

If the template does not match, we continue with the next template in the list. If the end of

the list of templates is reached, then we return a tree with a single node corresponding to a non

recognized computation.

If a template is matched to a subsystem, we build a node corresponding to this template. Then,

we examine the expressions of the subsystem that correspond to the inputs of the template.

For each of these expressions, if it is an input variable of the subsystem, or a constant, or a

switch between input variable and contants, then we build the corresponding leaf and link it

to the node of the recognized template. If the expression is more complicated, we build a new

subsystem which corresponds to the reminder of the computation, and apply our procedure

recursively on this new system. Then, we retrieve the produced tree of template and link it to

the node of the recognized template.

Example 6.1. To illustrate our procedure, let us apply it to a matrix multiplication computation.

The original program is the following:

(∀0 ≤ i, j < N) C[i, j] =
∑

0≤k<N
A[i, k]×B[k, j];

where A and B are input variables, both defined over the domain {i, j|0 ≤ i, j < N}, and C is

the output variable.

The preprocessing step to manage algebraic properties does not do anything. Then, we apply a

monoparametric tiling transformation, only using the identity ratio. Because of the reduction, we

obtain two subsystems: one corresponding to a small matrix multiplication, an another summing

all the outputs of the small matrix multiplication to form the final result.

The equations of the first subsystem are:

(∀0 ≤ il, jl < b) TempRed[il, jl] =
∑

0≤kl<b
Ain[il, kl]×Bin[kl, jl];

157

where TempRed is the output and Ain and Bin are the inputs of the subsystem (corresponding

to the tiles A[ib, kb] and B[kb, jb] in the original program).

The equations of the second subsystem are:

(∀0 ≤ il, jl < b) C[il, jl] =
∑

0≤kb<Nb

TempRedin[kb, il, jl];

where C is the output (corresponding to the tile C[ib, jb] in the original program) and TempRed

is the input of the subsystem (corresponding to the collection of results of the partial summation).

We start our procedure by examining the first subsystem, and try to determine its associated

scalar operator. The first operator encountered is the one from the summation
∑

, but, because

it comes from a reduction, we ignore it. The next one is a multiplication. Therefore, we retrieve

the list of templates corresponding to a multiplication for matrix in our template library. We

append at the start of this list of templates the recursive call template (thus, which is a matrix

multiplication), and, because the output is two dimensional, the transpose template at the end.

Then, we try to match the first subsystem with the selected templates. The first one (recursive

call) matches, and the expressions corresponding to the inputs of the template are:

 A′ ↔ Ain

B′ ↔ Bin

Both of them are inputs of the subsystem, thus we do not have a recursive call. Thus, the

procedure is done for the first subsystem.

We now consider the second subsystem. When considering the associated operation, we en-

counter a reduction, but no operation afterward. Thus, we retrieve the list of template corre-

sponding to an addition for matrix, append at the start the recursive call template, and at the

end the transpose template.

We try to match the first subsystem with the selected templates, and no template match until we

end up on “Reduction - matrix” (summarized as C ←
∑

k Ak in Figure 6.3). The expressions

158

DGEMM

Ain Bin

A’ B’

∑
k Ak

TempRedin

Ak’

Figure 6.5: Returned template tree for the matrix multiplication computation. The green
nodes correspond to the input of the template

corresponding to the inputs of the template are:

Ak′ ↔ TempRedin

This is an inputs of the subsystem, thus we do not have a recursive call. No subsystem remains,

thus the procedure ends. The returned template tree are shown in Figure 6.5

In the next section, we will present several examples of application of this procedure.

6.3 Applications

In the previous section, we described a framework that applies the monoparametric tiling trans-

formation to a program, then applies recursively a template recognition algorithm to each

generated subsystems independently. In this section, we present several experiments in order to

validate this framework. In particular, we apply this framework to several programs, in order to

check the scalability of our approach, then we study the amount of computation our framework

is able to recognize as a template.

We will apply our framework to two kinds of applications in this chapter: linear algebra ap-

plications (which should be almost completely covered by the templates we recognize), and

non-linear algebra applications (in which only some specific parts of the computation should

be recognized as a template). We will first study the linear algebra applications (Symmetric

Positive semi-Definite Matrix Inversion and Silvester Equations), then the non-linear algebra

applications (Algebraic Path Problem and Mc Caskill).

159

Parameters: N
Inputs:

A, defined over {i, j|0 ≤ i, j < N}
Local:

L, defined over {i, j|0 ≤ j ≤ i < N}
InvL, defined over {i, j|0 ≤ j ≤ i < N}

Output:
InvA, defined over {i, j|0 ≤ i, j < N}

(∀i = j = 0) L[i, j] =
√
A[i, i]; // Cholesky:A = L.LT

(∀i = j > 0) L[i, j] =
√
A[i, i]−

∑
k<i

L[i, k] ∗ L[i, k];

(∀i > j = 0) L[i, j] = A[i, j]/L[i, i];

(∀i > j > 0) L[i, j] =

(
A[i, j]−

∑
k<j

L[i, k] ∗ L[j, k]

)
/L[i, i];

(∀i = j ≥ 0) InvL[i, j] = 1/L[i, i]; // InvL = L−1

(∀i > j ≥ 0)

(
−
∑

j≤k<i
L[i, k] ∗ InvL[k, j]

)
/L[i, i];

(∀0 ≤ i, j < N) InvA[i, j] =
∑
k

InvL[k, i] ∗ InvL[k, j]; // InvA = InvLT .InvL

Figure 6.6: Original program for the Symmetric Positive semi-Definite Matrix Inversion. The
input is a semi-definite positive square matrix A of size N×N . This program is the composition
of a Cholesky computation (whose result is L), followed by a triangular matrix inversion (whose
result is InvL), and a transpose matrix multiplication (whose result is InvA, which is also the
output of the program)

The experiments presented in this section were run on a machine with an Intel Xeon E5-1650

CPU with 12 cores running at 1.6 GHz (max speed at 3.8GHz), and 31GB of memory.

6.3.1 Dense Linear algebra applications

Symmetric Positive semi-Definite Matrix Inversion The first application we consider is

called Symmetric Positive semi-Definite Matrix Inversion (SPDMI). The input is a symmetric

semi-definite matrix A, i.e., a square matrix which can be decomposed as A = L.LT , where L

is a lower-triangular matrix. The output is the inverse of this matrix. This output is computed

by using the Cholesky factorization algorithm on A to retrieve the lower triangular matrix L,

then a triangular matrix inversion to compute L−1, then a transpose matrix product to compute

A−1 = L−T .L−1. The equations of such a program are described in Figure 6.6.

160

After analyzing the dependences, it is legal to tile separately the three variables L, InvL and

InvA, using a square monoparametric tiling.

After applying the monoparametric tiling transformation, we obtain in total 16 subsystems:

7 coming from the equations of L (including 3 from the two reductions), 4 coming from the

equations of InvL (including 2 from the reduction), and 5 coming from the equations of InvA

(including 4 from the reduction). The time taken by the monoparametric tiling transformation,

plus some post-processing normalization steps (such as reducing the number of dimensions of

some inputs and outputs) is about 5.7 seconds.

Across all subsystems, we perform 200 comparisons between a program and a template. We

consider in total 429 equivalence automata (we count only the automata for which we extract

some constraints, and not the total number of automata built), containing in total 9815 states.

Also, 52 equivalence subproblems are considered. The total time taken by the whole process

(including the monoparametric tiling transformation) is 439.3 seconds (about 7 minutes 19 sec-

onds). This means that we spend in average about 2 seconds for each instance of template-match

comparison.

In total, we have detected 27 templates in this computation (if we ignore the 3 “transpose”

node that precedes a “non-recognized” node). The corresponding template trees are presented

in Figure 6.7.

We managed to recognize completely the computation, except in 5 places:

• For the subsystems L bl T ile0 and L bl T ile2, these tiles correspond to the diagonal blocks

of a Cholesky computation. Because we do not have a Cholesky template in our library,

no operation is recognized.

• For the subsystem L bl T ile3 (corresponding to the dark blue part in Figure 4.15, Page 112),

the two computations which are not recognized are both a switch between an input variable

(for i = 0), and a sum of matrix (C ←
∑
Ak, for i > 0). We do not have a corresponding

template to recognize this kind of pattern.

161

L bl T ile0

NReco

L bl T ile1

B.U−1

Lbl1/Lbl2 Abl0

L bl T ile2

NReco

L bl T ile3

B.U−1

Lbl2/Lbl3

A+B

AT

NReco

AT

NReco

Linv bl T ile0

L−1

Lbl0/Lbl1

Linv bl T ile1

L−1B∑
k Ak

TR2 0

Lbl1/Lbl2

Ainv bl T ile0∑
k Ak

TR3 0

TR0 Tile0

Diag mat mult

Lbl0 AT

Lbl0

TR1 Tile0

A.B

Lbl0 AT

Lbl1

TR1 Tile1

Adapt triang

DSYRK

Lbl0

TR2 Tile0

DTRMM BL

Linvbl1 alpha.A

Lbl0−1.0

TR2 Tile1

A.B

Linvbl1 α.A

Lbl0−1.0

TR3 Tile0

A.B

Linvbl1AT

Linvbl0

TR3 Tile1

DTRMM UB

Linvbl1AT

Linvbl0

TR3 Tile2

DTRMM BL

Linvbl1AT

Linvbl0

TR3 Tile3

AT

NReco

Figure 6.7: Output of our template recognition framework: trees of recognized templates for
the SPDMI example. The nodes in green correspond to the input of the template, a constant,
or a switch between inputs and constants. The nodes in red correspond to the non-recognized
computation.

162

• For the subsystem TR3 Tile3 (coming from the reduction inside the equation of Linv,

and occurring only for the tile at ib = jb = kb), its computation is:

(∀0 ≤ (i, j) < N) Out[i, j] =
∑

i ≤ k < b

j ≤ k

Linvbl0[k, i]× Linvbl0[k, j]

Because of the bounds of the domain of the summation, none of our template matches.

Thus, we managed to match almost all the computation with our template library. Also,

because there is only a quadratic number of tiles whose computation is not fully covered by

templates, among a cubic number of tiles, the most frequently used parts of the computation

were recognized.

Sylvester Equation Solver A Sylvester equation is an equation of the form A.X+X.B = C,

where A, B and C are given square matrices, and X is an unknown square matrix.

We will explain the well-known algorithm to solve this equation, and then apply our template

recognition framework to this. We will first show why there is no loss of generality if we assume

that A and B are upper-triangular. We can simplify this equation by considering the Schur

decomposition of the matrix A, i.e., we have A = QA.UA.Q
−1
A , where UA is upper-triangular

and QA is a unitary matrix (i.e., Q−1A = QHA , the conjugate of the transpose of A). Likewise,

we consider the Schur decomposition of the matrix B: B = QB.UB.Q
−1
B where QB is a unitary

matrix and UB an upper-triangular matrix. By replacing A and B by their decomposition in the

main equation, we obtain UA.(Q
−1
A .X.QB) + (Q−1A .X.QB).UB = Q−1A .C.QB. Thus, by setting

X ′ = Q−1A .X.QB and C ′ = Q−1A .C.QB, we obtain the following equation: UA.X
′ +X ′.UB = C ′.

163

The program which solves a Sylvester equation, when A and B are upper-triangular is the

following:

(∀i = N − 1, j = 0) X[i, j] = C[i, j]/(A[i, i] +B[j, j]);

(∀i = N − 1, 0 < j < N) X[i, j] =

(
C[i, j]−

∑
0≤k<j

X[i, k]×B[k, j]

)
/(A[i, i] +B[j, j]);

(∀0 ≤ i < N − 1, j = 0) X[i, j] =

(
C[i, j]−

∑
i<k<N

A[i, k]×X[k, j]

)
/(A[i, i] +B[j, j]);

(∀0 ≤ i < N − 1, 0 < j < N) X[i, j] =
(
C[i, j]−

∑
0≤k<j

X[i, k]×B[k, j]

−
∑

i<k<N

A[i, k]×X[k, j]
)
/(A[i, i] +B[j, j]);

A square monoparametric tiling is legal: because all the dependences on X are increasing along

the i dimension and decreasing along the j dimension, they satisfy the hyperplane condition for

the legality of tiling.

After applying the monoparametric tiling transformation, we obtain in total 8 subsystems: 4

which compute the value of X, and one for each reductions of the program. The time taken by

the monoparametric tiling transformation is about 6.6 seconds.

During the recognition process, we have an issue with 4 of the 8 subsystems (corresponding to

X), for which the computation of a transitive closure takes a significant amount of time. Thus,

we are forced to skip the recognition process for these subsystems and consider them as “not

recognized”.

Across all remaining subsystems, we perform 28 comparisons between a program and a template.

We consider in total 148 equivalence automata (we count only the automata for which we

extract some constraints, and not the total number of automata built), containing in total 1602

states. Also, 15 equivalence subproblems are considered. The total time taken by the whole

process (including the monoparametric tiling transformation) is 104.7 seconds (about 1 minute

45 seconds). This means that we spend in average about 1.5 seconds for each instance of

template-match comparison.

164

TR0 Tile0

A.B

Xbl1α.A

-1 Abl0

TR1 Tile0

A.B

Bbl1α.A

-1 Xbl0

TR2 Tile0

Diag mat mult

Xbl1α.A

-1 Abl0

TR3 Tile0

Diag mat mult

Xbl1DGER

-1 Abl0

Figure 6.8: Output of our template recognition framework: trees of recognized templates
for the Sylvester equation solver example. The nodes in green correspond to the input of the
template, a constant, or a switch between inputs and constants. The nodes in red correspond
to the non-recognized computation.

In total, we have detected 8 templates in this computation. The corresponding template trees

are presented in Figure 6.8. These templates cover completely the subsystems created from

reductions, which contains the majority of the computation of the program.

6.3.2 Applications outside of dense linear algebra

Algebraic Path Problem The Algebraic Path Problem (APP) is a graph algorithm which

can be viewed as a generalization of the Floyd-Warshall algorithm. Its equations are the fol-

lowing:

(∀0 ≤ (i, j) < N) Out[i, j] = F [i, j,N − 1]

(∀0 ≤ (i, j) < N, k = −1) F [i, j, k] = A[i, j]

(∀0 ≤ i = j = k < N) F [i, j, k] = clos(F [k, k, k − 1])

(∀0 ≤ i = k < N, j 6= k) F [i, j, k] = F [k, k, k]× F [k, j, k − 1]

(∀0 ≤ j = k < N, i 6= k) F [i, j, k] = F [i, k, k − 1]× F [k, k, k]

(∀0 ≤ (i, j, k) < N, i 6= k, j 6= k) F [i, j, k] = F [i, j, k − 1] + (F [i, k, k]× F [k, j, k − 1])

165

where A is an input variable, Out the output variable and clos is a closure operator.

Let us explain the equations of this program. We can consider A as the adjacency matrix of

a weighted directed graph (which has N nodes). The weight of a path is the product of the

weight of the edges of this paths. Then, Out[i, j] corresponds to the summation of the weight

of all the paths starting from the node i and finishing on the node j. F [i, j, k] represents the

summation of the weights of all the paths from node i to node j, such that all the intermediate

nodes of this path are the nodes 0 to k.

The closure operator manages the loops on the graph: indeed, the set of paths from k to k using

all the nodes whose labels are bellow k (F [k, k, k]) can be decomposed as a succession of loops

from k to k, using the nodes whose labels are below k − 1. The multiplication operator can be

viewed as a composition of paths. For example, if i = k, all the paths from i to j (6= i) using the

nodes whose labels are below k (F [k, j, k]) can be viewed as the combination of self-loops from

i to i (F [k, k, k]), then a path from k to j, which is not using the node k again (F [k, j, k − 1]).

Likewise, the addition operator corresponds to a disjoint union of paths. We notice that if

we take as a closure operator min(x), and as a semi-ring (min,+), we obtain exactly Floyd’s

algorithm, which computes the shortest path between all pairs of nodes. Likewise, this program

can be used to compute accessibility relation inside a graph.

The equations of the APP do not contain any reductions. However, if we study the computation,

we can recognize a reduction along the k axis. More precisely, if we analyze the computation

needed to compute a given Out[i, j], we first have a decreasing accumulation from F [i, j,N−1] to

F [i, j,max(i, j)], then from F [i, j,max(i, j)−1] to F [i, j,min(i, j)], then from F [i, j,min(i, j)−

1] to F [i, j,−1]. We can arrange automatically the program to explicit this reduction.

Also, if we analyze the dependences of the program, each F [i, j, k] are used exactly once, except

the ones on the planes i = k and j = k. Thus, we can replace the local variable F by the

following local variables:

• cross[i, j, k] defined for i = k or j = k, and which corresponds to the special computations.

166

• temp1[i, j] corresponding to F [i, j,max(i, j) − 1], and which is the top-most element of

the middle reduction (k = max(i, j) to min(i, j)) and defined for i 6= j and 0 ≤ k < N .

• temp2[i, j] corresponding to F [i, j,min(i, j)−1], and which is the top-most element of the

bottom reduction (k = min(i, j)− 1 to 0) and defined for 0 ≤ (i, j, k) < N .

In addition, in order to avoid unions of polyhedra in the domains of these variables, we split

the variable temp1 into temp1Maxi (for i > j) and temp1Maxj (for j > i). Likewise, we split

the variable temp2 into temp2Mini (for i < j) and temp2Minj (for j ≤ i). The variable cross

is split in 5 fragments: crossMiddle (for i = j = k), crossUp (for i = k < j), crossBottom (for

j < i = k), crossLeft (for i < j = k) and crossRight (for j = k < i). The resulting program is

shown in Figure 6.9.

Now, let us find a legal tiling for this program. By studying the self-dependences, we identify

in total 6 tile groups:

1. Out,

2. crossBottom,

3. crossUp,

4. temp1Maxi,

5. crossLeft and temp1Maxj,

6. crossMiddle, crossRight, temp2Mini and temp2Minj.

Also, rectangular tiling is legal, thus there is no need to apply a change of basis on any of these

variables beforehand.

After applying the monoparametric tiling transformation, we obtain in total 60 subsystems, 34

of them coming from reductions. The time taken by the monoparametric tiling transformation

is about 20.5 seconds.

167

(∀0 ≤ i = j < N) Out[i, j] = crossMiddle[i, i, i]+∑
i<l<N

crossLeft[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ i < j < N) Out[i, j] = crossLeft[i, j, j]+∑
j<l<N

crossLeft[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ j < i < N) Out[i, j] = crossBottom[i, j, j]+∑
i<l<N

crossLeft[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ j < i < N, k = i− 1) temp1Maxi[i, j, k] = crossRight[i, j, j]+∑
j<l<i

crossRight[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ i < j < N, k = j − 1) temp1Maxj[i, j, k] = crossUp[i, j, i]+∑
i<l<j

crossLeft[i, l, l]× temp2Mini[l, j, l − 1];

(∀0 ≤ i < j < N, k = i− 1) temp2Mini[i, j, k] = A[i, j]+∑
0≤l<i

crossRight[i, l, l]× temp2Mini[l, j, l − 1];

(∀0 ≤ j ≤ i < N, k = i− 1) temp2Minj[i, j, k] = A[i, j]+∑
0≤l<j

crossRight[i, l, l]× temp2Mini[l, j, l − 1];

(∀0 ≤ i = j = k < N) crossMiddle[i, j, k] = clos(temp2Minj[k, k, k − 1]);
(∀0 ≤ j = k < i < N) crossRight[i, j, k] = temp2Minj[i, k, k − 1]× crossMiddle[k, k, k];
(∀0 ≤ i < j = k < N) crossLeft[i, j, k] = temp1Maxj[i, k, k − 1]× crossMiddle[k, k, k];
(∀0 ≤ i = k < j < N) crossUp[i, j, k] = crossMiddle[k, k, k]× temp2Mini[k, j, k − 1];
(∀0 ≤ j < i = k < N) crossBottom[i, j, k] = crossMiddle[k, k, k]× temp1Maxi[k, j, k − 1];

Figure 6.9: Equations of the APP program, after detecting the reductions and reorganizing
the local variables. For concision, we do not consider the special equations which manages the
case when a reduction sums over no element (for example, when i = N−1 in the first equation),
and will just consider that the value of the reduction is 0.

Across all remaining subsystems, we perform 660 comparisons between a program and a tem-

plate. We consider in total 698 equivalence automata, containing in total 13054 states. Also, 93

equivalence subproblems are considered. The total time taken by the whole process (including

the monoparametric tiling transformation) is 1578.4 seconds (about 26 minutes 18 seconds).

This means that we spend in average about 2.26 seconds for each instance of template-match

comparison.

We detect in total 44 templates (without counting the 16 of them which are a “transpose”

detected right before a non-recognized computation). The operations detected are mostly matrix

168

(∀0 ≤ i < j − 4 < N − 4) Q[i, j] = 1 +
∑

i < d ≤ j − 4
d + 4 ≤ e ≤ j

Q[i, d− 1]×Qb[d, e];

(∀0 ≤ i = j − 4 < N − 4) Q[i, j] = 1 +
∑

i+4≤e≤j
Qb[i, e];

(∀0 ≤ j − 4 < i ≤ j < N − 4) Q[i, j] = 1;

(∀0 ≤ i < j − 4 < N − 4) Qm2[i, j] =
∑

i+4≤e≤j
Qb[i, e]× emulti01[j − e]

+
∑

i < d ≤ j − 4
d + 4 ≤ e ≤ j

Qb[d, e]× emulti01[j + d− i− e]

+
∑

i < d ≤ j − 4
d + 4 ≤ e ≤ j

Qm2[i, d− 1]×Qb[d, e]× emulti01[j − e];

(∀0 ≤ i = j − 4 < N − 4) Qm2[i, j] =
∑

i+4≤e≤j
Qb[i, e]× emulti01[j − e];

(∀0 ≤ i ≤ j < i+ 4 ≤ N) Qm2[i, j] = 0;

(∀0 ≤ i ≤ j < N) Qb[i, j] = QbTemp[i, j]× base pair(seq[i], seq[j]);
(∀0 ≤ i < j − 6 < N − 6) QbTemp[i, j] = eh[i, j] +

∑
i+5≤e<j

esbi[i, j, i+ 1, e]×Qb[i+ 1, e]

+
∑

i + 1 < d ≤ j − 5
d + 4 ≤ e < j

Qm2[i+ 1, d− 1]×Qb[d, e]× emulti11[j − e− 1]

+
∑

i + 1 < d ≤ j − 5
d + 4 ≤ e < j

esbi[i, j, d, e]×Qb[d, e];

(∀0 ≤ i = j − 6 < N − 6) QbTemp[i, j] = eh[i, j] +
∑

i+5≤e<j
esbi[i, j, i+ 1, e]×Qb[i+ 1, e];

(∀0 ≤ i < j − 3 < i+ 3 < N) QbTemp[i, j] = eh[i, j];
(∀0 ≤ i ≤ j ≤ i+ 3 < N) QbTemp[i, j] = 0;

Figure 6.10: Equations of the McCaskill program. The output of the program is Q.

multiplications (A.B, B.U where U is upper-triangular, diagonal matrix multiplication), but

also some matrix and vector additions, point to point multiplications, reduction on a vector

(~y =
∑

k ~xk).

The subsystems which are the most frequently used are the ones coming from reductions and

which does not correspond to border cases. We managed to recognize the totality of the com-

putation of 5 of these subsystems, over 6.

McCaskill This application is a subset of the computation of a bioinformatics application

called piRNA (Partition function of Interacting RNAs [16]). Its equations are shown in Fig-

ure 6.10.

169

About the legality of tiling, we have two tile groups: Q (which is the output of the program, but

never used in the equations), and (Qb,QbTemp,Qm2). We also notice that all the dependences

are always positive along the first dimension, and negative along the second dimension. Thus,

rectangular tiling is legal.

After applying the monoparametric tiling transformation, we obtain in total 113 subsystems,

99 of them coming from the reductions of the program. The tile taken by the monoparametric

tiling transformation is about 57 seconds.

During the recognition process, we have an issue with 2 subsystems, for which the computation

of a transitive closure takes a significant amount of time. Across all the remaining subsystems,

we perform 2245 comparisons between a program and a template. We consider in total 4566

equivalence automata, containing in total 90812 states. In addition, 26 equivalence subproblems

were considered. The total time taken by our framework is 4196.5 seconds, which is about 1 hour

and 10 minutes. In average, we spend 1.87 seconds per instance of template-match comparison.

We managed to detect 80 templates in total, however, only 8 of them are not a “transpose”

preceding a non-recognized computation. This poor result can be explained by the fact that

using a linear algebra library for this computation is not a good fit.

Indeed, the subsystems could not match our linear algebra templates for several reasons. For

example, we have several subsystems whose top computation is a reduction, summing over the

dimension k, but such that the boundary conditions on k are strange (such as j ≤ k ≤ i + 4).

None of our template manages to match a suitable reduction with the same number of terms

summed for every values of (i, j). Also, several subsystems contain reductions which project 2

dimensions at once, whose result is two dimensional (i.e., Out[i, j] =
∑

k,l temp[i, j, k, l]). Even

if we ignore the issue on the bounds on k and l, we do not have any template which accumulates

over 2 dimensions at once.

Therefore, a linear algebra library of template is not suitable for this computation. However,

the computation of many subsystems have the same kind of structure. Thus, we might be able

to identify a common operator which can be recognized over many subsystems. Then, we can

create an highly-efficient implementation of this operator, and add it to our template library.

170

6.4 Discussion

Post-processing: merging the templates After obtaining a tree of template which cor-

responds to our program, we can merge some nodes of this tree. This process is particularly

important to manage transposition and scalar multiplication in an efficient way. Indeed, as

presented in Section 6.1, the operations of the BLAS library have several options. For example,

DGEMM has a option to transpose both of its input matrices, and can multiply the result with

a scalar. Thus, if we detect a matrix multiplication template, followed by a transposition, for

example, we can use a single call to BLAS instead of two function calls.

Another situation where merging templates is advantageous is when we have adaptation of

output domains. Indeed, if we detect an adaptation for a triangular output domain, followed by a

matrix multiplication, having an implementation of a matrix multiplication which only computes

the triangular part of the domain instead of the full domain will avoid useless operations.

Post-processing: optimizing the algorithm itself We can also use the information sum-

marized in the template tree to optimize the algorithm. For example, if we detect some redun-

dant operations among the templates detected, we can reorganize the templates to reuse the

result of such operations. If we combine such mechanism with a cost function which estimates

the operational complexity, we can explore different versions of an algorithm and select the best

version, before generating the BLAS calls.

For example, if we consider the Cholesky computation (Figure 4.15, Page 112), we notice that

every tile of a column computes the inverse of the same lower triangular matrix while multiplying

it with a square matrix. Thus, we can examine another version of this algorithm where the

inverse of this lower triangular matrix is computed once separately, and each tile is performing

a triangular matrix multiplication. However, after examining the complexity of each versions,

the latter one turns out to be more costly (and also requires more space).

Towards code generation After obtaining the tree of templates, we still have several issues

to solve before being able to generate some code. In particular, we have to be careful about the

171

memory management. Indeed, in BLAS, most of the operations are in-place, i.e., they reuse one

of the input matrix as an output (for example, C ← α.A.B+β.C for DGEMM). Our templates

are purely functional, i.e., they assume that the output and the input matrices are allocated in

different places. Thus, we need to determine if and when we need to copy a matrix in order to

use the in-place operations from BLAS.

There are also several options for the storage mapping of the matrices manipulated in BLAS

(row major and column major for square matrices, different storage methods for triangular

matrices). Evaluating and selecting the best option is another piece which is required before

generating some code.

Another feature would be to switch between implementations of a template, depending on some

properties, such as the size of the template (for example, we can imagine a switch between a

BLAS implementation, and a code generated through LGEN [77] which outperforms BLAS for

small problem sizes).

Extending the template library The template library we have presented in Section 6.1

corresponds to the operations which can be found in BLAS. It is possible to extend this library

to include more operations, such that the ones from LAPACK [6]. However, we have to be careful

about the size of the template library, which impacts directly the time taken by our framework.

Hence, we might need to refine the classification of our library to reduce the number of template

to be considered at each steps.

Another extension is to change the vector space our linear-algebra operations operates. For

example, instead of considering the vector space (R,+,×), we can consider the semi-ring (R ∪

{−∞},max,+) which is useful for some dynamic programming applications.

172

Chapter 7

Related Work

In this chapter, we present the links between our contributions and others. We will first present

in Section 7.1 the work about the tiling transformation, and how it relates to our monoparametric

tiling transformation. Then, in Section 7.2 we present the work related to program equivalence

and template recognition, and how our template recognition algorithm contributes. Finally, we

list in Section 7.3 the body of work on dense linear algebra algorithm derivation, and show their

relations with our template detection framework.

7.1 Tiling transformation and code generation

We have presented the tiling transformation [35, 87] in Section 2.3, and its characteristics (such

as tile shape, fixed-size vs parametric, legality condition) were already discussed there. In this

section, we focus on how tiling is managed in the current polyhedral compilers. We will first

consider the case of fixed-size tiling, before considering parametric tiling.

Code generation for fixed-size tiling Fixed-size tiling is a polyhedral transformation, i.e.,

the transformed program is still polyhedral. This means that we have two options when applying

the fixed-size tiling transformation: either we compute the intermediate representation of the

173

program after transformation, or we generate directly the code using a polyhedral code generator

(such as Cloog [10]).

The Pluto [15] polyhedral compiler is a fully automatic source-to-source compiler that gener-

ates fixed-size tiled and parallel code. It finds automatically a set of valid tiling hyperplanes

by formulating and solving an integer linear programming problem. Because of the problem

formulation, the normal vector of hyperplanes are forced to be positive in the original paper,

however this limitation was removed in a recent work [1]. After deciding on a set of hyperplanes,

Pluto tiles specifically identified bands of the scattering functions (i.e., the scheduling functions)

and generates immediately the syntax tree of the tiled code using Cloog.

In comparison, our monoparametric tiling transformation computes explicitly the intermediate

representation of the tiled program. Because of the size of the resulting program, it might cause

some scalability issues for the later polyhedral analysis. However, in our context, we need to

keep all the information about the computation of each tile, thus we do not have a choice.

For other purposes (such as code generation), it might be enough to retain only part of the

information about the tiled program. For example, Kong et al [43] use a similar classification

(called signature in their paper) to our notion of kind of tile for their dynamic dataflow compiler

framework. However, instead of differentiating each tile according to its computation, they

differentiate tiles according to their incoming and outgoing intra-tile dependences.

Code generation for parametric tiling Because parametric tiling is a non-polyhedral

transformation and prevents any polyhedral analysis afterward, current compilers integrate this

transformation in the code generation phase. It also prevents any further polyhedral transfor-

mation or analysis, which was not hard-coded in the code generator.

Parametric tiling is trivial when the iteration domain is rectangular, the easiest solution is to

use a rectangular bounding box of the iteration space and tile it. However, if the iteration

domain is, for example, triangular, many of the executed tiles are empty and such a method

becomes inefficient.

174

Renganarayanan et al [68, 69] presented a parametric tiled code generator for perfectly nested

loops and rectangular tiling, which only iterates over the non-empty tiles. The main idea of

this approach is to compute the set of non-empty tiles (called outset) and the set of full tiles

(called inset) in a simple way, then use these information to enable efficient code generation.

This work was later extended to manage multi-level tiling [41, 69]. We notice that the outset

and inset appears in our monoparametric tiling transformation: the outset is the union of the

domains of all our kind of tiles, and the inset is the union of all the domains of our kind of tiles

which are full-tiles.

Kim [39] proposed another parametric code generator called D-tiling for perfectly nested loop,

following the work from Renganarayann. Its main insight is the idea that code generation can be

done syntactically on each tiled loop incrementally, instead of all at once. It has been extended

in order to manage imperfectly nested [40].

Independently, Hartono et al [33] have presented a code generation scheme called PrimeTile

which also manages imperfectly nested loop. The main idea is to cut the computation into

stripes, and to place the first tile origin on this stripe at the position where we are starting to

have full tiles in this stripe. The generated code is sequential and efficient [78]. Because the

tile origins of different stripes are not aligned, we cannot find a wavefront parallelism and this

scheme cannot be adapted to generate parallel tiled code.

Later, Hartono et al [32] have presented a code generation scheme called DynTile which manages

to generate parallel tiled code for imperfect nested loop. The idea is to consider the convex hull

of all statements, then to rely on a dynamic inspector to determine the wavefronts of tiles,

which are scheduled in parallel. Finally, Baskaran et al [9] have presented PTile which allows

parametrized parallel tiled code for imperfectly nested affine loops. This algorithm is identical

to the one used in D-tiler, and was independently developed. A survey [78] compares the

effectiveness of the sequential, and the parallel code generated by Primetile, Dyntile and PTile.

Another approach is to adapt the Fourier-Motzkin elimination procedure to manage parametric

coefficient. This has been done by Amarasinghe [4] who integrated the possibility of managing

linear combination of parametric coefficient in the SUIF tool set (such as (N + 2M).i, where N

175

and M are parameters, and i is a variable), but no details have been provided and only perfectly

nested loops were managed. Lakshminarayanan et al [69] (Appendix B) extended this to the

case where the coefficients of a linear inequality can be parameters.

More generally, several people have been looking at extending the polyhedral model to be able to

manage parametric tiling naturally. Größlinger et al [29] extended the polyhedral model to deal

with parametrized coefficients, and have showed how to adapt Fourier-Motzkin and the simplex

algorithm. In particular, these coefficients can be rational fractions of polynomials of parameters

(such as
0.3 ∗N2

0.7 ∗N ∗M + 3
). However, they have to rely on quantifier elimination, thus their

method has scaling issues. Achtziger et al [2] studied how to find a valid quadratic schedules

for an affine recurrence equation. Recently, Feautrier [26] considered polynomial constraints

and has presented an extension of Farkas lemma. This class encompasses the parametric tiling

transformation, at the cost of the complexity of the analysis.

7.2 Program equivalence and template recognition

In this section, we present the state-of-the-art on the program equivalence algorithm, then on

the template recognition algorithm, and how it relates to our template recognition algorithm.

7.2.1 Program equivalence

The equivalence problem between two programs is known to be undecidable [8]. However,

many approaches and semi-algorithms were proposed in the last few years to tackle partially

this problem.

A first approach to the equivalence problem consists on comparing directly the computations

of both programs, by “unrolling” them simultaneously and step by step, while managing their

recursions.

Barthou et al [8] proposed a semi-algorithm for System of Affine Recurrence Equations, which

encodes the equivalence problem into a reachability problem of a Presburger automaton (i.e., a

176

finite automaton whose states are associated with an integer vector, and whose transitions can

test and modify these values). This reachability problem is also undecidable, but some efficient

heuristics exist. This algorithm only considers Herbrand equivalence and no semantic properties

are considered.

Shashidhar et al [75] proposed another equivalence algorithm based on Array Data Dependence

Graph (ADDG). This graph is a representation of the operations done by a program, and the

data dependences between them. Their algorithm manages associativity and commutativity

(by transforming locally the ADDG), but only over a finite number of elements. They manage

recurrences by unfolding the loops from both programs as many times as needed until obtaining

a comparison between the same states again.

Verdoolaege et al [81] proposed an improved formalism based on a dependence graph, that

allows them to manage parametrized programs. They also present an alternative way to deal

with recurrences, based on the widening operation. Commutativity is managed by testing every

permutation of the arguments of operators until we find a good one. This approach is no longer

possible if the number of arguments is parametrized (as it is in the case of reduction).

If we assume that the size of the programs we compare are fixed at compile time and small,

a pragmatic approach to prove equivalence is to unroll the computation, to normalize it and

to check that the same operations are performed in the same data. This approach has been

explored by Schordan et al. [73], but, for obvious reasons, does not scale well, is not adaptable

to parametric loops and does not manage semantic properties.

Pnueli et al. [58] introduced a method called translation validation. The idea is to create

an automaton representing the possible states of a program (called a Synchronous Transition

System), then to prove that there exist a bisimulation between the two automata.

Symbolic analysis [31] is another way of proving the equivalence of two programs, by deriving

a symbolic expression for the outputs, as functions of the program inputs. Then, we just have

to prove that both expressions are equivalent, potentially modulo some semantic properties.

177

Menon et al. [53] introduced fractal symbolic analysis. It consists of producing a new equivalence

problem with simpler programs, such that if the new programs are equivalent, then the original

programs were equivalent. This new problem is an approximation of the original equivalence

problem. By applying the same technique recursively, they manage to obtain programs which

are simple enough to be managed by a classical symbolic analysis.

Karfa et al. [36] proposed an algorithm to decide equivalence based on ADDG, inspired by sym-

bolic analysis. The idea behind their equivalence checking is to build an arithmetic expression

corresponding to the computation done by the considered program. By normalizing this expres-

sion, they are able to manage the semantic properties of binary operators. However, because

they need to have a finite arithmetic expression, they are not able to manage recursion and

reductions.

Lopes et al. [49] used a similar approach and manages uninterpreted function symbols. The

idea is to replace these uninterpreted function symbols by an affine expression with parametric

coefficients, then to find an arithmetic expression of the outputs as a function of the inputs.

They manage loops by considering it as a recurrence, and by solving it (i.e., by finding a closed

form of the state of the loop after a given number of iterations), which is not always feasible.

7.2.2 Template recognition

Template recognition algorithm We can classify the current state-of-the-art template

recognition algorithm into two categories: those based on dependence graphs [57] and those

based on Abstract Syntax Tree [12, 38, 54].

Pinter and Pinter’s recognition algorithm [57] is based on the Program Dependence Graph. After

building and normalize it, they try to recognize patterns within it, using a graph grammar. If

a portion of the graph matches, then a computation is detected.

Both Kessler’s PARAMAT [38] and Bhansali’s system [12] are based on the AST of the program.

In the case of PARAMAT, the program is first normalized (by doing various transformation such

as constant propagation, or dead-code elimination) before matching exactly the AST with the

178

template. In the case of Bhansali’s system, there is no normalization step before this matching.

This last work contains a library of templates which is similar to our framework: their templates

(which are called patterns and described using a DSL) are organized into categories (which are

the application domain of the templates, for example “linear algebra solver”), in order to prune

the space of template to be matched.

Alias’s template recognition algorithm [3] is the closest to our contribution. The algorithm is

composed of two steps. The first step (called slicing) gathers candidate portions of the code

which can potentially match with the template. The second step (instanciation test) considers

the previously extracted slices, and determines which ones correspond to the template we aim to

recognize. This method is based on a unification tree-automaton, which unrolls the computation

of both the template and the slice and unifies the template with the program.

Compared to our contribution, the template considered can be function of the first order, which

means that an operator in a template might be an unknown part to be matched. However,

they assume that the templates are linear, which means that the inputs of a template can only

occur once. About the recognition algorithm itself, Alias’s algorithm can recognize a template

anywhere in the program whereas, in our case, the output of the template and the program

must match. However, because of this, it is possible for them to detect several overlapping

templates, which forces them to select which template to keep.

We also notice that none of the recognition algorithm described above consider semantic prop-

erties.

Reduction and scan detection Many work focus on detecting reductions and scans inside a

polyhedral program, which can be viewed as a special case of template recognition. The earliest

work was by Redon and Feautrier [65]. This paper focuses on detecting recurrences inside a

system of recurrence equations, thus can be used to detect reductions and scans (because they

are special cases of recurrences). Their approach is based on a pattern-matching mechanism

which is able to detect multidimensional recurrences, but fails if a reduction or scan spans

179

other multiple equations (mutual dependent variables) or is higher-order (i.e., the recursion

uses multiple elements from the previous iterations).

Sato and al. [71] detects loops as instance of matrix vector multiplication, which can be imple-

mented by a reduction operator. Because of this formalism, they are able to manage high-order

recursions: for example, if we consider a Fibonnaci computation Fi = Fi−1+Fi−2, the recognized

matrix vector multiplication will be:

 Fi

Fi−1

 =

1 1

1 0

 .
Fi−1
Fi−2


However, this methods does not manage to recognize multi-dimensional reductions or scans, or

when a scan or a reduction is inside a multi-dimensional loop.

Zou and Rajopadhye [90] have managed to combine the two previous contributions and overcome

their respective limitations.

Menon et al. [52] have presented a system which detect matrix multiplication operations inside

a Matlab program, in order to replace it by a BLAS library call. The reduction detected are

straight-forward, and a set of rewriting rules (called axioms) are used to normalize the program,

in order to identify matrix multiplications.

7.3 Dense linear algebra algorithm derivation

In this section, we present the state-of-the-art on dense linear algebra algorithm derivation and

show how it relates to our template detection framework.

FLAME Van de Geijn’s group have developed FLAME [13, 30], a Formal Linear Algebra

Methodology Environment. The input of this environment is a precondition and a post-condition

of a linear algebra computation, expressed as a high-level equation on the input and output

matrices. For example, in order to derive a Cholesky algorithm, the input to FLAME would

have been a matrix A, the output a matrix L, the property that L is a lower-triangular matrix,

180

and the equation A = L.LT . Given this information, they are able to derive a list of in-place

algorithms which satisfy this specification.

The derivation of the algorithm is based on an algorithmic skeleton, which consists mainly in a

while loop, in which each iteration builds a larger portion of the output matrix. Each step of

the derivation aims at completing this skeleton to obtain the full algorithm, starting by deriving

the invariant of the while loop, and finishing by the computation performed inside. For every

option encountered during these steps, a different version of the algorithm is generated. The

result of this derivation is a pseudo-code algorithm which manipulates rows and columns of

block of matrices. This pseudo-code algorithm is then used to generate an efficient code.

An iteration of the while loop corresponds to a progression of one row (or one column) in the in-

place computation of the output. As an option to their derivation, they can make one iteration

of the while loop correspond to a progression of b rows (or b columns), where b is a parameter:

at each new iteration, instead of considering only one extra row/column, they can consider b

extra rows/columns at once. In that case, the derived computations inside the while loop are

dealing with sub-matrices and vectors of size b, which are similar to the template we detect with

our framework.

Hydra Duchâteau et al have developed Hydra [56], which is also a system to derive linear

algebra algorithms. They start from an equation (called signature) specifying the algorithm

they aim to derive (such as L.X = B where L is lower-triangular and X is marked as the

unknown matrix and is the output of the algorithm). The main idea of their derivation consists

on using a divide and conquer strategy to recursively cut their matrices into smaller blocks, and

propagate this division inside the matrix equation. For example, if we consider L.X = B and

cut all these matrices into 4 submatrices, we obtain the following equations:



L0,0.X0,0 = B0,0

L1,0.X0,0 + L1,1.X1,0 = B1,0

L0,0.X0,1 = B0,1

L1,0.X0,1 + L1,1.X1,1 = B1,1

181

When the matrices are small enough, they stop the recursive divide and conquer strategy and

rely on a library call (instead of stopping at the scalar level). Then, the next step is to produce

a task graph, so that they can figure out in which order they should compute the sub-blocks

of the unknown matrix. Then, using dynamic scheduling algorithms to avoid load-balancing

issues, they generates a parallel code corresponding to their specification.

LGen Spampinato et al have developed LGen [77], which focuses on deriving linear algebra

implementations for very small and fixed problem sizes (e.g., 5 × 9 matrices), called BLAC

(Basic Linear Algebra Computations). The computation is specified through a linear algebra

equation, in which the left-hand side is the output of the computation and the right-hand side

is an expression of the inputs of the computation. The first step of their derivation is to use a

tiling, decide for its tile sizes and propagate it to the rest of the equations. Then, they makes

the access pattern and loop explicits, before performing various optimizations (such as loop

unrolling, scalar replacement) and obtaining an efficient vectorized C code. The best version

is picked by using auto-tuning. Their methodology is inspired by SPIRAL [60], which targets

Digital Signal Processing computations.

Autotuning framework and specialized compiler for linear algebra Many other works [11,

14, 76, 82, 83] aim to find the best implementation possible for linear algebra computation,

through autotuning. Compared to the frameworks described previously in this section, their

starting specifications already describe the computation, instead of specifying it then deriv-

ing it. Some details (such that the value of the tile size parameters) are determined through

exploration, but no new piece of computation is generated.

Comparison with our framework All these previous works are deriving a dense linear

algebra algorithm from a high-level specification, which consists on an equation between matrices

and vectors. Our framework aims to do the reverse: given a computation, we want to retrieve

the high-level properties of the program through template recognition, in order to place a library

call whenever possible.

182

Chapter 8

Conclusion

We conclude this document in Section 8.1. Then, we present some interesting unexplored

research directions which are directly in the continuation of our work in Section 8.2.

8.1 Conclusion

Nowadays, architectures are becoming more and more complex, and it is increasingly difficult to

use them at their full capabilities. This has caused a gap in performance between a code which

are automatically generated through a compiler, and a code from a high-performance library,

which was finely tuned. Thus, in order to improve the performance of a compiler-generated

code, we want to be able to place calls to operations from a high-performance library. In this

dissertation, we consider dense linear algebra operations and focus on the following problem:

given a polyhedral computation, how can we detect subcomputations that corresponds to dense

linear algebra operations?

This dissertation makes three contributions: a program transformation called monoparametric

tiling, a template recognition algorithm and a framework which combines these two previous

contributions to address our problem.

183

The monoparametric tiling is a tiling transformation in which the tile sizes are multiples of a

common tile size parameter. This transformation is in-between fixed-size tiling and parametric

tiling: indeed, this transformation is still polyhedral (like the fixed-size tiling transformation),

while having parametric tile sizes of fixed shapes. We first consider the first half of this trans-

formation, called monoparametric partitioning, which is just a reindexing of the spaces of a

program in order to introduce the dimensions used to express a tiling. We show how to apply

this partitioning transformation on polyhedra, affine functions then program, both for hyper-

rectangular and general tile shapes. Then, we present the second half of the transformation,

which isolates the computation of each tiles inside an atomic subprogram.

We introduce a template recognition algorithm, an extension of Barthou’s program equivalence

algorithm [8]. This algorithm is able to deal with semantic properties commonly found in dense

linear algebra applications, such as associativity and commutativity of binary operators. To

the best of our knowledge, our template recognition algorithm is the first template recognition

algorithm powerful enough to be able to recognize any operation from BLAS.

Finally, we introduce our template detection framework. This framework first applies the

monoparametric tiling transformation, then considers each subprogram independently, trying

to recognize it as a finite combination of templates. Our templates are coming from a template

library inspired by BLAS [46]. Our framework successfully recognizes most of the computation

of dense linear algebra applications, and recognizes some portions of applications outside of the

dense linear algebra domain. Then, the piece of code recognized as a linear algebra operation

can be substituted by a library call, which will improve the performance of the code, or we can

use this newly acquired high-level information to perform some optimization of the algorithm

itself.

8.2 Future directions

In this section, we discuss the future research directions which span from our contributions

and were not addressed yet. We consider each one of our contributions in the order of this

184

dissertation.

8.2.1 Monoparametric tiling transformation

Necessary and sufficient condition for the legality of tiling Currently, we do not per-

form any legality check of the provided tiling informations. As mentioned in Section 3.4, we

can check for the legality condition after applying the partitioning transformation to the whole

program, by collecting the block contributions of the partitioned dependence functions. We also

showed that this criterion is more precise than the legality condition based on the tiling hyper-

planes. However, partitioning the whole program is costly if we just want to check the legality

of a tiling. It might be possible to avoid this cost by focusing on the dependences functions,

paired with their context domain (i.e., for which indices a dependence function is used).

Monoparametric tiled code generation for any tile shape If we combine our monopara-

metric tiling transformation with a polyhedral code generator, we obtain a monoparametric tiled

code generator. As shown in Section 4.4, the main issue with our transformation is the size of

the generated tiled code. This is caused by the fact we build a full program representation of

the tiled code. We might be able to avoid building this program representation by generating

immediately the tiled code, like Pluto does. However, this will also prevent any polyhedral

analysis to be applied after the tiling.

Assuming that we have built such tiled code generator, the tile shapes supported are hyper-

rectangular tile shapes, or parallelogram tile shapes with some preprocessing. It is possible to

extend such code generator to support any tile shape. In addition, because of the monoparamet-

ric nature of our tiling transformation, the tiles of the generated code will be monoparametrized.

We claim that, except for the partitioning part of the tiling transformation (whose generalization

was presented in Section 3.3), the rest of the machinery can be completely abstracted from the

tile shape. Indeed, once the partitioning has been applied, at no point the tile shape plays

a role in the construction of the subsystems and main system of the tiled code, as shown in

185

Chapter 4. Because our legality condition is built on top of the partitioning and analyze the

block contribution, it is also independent of the tile shape.

Monoparametric tiling and fixed-size tiling We hypothesize that monoparametric tiling

is strictly better than fixed-size tiling. In other words, anything which can be done with fixed-

size tiling can also be done with monoparametric tiling, only better (because of the limited

amount of parametrization of a monoparametric tiled code).

In order to verify this claim, we can consider a fixed-size tiling code generator (e.g., Pluto [15])

and create an associated monoparametric tiling code generator, such that if we substitute the

block size parameter by a constant value in the monoparametric tiled code, we obtain exactly

the fixed-size tiled code. Intuitively, because both transformations are polyhedral, all the in-

formation collected in order to generate a fixed-size tiled code (such as the tiled version of the

iteration space, . . .) can also be collected for the monoparametric case. Thus, in order to obtain

such monoparametric tiling code generator, we can combine these informations exactly in the

same way than the fixed-size code generator.

If this claim is verified, then there is no benefit to use fixed-size tiling over monoparametric

tiling.

8.2.2 Template recognition algorithm

We can enhance further the recognition power of our algorithm, by improving the management

of some semantic properties.

Managing the semantic properties of reduction operators Our current template recog-

nition algorithm does not consider the associativity and commutativity of the reduction opera-

tors. This means that if we compare two reductions, we have to compare their subexpressions

exactly in the same order of accumulation. In particular, we cannot consider permutations in the

order of accumulation. For example, this prevents us to recognize a match between
∑N

k=0 I[k]

and
∑N ′

k′=0 I
′[N ′ − k′], because the order of summation is reversed.

186

In Section 5.6, we discussed an extension of Barthou’s equivalence algorithm we have proposed

in [34], in order to manage the associativity and commutativity of the reduction operators. The

next step would be to adapt this equivalence algorithm to a template recognition algorithm,

like we did in Section 5.2 for the original equivalence algorithm. The main difficulty of this

extension would come from the fact that we have to infer the mappings between two compared

reductions, and we have to find simultaneously the inputs of a template.

Note that, in the context of our framework, we manage partially the associativity and com-

mutativity properties of reductions operators. Indeed, as mentioned in Section 4.3, when the

monoparametric tiling transformation tiles a reduction, this transformation decomposes it into

smaller reductions of the size of a tile and introduces the partial result of a tile as a new vari-

able (called TempRed). The original reduction becomes an accumulation over TempRed, each

element of TempRed being the accumulation over a tile. Thus, the associativity and commuta-

tivity properties were used in order to cut the reduction along the tiles boundaries. In practice,

we showed that this reordering is enough in order to recognize linear algebraic templates with

our framework.

Managing the distributivity property As discussed in Section 5.4, we manage most of

the semantic properties commonly found in a dense linear algebra computation through a set

of rewriting rules. However, this approach is not satisfactory for the distributivity property.

Indeed, we have shown that distributing or factorizing any term encounter indiscriminately

might prevent the recognition of some template. We proposed a solution based on multiple

version of a template: one in which the terms are distributed and one in which the terms are

factorized. This fix is good enough in our context, but we might want a cleaner solution.

It might be possible to manage the distributivity property by adapting the template recogni-

tion algorithm. For example, we can adopt a similar approach than the management of the

associativity and commutativity properties, and generate different versions of the equivalence

automaton, depending on whether we choose to distribute/factorize a term or not. This requires

us to keep track of the surrounding factorized terms when analyzing a state of the automata.

187

8.2.3 Template recognition framework

Enriching the template library Currently, our template library is mostly composed of

operations which can be found in the BLAS specification. We could extend this library to

include operations which can be found in LAPACK. For example, we could include a Cholesky

computation, whose corresponding scalar operation is a square root. Another possible extension

is to consider operations from alternate semi-ring, such as (max,+), which is useful for dynamic

programming computations.

Another idea is to build automatically the template library, based on the unrecognized computa-

tions encountered. More precisely, every times a computation is not recognized by our template

library, we can register this computation (or detect a portion of the computation which might

correspond to the top-most operation, then register it). If a computation is encountered multi-

ple times, we can decide to add it to the template library and notify the user that it might be

interesting to have a corresponding efficient implementation. We already have a limited form of

this idea, through our “recursion” template (which tries to find smaller instances of our original

computation).

Using template recognition to improve performance Our framework detects subcom-

putations of a program as matricial operations. These high-level information can be exploited

by using semantic properties of linear algebra operations to change the computation itself. For

example, if we recognize L.L−1, we can replace the corresponding computation by an identity

matrix. If we detect a succession of matrix multiplications A⊗ (B⊗ (C⊗D)), we can rearrange

them into (A ⊗ B) ⊗ (C ⊗ D), in order to enable parallelism. These optimizations are much

more powerful compared to what could have been done without the recognition process.

Then, when we decide to generate code, we can place library calls corresponding to these

matricial operations. As discussed in Section 6.4, we need to preprocess the template tree we

obtain, so that we merge them and minimize the number of library calls issued. We also need to

decide for a memory allocation (most of the BLAS computation being in-place) and the memory

storage for each matrix.

188

Appendix A

Résumé du travail de thèse

Ce chapitre consiste en un résumé étendu du travail de thèse écrit en Français. Son organisation

suit la structure du document, c’est à dire que les sections correspondent aux chapitres du

document. Cependant, même si le discours principal est identique, ce résumé présente moins de

détails (preuves, exemples, commentaires secondaires). Ainsi, le lecteur est invité à se référer

au document complet en Anglais pour des explications complètes.

A.1 Introduction

De nos jours, du à la complexité croissante des architectures, il est de plus en plus difficile de les

exploiter pleinement afin d’exécuter une application le plus rapidement possible. En réponse à ce

problème, des librairies qui proposent des implémentations à haute performance pour certaines

opérations ont été créées. Ces implémentations ont été finement calibrées manuellement et leur

performance ne sont généralement pas atteignable par un code généré par un compilateur.

Cependant, les appels à ces implémentations à haute-performance doivent être faites à la main,

ce qui pose plusieurs problèmes. Tout d’abord, cela demande une compréhension profonde de

l’algorithme de la part de l’auteur du programme, afin de pouvoir reconnâıtre, délimiter et

remplacer les bouts correspondant par un appel de fonction. Ensuite, cette compréhension peut

189

être imparfaite, au sens où certains appels de fonction intéressants peuvent avoir été manqués.

Ainsi, l’idéal serait de permettre aux compilateurs de placer automatiquement ces appels à des

librairies, ce qui n’est, pour le moment, pas fait.

Le problème clef est de reconnâıtre un calcul qui correspond à une opération ayant une implémentation

optimisée. Plus précisément, nous cherchons à reconnâıtre des sous-calculs (par opposition au

programme entier) afin de pouvoir les remplacer par des appels de fonction correspondants.

Dans le contexte de notre travail de thèse, nous nous intéressons à des opérations d’algèbre

linéaire, pour lesquels plusieurs librairies existent (telles que BLAS [46], LAPACK [6]), et qui

contiennent des opérations communément présents dans de nombreux domaines d’application.

Nous considérons donc le problème suivant: comment reconnâıtre des sous-calculs correspon-

dant à des opérations d’algèbre linéaire dans un programme polyédrique? Ce problème soulève

plusieurs défis. Comme on s’intéresse à des sous-calculs, on doit faire attention aux recouvre-

ments entre opérations détectées. Le fait que l’on cible des opérations d’algèbre linéaire veut

dire que l’on doit gérer les propriétés sémantiques associées à ce domaine. Enfin, nous devons

faire attention à la scalabilité du procédé de reconnaissance.

Contributions L’idée principale de notre solution est de découper préemptivement le calcul

en blocs avant d’effectuer la reconnaissance d’opérations. Vu que l’on considère des opérations

d’algèbre linéaire qui raisonnent sur des matrices qui sont rectangulaires, on partitionne l’espace

des données en tuiles et utilise ce tuilage pour différencier les calculs en fonction de la tuile

utilisée. Ainsi, le tuilage sur l’espace des données est propagé à l’espace des calculs. L’hypothèse

faite est que ces sous-calculs correspondent à des combinaisons d’opérations d’algèbre linéaire.

L’avantage de cette approche est, d’une part, d’éviter d’avoir des recouvrements entre opérations

reconnues et, d’autre part, de fournir une liste d’endroits dans le flot de calcul où commencer à

chercher à reconnâıtre un début de sous-calcul.

Ainsi, nous proposons les contributions suivantes:

• Tuilage monoparamétrique: Nous introduisons une nouvelle transformation de pro-

gramme appellée le tuilage monoparamétrique. Un tuilage peut utiliser des tuiles de taille

190

fixe (les tailles de tuiles sont constantes et ne peuvent pas être changées après compila-

tion) ou de taille paramétré (les tailles de tuiles sont des paramètres du programme et

donc peuvent être changées juste avant exécution, mais le programme après transforma-

tion n’est plus polyédrique). Nous montrons que si nous considérons des tuiles dont les

tailles sont des multiples d’un unique paramètre, le programme après transformation reste

polyédrique, tout en permettant une paramétrisation limitée après compilation. Nous

proposons ensuite une variante de cette transformation qui isole le calcul effectué par une

tuile dans un sous-programme. Cela est possible du fait qu’il y a un nombre fini non-

paramétrique de calculs différents effectués par les tuiles du programme, et donc on a

besoin seulement d’un nombre fini non-paramétrique de sous-programmes.

• Algorithme de reconnaissance de template: Nous proposons une extension d’un

algorithme d’équivalence de programme [8] en un algorithme de reconnaissance de tem-

plate. Les templates que nous considérons dans ce document sont des programmes dont

les entrées peuvent correspondre à des expressions inconnues. Ainsi, par rapport à un

algorithme d’équivalence de programme, l’algorithme de reconnaissance de template doit

également tenir compte de ces inconnues et déterminer leurs valeurs. Nous étendons par

la suite cet algorithme de reconnaissance de template, de manière à gérer les propriétés

sémantiques communément rencontrées en algèbre linéaire (associativité, commutativité,

distributivité, . . .).

• Procédé de reconnaissance de sous-calculs d’algèbre linéaire: Nous combinons

les deux contributions précédentes de la manière suivante: nous appliquons d’abord le

tuilage monoparamétrique pour séparer les calculs des tuiles en sous-programmes isolés.

Puis, nous considérons chaque sous-programme indépendamment et nous essayons de les

reconnâıtre comme une combinaison d’opérateurs d’algèbre linéaire. Ces opérateurs sont

définis à travers une librairie de templates, inspirée de BLAS [46]. A chaque fois qu’un

opérateur est reconnu, l’algorithme est appliqué récursivement sur les expressions corre-

spondants aux entrées du template. Le résultat du procédé est donc un arbre de templates

par sous-programmes, chaque noeud correspondant à un template reconnu.

191

Plan Le reste du résumé est structuré de la manière suivante: dans la Section A.2, nous intro-

duisons les définitions et notations nécessaires pour comprendre le reste du travail. Nous intro-

duisons en deux parties la transformation de tuilage monoparamétrique dans les Sections A.3

et A.4. La Section A.3 présente la transformation de partitionnement monoparamétrique, qui

effectue une réindexation de tous les indices du programmes. Nous étudions tout d’abord le cas

d’un tuilage rectangulaire, avant d’étendre la transformation à n’importe quelle forme de tuile.

Les indices introduits par le partitionnement monoparamétrique sont ensuite utilisés dans la

Section A.4 pour exprimer le tuilage, tout en isolant les calculs effectués par les tuiles dans des

sous-programmes séparés.

La Section A.5 présente un algorithme de reconnaissance de template, basé sur un algorithme

d’équivalence de programme proposé par Barthou et al [8]. Plusieurs extensions sont proposés

pour permettre la gestion de propriétés sémantiques usuellement rencontrées en algèbre linéaire.

La Section A.6 combine les contributions précédentes en un seul procédé, qui décompose le calcul

d’un programme en tuiles, avant d’essayer de reconnâıtre chaque tuile en tant que combinaison

d’opérateurs classique d’algèbre linéaire. Notamment, ce procédé utilise une bibliothèque de

templates, inspirés de BLAS [46]. Nous concluons finalement ce travail dans la Section A.7, et

proposons quelques pistes de recherche.

A.2 Définitions et notations

Cette section présente les définitions et notations qui serons utilisées dans la suite de cette thèse.

Nous définissons tout d’abord la représentation de programme choisie, puis montrons un bref

aperçu des transformations de programme considérées par la suite (c’est à dire, changement

de base, et tuilage), puis finissons par présenter les intuitions principales derrière l’algorithme

d’équivalence de programme.

Représentation de programme La représentation de programme que nous choisissons est

la suivante:

192

Definition A.1. Un programme polyédrique est un programme dont le calcul peut être représenté

par une liste d’équations, de la forme suivante:

~i ∈ D : V ar[~i] = Expr(V ar1[u1(~i)], . . . , V ard[ud(~i)])

où D est un polyèdre, c’est à dire un ensemble d’entier satisfaisant des contraintes affines et les

uk sont des fonctions affines, appelées fonctions de dépendances qui lie chaque lecture à son site

de définition V ark[uk(~i)]. V ar est une variable du programme, qui peut être soit une variable

d’entrée, soit une variable de sortie, soit une variable locale. ~i est appelé vecteur d’itération.

Expr est une expression est peut-être des formes suivantes:

• Une variable S[u[~i]

• Une opération op(Expr1, . . . , Exprk) où l’arité de l’opération est k. Une constante est un

opérateur d’arité 0.

• Un fonction des indices f(~i)

Une variable peut avoir plusieurs équations définissant ses valeurs, sous réserve que ces définitions

concernent des ensembles de vecteur d’itération disjoints. Le domaine d’une variable est l’union

de tous ces ensembles, et correspond à l’ensemble des points pour lesquels cette variable est

définie à travers une des équations du programme.

Nous rajoutons à cette définition la notion de réduction. Une réduction est une application

successive d’un opérateur binaire associatif et commutatif sur un ensemble de valeur. Un ex-

emple typique de réduction rencontré en algèbre linéaire est une sommation sur un nombre

paramétrique de valeurs:

C[i, j] =
k<N∑
k=0

A[i, k] ∗B[k, j];

193

Nous intégrons les réductions à notre représentation de programme en tant que nouveau type

d’équation, de la forme suivante:

~i ∈ Dr : V ar[~i] =
⊕
~j ∈ D
~i = π(~j)

Expr(V ar1[f1(~j)], . . . , V ard[fd(~j)])

où π est une fonction affine appelée fonction de projection, qui détermine les directions selon

lesquelles sommer les valeurs de la sous-expression. Afin de faciliter l’écriture de programmes,

nous autorisons l’utilisation de réductions comme arguments d’une expression.

Transformation de programme Dans le reste du document, nous nous intéresserons prin-

cipalement à deux transformations de programme: la transformation de changement de base et

la transformation de tuilage.

Un changement de base est une transformation qui modifie le domaine d’une variable en utilisant

une fonction unimodulaire (c’est à dire, une bijection dont le déterminant vaut 1 ou −1). Le

nouveau domaine de la variable est l’image de l’ancien domaine par cette fonction unimodulaire,

et les équations du programme sont adaptées pour tenir compte de ce changement. Ainsi, cette

transformation est juste une fonction de réindexage du domaine d’une variable et ne modifie en

aucun cas le calcul effectué par un programme.

Un tuilage est une transformation qui regroupe les calculs en groupes (appelées tuiles) qui sont

exécutés de manière atomiques. La Figure A.1 montre un exemple de tuilage pour des tuiles

carrées de taille 3 par 3.

Parce que les tuiles sont exécutées de manière atomique, on ne peut pas avoir de cycle de

dépendances entre elles. Par exemple, dans la Figure A.1, chaque tuiles dépendent de la tuile

à leur gauche et en dessous, et il n’y a pas de cycle de dépendence entre différentes tuiles.

Par conséquent, le tuilage est légal. Des changements de base sont fréquemment utilisés pour

arranger les dépendances d’un programme et rendre un tuilage légal.

194

(∀i = j = 0) A[i, j] = 1

(∀j = 0 < i) A[i, j] = A[i− 1, j]

(∀i = 0 < j) A[i, j] = A[i, j − 1]

(∀0 < i, j) A[i, j] = A[i− 1, j] +A[i, j − 1]

i

j

Figure A.1: Exemple de tuilage, avec pour tuiles des carrés de taille 3× 3

Différentes variations du tuilage existent, par exemple en jouant sur la forme de la tuile con-

sidérée (parallélépipède, trapézöıde, hexagone, . . .). Indépendamment, la nature des tailles de

tuiles est un autre critère de variation du tuilage considéré. Si les tailles d’une tuile sont des

constantes (par exemple 16 × 32), alors le tuilage est de taille fixe et cette transformation est

polyédrique (c’est à dire, le programme transformé reste polyédrique). Le désavantage de cette

transformation est que les tailles de tuile est fixée pendant la compilation, et donc on est obligé

de recompiler le programme à chaque fois que l’on veut changer ces tailles, ce qui est gênant si

on veut découvrir la taille de tuile qui donne les meilleures performances.

Si les tailles d’une tuile sont des paramètres (par exemple b1×b2), cette transformation n’est plus

polyédrique (c’est à dire, le programme transformé n’est plus polyédrique, à cause de contraintes

quadratiques introduites). Dans ce dernier cas, parce qu’on sort du modèle polyédrique, il n’est

plus possible de composer des transformations ou analyses polyédriques à la suite d’un tuilage

paramétrique.

Algorithme d’équivalence de programme Dans la Section A.5, nous allons étendre un

algorithme d’équivalence de programme en un algorithme de reconnaissance de template. La

notion d’équivalence utilisée par cet algorithme s’appelle l’équivalence d’Herbrand : deux pro-

grammes sont équivalents s’ils font exactement les mêmes opérations sur les mêmes données afin

d’obtenir leur sorties. Notez que cette notion d’équivalence ne tient compte d’aucune propriété

195

sémantique. De plus, toute transformation de programme qui respecte les dépendences préserve

cette équivalence.

L’algorithme d’équivalence de programme qui constitue notre point de départ est celui proposé

par Barthou et al [8]. La description et la formalisation complète de l’algorithme peuvent

se trouver dans la Section 2.4. Nous nous contentons ici de donner les intuitions principales

de l’algorithme. La représentation de programme considérée est celle des Systèmes d’Équations

Récurrentes Affines (SERA), qui est similaire à la représentation de programme que nous avions

introduit précédemment. Aussi, le problème de décider l’équivalence de deux programmes est

indécidable, et donc l’algorithme d’équivalence de programme est en fait un semi-algorithme (il

est possible que l’algorithme échoue à conclure une équivalence ou une non-équivalence)

L’algorithme d’équivalence de programme de Barthou repose sur la notion d’automate d’équivalence.

Cet automate est un automate de Presburger, ce qui veut dire que chaque état est associé avec un

vecteur de valeurs entières et que les transitions peuvent inspecter et modifier ces valeurs. Dans

le cas d’un automate d’équivalence, les états de cet automates correspondent à une comparaison

entre deux sous-calculs de chaque programme “Expr1 = Expr2” et les vecteurs correspondent

aux indices de ces sous-calculs (~i1, ~i2). L’intuition principale d’un automate d’équivalence est que

progresser dans l’automate revient à dérouler symboliquement les calculs effectuées par chaque

programme, en partant des sorties, tout en éliminant les opérateurs identiques qui occurrent de

chaque côté.

Ainsi, conformément à cette intuition, l’état initial d’un automate d’équivalence compare les

sorties des deux programmes. L’automate admet deux sortes d’état final: les états d’échec qui

correspondent à une comparaison trivialement fausse (par exemple, comparer une entrée d’un

côté avec un opérateur de l’autre) et les états de réussite qui correspondent à des comparaisons

entre entrées correspondantes. Les transitions de l’automate sont construites en suivant 3 règles

de constructions, qui, intuitivement, déroulent les calculs et éliminent les opérateurs présents

de chaque côté.

Barthou et al ont montré que deux programmes sont équivalents si et seulement si tout chemin

qui part de l’état initial en prenant des indices égaux (~i,~i) (ce qui correspond à comparer la

196

même sortie):

• N’arrive jamais à accéder un état final d’échec

• Accède un état final de réussite uniquement quand les indices des deux entrées comparées

sont égaux (ce qui veut correspond à comparer la même entrée)

Ainsi, le problème de décider l’équivalence de deux programmes peut se réduire au problème de

calculer l’ensemble d’accessibilité de certains états dans un automate de Presburger. Ce dernier

problème est lui-même indécidable, mais plusieurs heuristiques existent pour le résoudre.

Cet algorithme d’équivalence sera étendu en un algorithme de reconnaissance de templates dans

la Section A.5. Les templates que nous considérons dans ce document sont des programmes dont

les entrées peuvent correspondre à des expressions inconnues. Le problème de reconnaissance de

template prend en argument un programme et un template et essaye de trouver des valeurs aux

entrées du template qui le rend équivalent au programme. Il s’agit d’une définition plus faible

que celle retenue par Alias [3], qui considère des templates comportant des fonctions inconnues.

A.3 Partitionnement monoparamétrique

Dans cette section, nous nous intéressons à la première partie de la transformation de tuilage

monoparamétrique, appelée partitionnement monoparamétrique. La seconde partie de cette

transformation est décrite dans la Section A.4. Afin de simplifier le formalisme, nous nous

concentrons, au début de cette section, sur le cas des tuiles rectangulaires, avant de généraliser

nos résultats au cas général.

Commençons par définir la transformation de partitionnement monoparamétrique. On considère

un pavage de l’espace de chaque variable par des tuiles rectangulaires de taille (d1.b)×· · ·×(dk.b),

où les di sont des constantes et b est un paramètre du programme. Ainsi, chaque point de

l’espace original ~i se retrouve dans une unique tuile rectangulaire de ce pavage. Il est possible

d’introduire de nouveaux indices qui identifient la position de ce point dans le nouveau pavage.

197

Afin d’identifier une tuile (respectivement la position d’un point dans une tuile), de nouveaux

indices appelés indices tuilés ~ib (respectivement indices locaux ~il) sont introduits, tels que ~i =

D.b.~ib +~il, ~0 ≤ ~il < D.~1 et D est une matrice (appelé ratio) dont les coefficients diagonaux sont

les di.

La transformation de partitionnement monoparamétrique est simplement une réindexation de

tous les indices du programme, qui remplace les indices originaux ~i par les indices tuilés et

locaux (~ib, ~il). Ainsi, le nombre de dimensions de tous les espaces du programme transformé

sont doublés par rapport au programme original. Dans le reste de cette section, nous allons tout

d’abord montrer que, bien que ce changement d’indice n’est pas affine, nous avons tout de même

des propriétés de stabilité qui permettent d’obtenir un programme transformé polyédrique.

Propriété de stabilité dans le cas des tuiles rectangulaires Tout d’abord, étudions

l’application de la transformation de partitionnement monoparamétrique sur un polyèdre, puis

sur une fonction affine. En effet, ces deux objets mathématiques sont les seuls qui interagissent

avec les indices d’un programme. Ainsi, substituer ces objets par leur version partitionnée est

le cœur de la transformation de partitionnement monoparamétrique.

Considérons un polyèdre D. L’ensemble ∆ obtenu en appliquant la transformation de partition-

nement monoparamétrique sur ce polyèdre est une union finie non paramétrique de polyèdres

admettant les propriétés suivantes:

• Chaque polyèdre de ∆ correspond à une forme de tuile

• Les contraintes de chaque polyèdre peuvent être séparées en deux ensembles: les con-

traintes qui concernent les indices tuilés et les contraintes qui concernent les indices locaux.

Il n’y a aucune contrainte qui font intervenir les deux types d’indices.

Ainsi, ∆ décrit les différentes formes de tuiles qui arrivent après tuilage et les contraintes sur les

indices tuilés qui spécifient où chaque forme de tuiles se trouvent. Par exemple, la Figure A.2

montre un exemple de partitionnement d’un triangle bi-dimensionnel, en utilisant un tuilage de

taille b× b

198

i

j

∆
=

Premier polyèdre

∪
Second polyèdre

Figure A.2: Union de polyèdres ∆ obtenus après partitionnement. Le polyèdre original est un
triangle, et nous avons supposé, pour simplifier la présentation, que les tailles de tuile divisent
la taille de ce triangle. Après partitionnement, nous obtenons une union de deux polyèdres
dans ∆: un polyèdre qui correspond aux tuiles pleines, et un autre polyèdre qui correspond aux
triangles inférieurs (sur la diagonale)

Considérons une fonction affine f . Tout d’abord, notons que cette fonction affine interagit avec

deux espaces (correspondant à ses entrées et sorties): on doit donc considérer deux partition-

nements sur ces deux espaces. La fonction φ obtenue en appliquant la transformation de par-

titionnement monoparamétrique sur cette fonction affine est une fonction affine par morceaux.

Les branches de cette fonction affine par morceaux ont les propriétés suivantes:

• La valeur de chaque branche est une fonction affine et est différente des autres

• Les conditions de chaque branche est une conjonction de contraintes affines (càd, de la

forme ~a.~i + b ≥ 0 avec ~a et b des constantes) et de contraintes modulo (càd de la forme

g(~ib)%M = C, où 0 ≤ C < M sont des constantes et g est une fonction affine sur les

indices tuilés ib).

• Les branches ne contiennent aucune contrainte modulo si et seulement si une contrainte

de divisibilité faisant intervenir les ratios des partitions est satisfaite. Plus précisément,

si D est une matrice diagonale dont les coefficients sont les ratios du partitionnement sur

l’espace d’entrée, si D′ est cette même matrice pour le partitionnement de l’espace de

sortie et si Q est la matrice des coefficients de f , la condition est que “D′−1.Q.D est une

matrice entière”.

199

Partitionnement dans le cas des tuiles rectangulaires En utilisant ces propriétés de sta-

bilité, la transformation de partitionnement consiste simplement à substituer tous les polyèdres

et fonctions affines d’un programme par leur versions partitionnées. Les fonctions de dépendances

pouvant devenir des fonctions affines par morceaux, il est nécessaire de les aplatir, afin de créer

une équation par branches de cette fonction. Il est important d’éliminer progressivement les

branches non-satisfiables pendant cet aplatissement afin d’éviter toute explosion combinatoire.

Afin d’appliquer cette transformation, il est nécessaire d’assigner un partitionnement à tous

les espaces intervenant dans un programme, c’est à dire, à tous les domaines des variables

d’un programme. Cependant, il faut faire attention à ce que ces ratios n’introduisent pas de

conditions de modulo lors du partitionnement des fonctions de dépendances (au risque de rendre

le programme transformé non polyédrique). Par défaut, prendre des ratios carrés (1×1×· · ·×1)

pour toutes les partitionnements des variables est suffisant pour éviter toute condition modulo.

Parce que cette spécification peut être lourde du point de vue de l’utilisateur, nous proposons

que l’utilisateur ne définisse qu’une partie des ratios, et qu’un algorithme dérive les ratios man-

quants qui n’introduisent aucune condition modulo. Cet algorithme parcourt des équations du

programme de bas en haut et trouve le ratio minimum qui n’introduit pas de modulo pour chaque

variables. De plus, si cet algorithme échoue, c’est qu’il n’existe aucun ratio qui n’introduit aucun

modulo, étant donné les spécifications fournies par l’utilisateur.

Partitionnement pour des formes de tuile quelconque Il est possible d’étendre les

résultats précédents à des partitionnements avec n’importe quelle forme de tuiles. Tout d’abord,

un partitionnement monoparamétrique pour une forme de tuile quelconques est définit à travers

3 objets:

• La forme de la tuile, qui est un agrandissement d’un polyèdre non paramétré par un

facteur b, b étant le paramètre de taille de tuile

• Un treillis des origines de tuiles,

200

i

j

il

jl

(ib, jb)

4b

2b

Figure A.3: Exemple d’un partitionnement monoparamétrique hexagonal pour un espace
2D. (ib, jb) sont les indices tuilés, qui identifient une tuile, (il, jl) sont les indices locaux, qui
identifient la position d’un point dans une tuile. La forme de la tuile est un hexagone dont les
pentes sont à 45◦ et qui est de taille 4b× 2b. Cette tuile peut être vu comme l’agrandissement
d’un hexagone de taille 4× 2. Les flèches rouges correspondent à la base du treillis des origines
des tuiles.

• Une fonction de décomposition qui, étant donné un point ~i, retourne son indice tuilé ~ib et

local ~il, qui identifie la tuile et les coordonnées locales de où se trouve ce point.

Cette définition est une généralisation du cas rectangulaire. Dans le cas rectangulaire, la forme

de la tuile est un agrandissement d’un rectangle de taille constante d1 × · · · × dk par un facteur

b, le treillis des origines de tuiles admet pour base les vecteurs (di.~ei)i où ~ei est le ième vecteur

canonique, et la fonction de décomposition consiste en une division entière. La Figure A.3

montre un autre exemple de partitionnement dans le cas des tuiles hexagonales.

Les propriétés de stabilité sur les polyèdres et fonctions affines sont toujours valables dans le cas

des formes de tuile quelconques. À propos des fonctions affines, le critère sur les ratio pour éviter

les modulos devient un critère sur la base du treillis des origines de tuiles. Cela veut notamment

dire que la forme d’une tuile n’a aucun impact sur la présence de modulo dans une fonction

partitionnée. L’application de ces propriétés de stabilité à un programme et l’algorithme de

dérivation associé reste identique au cas rectangulaire.

201

A.4 Du partitionnement au tuilage

Dans cette section, nous présentons la seconde partie de la transformation de tuilage monoparamétrique.

On suppose que la première partie de la transformation (partitionnement monoparamétrique,

décrite dans la section précédente) a été effectuée, et nous nous servons des nouveaux indices

introduits pour exprimer le tuilage.

Nous commençons par décrire une extension de notre représentation de programme. Cette ex-

tension autorise un programme à appeler des sous-programmes, appelés sous-systèmes, qui sont

exécutés de manière atomique. Ensuite, nous décrivons la transformation de tuilage d’abord

dans le cas de programme sans réductions, puis dans le cas de programme contenant des

réductions. Le calcul de chaque tuiles est encapsulé dans un sous-système, ce qui nous per-

met d’imposer la propriété d’atomicité des tuiles, et d’isoler leurs calculs. Ces sous-systèmes

seront considérés séparément dans la Section A.6 afin de tenter de reconnâıtre des combinaisons

d’opérateur d’algèbre linéaire.

Sous-systèmes Nous introduisons une extension à notre représentation de programme qui au-

torise un programme à utiliser un autre programme (appelé sous-système) durant son exécution.

Cet appel s’effectue via un type d’équations spécial appelé équation d’utilisation, de la forme

suivante:

use Dext nomSousSysteme[paramètres] (liste des entrées)

returns (liste des variables de sortie);

Cette équation d’utilisation appelle le programme “nomSousSysteme” avec les paramètres et

valeur en entrées spécifiées, et récupère ses résultats dans les variables de sortie. Le polyèdre

Dext s’appelle le domaine d’extension et permet de paramétrer les appels de la manière suivante:

chaque point ~iext de ce polyèdre correspond à un appel au programme “nomSousSysteme”, et

les indices ~iext peuvent être utilisés dans la spécification des paramètres et des entrées de ces

appels. Ainsi, il est possible de spécifier un nombre paramétrique d’appels à travers une seule

équation d’utilisation.

202

Tuilage pour des programmes sans réductions Nous supposons qu’un tuilage légal est

spécifié par l’utilisateur en entrée (c’est à dire, quel changement de base et quelles variables

on doit tuiler ensemble pour éviter toute dépendance cyclique entre tuiles). L’idée principale

de la transformation de tuilage est de distribuer le calcul des tuiles dans des sous-systèmes, de

telle sorte que le programme principal gère les communications entre tuiles et les appels aux

sous-systèmes correspondants, tandis que les sous-systèmes contiennent le calcul effectué par le

programme. Cependant, un programme tuilé possède habituellement un nombre paramétrique

de tuiles, tandis qu’il n’est pas possible d’avoir un nombre paramétrique de sous-systèmes dans

un programme.

Ce problème est résolu avec l’introduction de la notion de type de tuile. Il est possible de

classifier les tuiles d’un programme selon le calcul qu’elles effectuent. Un type de tuile est une

de ces classes, et on peut montrer qu’il n’y en a qu’un nombre fini non paramétrique. Ainsi,

il est possible de créer un sous-système par type de tuile et de faire appel à ce sous-système

à chaque fois qu’on veut exécuter une tuile de type associé. On a donc besoin de créer qu’un

nombre fini non paramétrique de sous-système, ce qui rend la transformation de tuilage possible.

Le programme tuilé possède un système principal et une collection de sous-systèmes. Les

équations d’un sous-système correspondent au calcul associé au type de tuile correspondant.

Les entrées d’un sous-système sont les données minimales dont les équations d’un sous-système

ont besoin, qui ne sont pas calculées à l’intérieur du sous-système en question. Les sorties d’un

sous-système sont les données calculées par les équations du sous-système dont d’autres sous-

systèmes ont besoin. De multiples entrées et sorties sont crées en fonction de la tuile qui produit

la donnée fournie au sous-système (pour les entrées) ou qui nécessite la donnée fournée par le

sous-système (pour les sorties).

Le système principal contient une équation d’utilisation par type de tuile, leur domaine d’extension

correspondant au domaine où ce type de tuile est présent. Les sorties des équations d’utilisations

sont stockées dans des variables locales, qui sont ensuite regroupées avant d’être réutilisées dans

les entrées des équations d’utilisation. Cela nous permet d’éviter de dissocier selon si une entrée

vient d’un type de tuile ou d’un autre.

203

Tuilage pour des programmes avec réductions Les réductions d’un programme intro-

duisent des indices supplémentaires qui sont partitionnées et qui introduisent des indices tuilés

supplémentaires. Par exemple, considérons un programme qui effectue une multiplication de

matrices entre deux matrices carrées de taille N :

(∀0 ≤ i, j < N) C[i, j] =

N−1∑
k=0

A[i, k] ∗B[k, j]

Après partitionnement, si on suppose que le paramètre N est divisible par la taille de tuile b,

on obtient le programme suivant:

(∀0 ≤ ib, jb < Nb)(∀0 ≤ il, jl < b) C[ib, jb, il, jl] =
∑
kb,kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

Notez à ce point que la réduction somme sur un ensemble de tuile indexées par kb. Ainsi, afin

de séparer les calculs de chacune de ces tuiles, nous décomposons la réduction, en introduisant

une variable temporaire d’accumulation, nommée TempRed:

C[ib, jb, il, jl] =
∑
kb

TempRed[ib, jb, kb, il, jl];

TempRed[ib, jb, kb, il, jl] =
∑
kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

Ainsi, chaque réduction du programme introduit une nouvelle variable temporaire d’accumulation.

On remarque que, par le simple fait d’introduire cette variable temporaire d’accumulation, les

propriétés d’associativité et de commutativité de l’opérateur de réduction ont été utilisées. Ainsi,

cette transformation ne préserve pas l’équivalence d’Herbrand, et est donc une transformation

sémantique.

Ces nouvelles variables n’apparaissant pas dans le tuilage spécifié en entrée par l’utilisateur,

on doit adapter cette spécification afin d’en tenir compte, tout en prenant garde à respecter la

légalité du tuilage.

204

kb
TempRed[ib, •]

. . .

x[ib]

x[ib − 1]
Original program:

(∀0 ≤ i < N) x[i] = (b[i]−
∑
k<i

L[i, k]× x[k])/L[i, i]

Figure A.4: Dependances entre les tuiles de TempRed et les tuiles de x/temp.

Par exemple, la Figure A.4 montre les tuiles d’un programme qui résout une équation de la

forme L.~x = ~b où ~x est l’inconnue et L une matrice triangulaire inférieure. Notez que la variable

TempRed dépend des valeurs précédentes de x, et donc que la dernière tuile de TempRed admet

une dépendance cyclique avec la tuile calculant les x[ib, •]. Ainsi, le sous-système qui calcule les

valeurs x[ib, •] doit aussi calculer les valeurs de TempRed[ib, ib, •] (kb = ib), et on peut avoir un

autre sous-système qui calcule les autre tuiles de TempRed.

En analysant les dépendances entre tuiles, nous détectons quelles tuiles de TempRed peuvent

être tuilée séparément sans introduire de dépendances cycliques entre tuiles. Ces tuiles peuvent

former leur propres sous-systèmes, tandis que le calcul des autres tuiles doivent être inclus dans

des sous-systèmes existants.

A.5 Reconnaissance de templates

Dans cette section, nous introduisons un algorithme de reconnaissance de template, qui est une

adaptation de l’algorithme d’équivalence de programme dont les concepts principaux ont été

rapidement décrit dans la Section A.2.

Algorithme de reconnaissance de template Commençons par décrire l’algorithme de

reconnaissance de template. Cet algorithme prend en entrée un programme et un template, et

détermine si le template matche le programme (c’est à dire, s’il existe des valeurs des paramètres

et des entrées du template qui rend le template équivalent au programme). De plus, si le template

matche, des valeurs du paramètres et des entrées du template sont inférés automatiquement.

205

La notion d’équivalence utilisée est l’équivalence de Herbrand, mais va être enrichie plus tard

afin de gérer les propriétés sémantiques présentent en algèbre linéaire.

La première étape de l’algorithme consiste à construire l’automate d’équivalence du problème

de reconnaissance de template. L’automate d’équivalence que l’on considère dans l’algorithme

de reconnaissance de template est légèrement modifié par rapport à l’algorithme d’équivalence

de programme. En l’occurence, on modifie la notion d’état final de réussite: dans le cas de

la reconnaissance de template, un état final de réussite est tout état final de la forme “ · · · =

I ′ ”, avec I ′ une entrée du template. En effet, intuitivement, une entrée de template peut

potentiellement correspondre à n’importe quelle expression du programme.

Une fois l’automate d’équivalence construit, la seconde étape de l’algorithme de reconnais-

sance de template consiste à extraire les contraintes sur les entrées du template. Cela est

fait en calculant les ensembles d’accessibilité de chaque état final de l’automate de template.

L’ensemble d’accessibilité d’un état est l’ensemble des indices (~i, ~i′) tels que il existe un chemin

dans l’automate partant de l’état initial et arrivant sur l’état considéré avec ces valeurs d’indices.

Pour les états finaux d’échec, les ensemble d’accessibilité correspondants doivent être vides (c’est

à dire, ces états ne doivent pas être accessibles). Pour les états finaux de réussite, les contraintes

sont de la forme:

(∀(~i, ~i′) ∈ S) I ′[~i′] = Exprk[~i]

où I ′ est une entrée de template et S est l’ensemble d’accessibilité de l’état final de réussite.

Notez qu’une clôture transitive peut être nécessaire pour calculer cet ensemble d’accessibilité et

donc que des sur-approximations peuvent intervenir lors de ce calcul.

La troisième et dernière étape de l’algorithme de reconnaissance de template consiste à résoudre

les contraintes que l’on vient d’extraire, afin d’en déduire les valeurs des entrées du template.

Pour cela, on classifie les contraintes suivant l’entrée de template I ′ qu’il fait intervenir et on

examine les ensembles d’accessibilité. Pour chaque entrée de template, deux situations peuvent

arriver:

206

• Pour chaque valeur de la variable d’entrée du template I ′[~i′], il n’y a qu’une seule expression

Exprk[~i] du programme qui lui est associée via une des contraintes. Dans ce cas, on

peut simplement construire une disjonction de cas entre les différentes valeurs associées à

l’entrée de template I ′.

• De multiples valeurs Exprk[~i] sont associés à la même valeur de la variable d’entrée du

template I ′[~i′]. Dans ce cas, on doit d’abord vérifier que ces valeurs sont équivalentes, via

un appel à un algorithme d’équivalence de programme. En pratique, le coût de cet appel

est raisonnable. Si ce n’est pas le cas, cela veut dire que la variable d’entrée du template

doit prendre deux valeurs différentes en même temps, ce qui est impossible. D’où on

conclue que le template ne matche pas. Si c’est le cas, on choisit une des deux valeurs (le

choix n’étant pas important du fait de l’équivalence) et construit la disjonction comme vu

dans le cas précédent.

A propos de l’inférence des paramètres du template, des contraintes sur les paramètres sont

obtenues depuis plusieurs endroits dans l’algorithme: les domaines des variables de sortie doivent

correspondre, ce qui introduit des égalités entre paramètres du template et du programme.

Certains états finaux d’échec peuvent n’être accessibles que pour certaines valeurs de paramètre

de template, donc la négation de ces contraintes doit être prise. De même, lors des appels à un

algorithme d’équivalence, certaines expressions ne sont équivalentes que pour certaines valeurs

de paramètres. Enfin, lorsque l’on compare deux réductions dans l’automate d’équivalence, on

demande que les nombres d’éléments sommés soit égaux (ce qui peut introduire des contraintes

d’égalité entre paramètres).

Si, après avoir regroupé toutes ces contraintes sur les paramètres, elles ne sont pas satisfiables,

on conclut que le template ne matche pas le programme. Il se peut aussi que la valeur des

paramètres du template ne soit pas fixée: dans ce cas, on fait la supposition que plus les valeurs

des paramètres du template sont grandes, plus le template fait de calculs, et nous sélectionnons

la valeur maximale des paramètres du template.

L’Exemple 5.4 Page 128 illustre un grand nombre de mécanismes de cet algorithme.

207

Gestion des propriétés sémantiques Nous proposons plusieurs extensions à notre algo-

rithme de reconnaissance de template, afin de gérer des propriétés sémantiques usuellement

rencontrées en algèbre linéaire.

Les propriétés d’associativité et de commutativité des opérateurs binaires sont gérées pendant

la construction de l’automate de la manière suivante. Si un état compare deux expressions

“A1 + · · · + Ak = B1 + · · · + Bk”, l’algorithme matche Ai avec Bi par défaut. Cependant, du

fait des propriétés d’associativité et de commutativité, n’importe quel Ai peut être matché à

n’importe quel Bj , et on a autant de possibilité de matchage que de permutations. Ainsi, on

génère toutes les versions de l’automate et applique le reste de l’algorithme à ces versions. Si

une version de l’automate d’équivalence arrive à matcher le template au programme, on arrête

le parcours des versions et retourne le résultat que l’on vient d’obtenir. Si aucune version de

l’automate d’équivalence arrive à matcher le template, l’algorithme conclut que le template ne

matche pas.

La propriété de distributivité est gérée en ayant différentes versions du template: une où les ex-

pressions sont factorisées complètement, et une où les expressions sont distribuées complètement.

Le reste des propriétés (élément neutre, absorbant, gestion des soustractions et divisions, . . .)

sont des modifications locales, et sont gérées via des règles de réécritures appliquées avant

d’exécuter le reste de l’algorithme.

A.6 Reconnaissance de sous-calculs

Cette section combine les contributions précédentes en un procédé de reconnaissance d’opérations

d’algèbre linéaire en tant que sous-calcul d’un programme polyédrique. Nous introduisons

d’abord la librairie de templates qui correspond aux opérations que l’on essaye de reconnâıtre.

Cette librairie est une des composantes du procédé, que l’on introduit par la suite. Enfin, nous

présentons quelques résultats expérimentaux et discutons de ses performances.

208

Librairie de templates Nous construisons une librairie de template qui correspond aux

opérations décrites dans la spécification BLAS. Lors de la construction de cette librairie, l’objectif

principal est de réduire le plus possible le nombre de templates.

Par exemple, considérons l’opération DGEMM: C ← α.AX .BX + β.C, où A et B sont des ma-

trices, AX = A ou AT et α, β sont des scalaires. Si on n’effectue aucun traitement préliminaire

sur cet opération, nous devons implémenter de multiples versions de ce template, pour prendre

en compte les valeurs spéciales de α et β, ou de la présence d’une transposée. À la place,

nous décomposons DGEMM comme une combinaison des opérations fondamentales suivantes:

C ← A.B (multiplication de matrices), C ← AT (transposition de matrice), C ← A + B (ad-

dition de matrices) et C ← α.A avec α 6= 0, 1 (multiplication d’une matrice par un scalaire).

Ainsi, 4 templates suffisent pour couvrir toutes les variantes de DGEMM.

Afin de limiter le nombre de template à comparer avec un sous-système donné, on classifie chaque

template selon leur opération scalaire correspondante. L’opération scalaire d’un template est le

calcul obtenu quand l’on impose que les tailles des matrices et vecteurs considérés par le template

sont égales à 1. L’opération scalaire d’un sous-système doit être identique à l’opération scalaire

d’un template (vu que la comparaison se fait directement entre ces opérations, dans le cas

particulier où les tailles de leurs matrices et vecteurs sont 1).

Un cas particulier est l’opération de transposition, qui n’a pas d’opération scalaire associée et

peut être potentiellement appliquée à n’importe quel endroit. Aussi, ce template présente le

risque d’être reconnu indéfiniment (du fait de sa propriété d’idempotence). Ainsi, le template

correspondant à l’opération de transpose est testé uniquement après tous les autres templates

pouvant correspondre au sous-système considéré. De plus, si le dernier template reconnu est un

transposition, on ne cherchera pas à re-reconnâıtre une transposition immédiatement après.

Un dernier aspect à considérer est l’ordre de comparaison des templates. Ce dernier est effectué

du template le moins général au plus général. Cela permet l’opportunité de reconnâıtre, par

exemple, une multiplication de matrice symétrique C ← S.B avant de tester une multiplication

de matrices générale C ← A.B, et donc avoir des informations plus riches sur les opérations

reconnues.

209

Programme original

Tuilage monoparamétrique

Système
Principal

Sous-systèmes

Library de
Templates
⊕ ⊗ Id

getScalarOperator

?

Calcul
Non reconnu

Aucun template correspond

Template
Reconnu

Correspond

Appel recursif
sur les entrées
du template

Figure A.5: Procédé de reconnaissance de template.

Procédé de reconnaissance d’opérations d’algèbre linéaire Le procédé de reconnais-

sance d’opérations d’algèbre linéaire est décrit dans la Figure A.5. Nous appliquons d’abord la

transformation de tuilage monoparamétrique, puis nous considérons chaque sous-systèmes pro-

duit indépendamment. La librairie de template est triée en fonction de l’opération scalaire cor-

respondant à chaque template. Chaque sous-système est analysé afin de détecter son opération

scalaire, qui est utilisée pour récupérer la liste de templates correspondant à cette opération.

Ensuite, on compare le sous-système avec chaque template successivement de cette liste. Deux

situations peuvent se produire: soit aucun template ne correspond, et le calcul n’est pas re-

connu, soit un template correspond. Dans le dernier cas, on récupère l’expression correspon-

dant à chaque entrée du template et on appelle récursivement l’algorithme de reconnaissance

de template sur chacune d’entre elles.

Résultats expérimentaux Nous avons évalué notre procédé de reconnaissance d’opérations

d’algèbre linéaire sur des applications d’algèbre linéaire et hors du domaine de l’algèbre linéaire.

210

Dans le cas des applications d’algèbre linéaire (inversion de matrices symétriques définies posi-

tives, et résolution d’équation de Silvester), nous sommes parvenu à reconnâıtre la quasi-totalité

des calculs comme une combinaison de templates de notre librairie. Les calculs non reconnus

correspondent soit à un calcul de clôture transitive qui prend trop de temps, ou à une opération

qui n’est pas présente dans la librairie (parce qu’elle est trop spécifique). Dans les deux cas, les

sous-systèmes les plus fréquemment appelés sont complètement reconnus.

Dans le cas des applications hors du domaine de l’algèbre linéaire (Algebraic Path Problem

(APP), McCaskill qui est une application de bio-informatique), une bonne partie du pro-

gramme ne correspond pas à des opérations d’algèbre linéaire. Dans le cas de l’APP, 5 des

6 sous-systèmes les plus fréquemment appelés ont été complètement reconnus. Dans le cas

de McCaskill, notre procédé reconnâıt presque aucun sous-système comme opération d’algèbre

linéaire. Cela est du au fait que la majorité des calculs des sous-système sont des opérations

sur des tenseurs: la librairie de template que l’on a choisit est donc inadaptée à cette applica-

tion, mais la décomposition arrive tout de même à isoler les calculs de l’application de manière

pertinente.

A.7 Conclusion

Contributions Dans ce travail de thèse, nous avons présenté un mécanisme de reconnaissance

d’opérations d’algèbre linéaire présents dans un programme polyédrique. Afin de construire

ce mécanisme, trois contributions sont faites dans ce travail de thèse: une transformation de

programme appelée tuilage monoparamétrique, un algorithme de reconnaissance de template et

le mécanisme en lui-même.

A propos du tuilage monoparamétrique, cette transformation de programme est un tuilage

dont les tailles de tuile sont des multiples d’un paramètre commun de taille de tuile. Cette

transformation est à mi-chemin entre le tuilage à taille fixe et le tuilage paramétrique: en effet,

le tuilage monoparamétrique est une transformation polyédrique, tout en permettant une forme

limitée de paramétrisation des tailles de tuile. Nous avons étudié cette transformation en deux

211

parties. La première partie de la transformation, nommée partitionnement monoparamétrique,

est juste une réindexation de tous les espaces d’un programme, de manière à introduire les

indices tuilés et locaux. La seconde partie de la transformation distribue et isole les calculs de

chaque tuile dans des sous-programmes séparés.

L’algorithme de reconnaissance de template est une autre des composantes principales du

mécanisme. Cet algorithme est une extension d’un algorithme d’équivalence de programme

proposé précédemment par Barthou et al [8]. Cet algorithme a été étendu afin de gérer les

propriétés sémantiques communément rencontrées dans le domaine de l’algèbre linéaire. Cet

algorithme de reconnaissance de template est le premier algorithme qui est suffisament puissant

pour reconnâıtre n’importe quel opérations de BLAS.

Finallement, nous utilisons ces deux contributions pour construire un mécanisme de reconnais-

sance d’opérations d’algèbre linéaire. Un tuilage monoparamétrique est d’abord utilisé pour

séparer le calcul selon leur tuiles, puis le calcul de chaque tuile est considéré séparément, afin de

les reconnâıtre comme une combinaison de template. Les templates proviennent d’une librairie

inspirée par BLAS. Lorsque l’on utilise notre mécanisme sur des applications d’algèbre linéaire,

la majorité des calculs sont reconnus. L’application de ce mécanisme sur des applications qui ne

sont pas du domaine d’algèbre linéaire est moins efficace, mais arrive tout de même à reconnâıtre

des portions de calcul fréquemment utilisées.

212

Bibliography

[1] Aravind Acharya and Uday Bondhugula. Pluto+: Near-complete modeling of affine trans-

formations for parallelism and locality. In ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP), 2015.

[2] Wolfgang Achtziger and Karl-Heinz Zimmermann. Finding quadratic schedules for affine

recurrence equations via nonsmooth optimization. Journal of VLSI Signal Processing Sys-

tems, 25(3):235–260, July 2000.

[3] Christophe Alias. Program Optimization by Template Recognition and Replacement. PhD

thesis, Université de Versailles, December 2005.

[4] Saman Prabhath Amarasinghe. Parallelizing Compiler Techniques Based on Linear In-

equalities. PhD thesis, Stanford University, 1997.

[5] Corinne Ancourt and François Irigoin. Scanning polyhedra with DO loops. SIGPLAN

Notices, 26(7):39–50, April 1991.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.

Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[7] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil computations

to maximize parallelism. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’12, pages 1–11, Los Alamitos,

CA, USA, 2012. IEEE Computer Society Press.

213

[8] Denis Barthou, Paul Feautrier, and Xavier Redon. On the equivalence of two systems of

affine recurrence equations. Technical Report RR-4285, INRIA, 2001.

[9] Muthu Manikandan Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Henretty,

J. Ramanujam, and P. Sadayappan. Parameterized tiling revisited. In Proceedings of the

8th Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’10, pages 200–209, New York, NY, USA, 2010. ACM.

[10] Cédric Bastoul. Code generation in the polyhedral model is easier than you think. In

PACT’13 IEEE International Conference on Parallel Architecture and Compilation Tech-

niques, pages 7–16, Juan-les-Pins, France, September 2004.

[11] Geoffrey Belter, E. R. Jessup, Ian Karlin, and Jeremy G. Siek. Automating the generation

of composed linear algebra kernels. In Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, SC ’09, pages 59:1–59:12, New York, NY,

USA, 2009. ACM.

[12] S. Bhansali and J. R. Hagemeister. A pattern-matching approach for reusing software

libraries in parallel systems. In First International Workshop on Knowledgebased Systems

for the ReUse of Program Libraries, 1995.

[13] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and

Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM

Transactions on Mathematical Software, 31(1):1–26, March 2005.

[14] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix mul-

tiply using PHiPAC: A portable, high-performance, ANSI C coding methodology. In Pro-

ceedings of the 11th International Conference on Supercomputing, ICS ’97, pages 340–347,

New York, NY, USA, 1997. ACM.

[15] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical au-

tomatic polyhedral program optimization system. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), June 2008.

214

[16] Hamidreza Chitsaz, Raheleh Salari, S. Cenk Sahinalp, and Rolf Backofen. A partition

function algorithm for interacting nucleic acid strands. Bioinformatics, 25(12):i365–i373,

2009.

[17] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Rein-

man. Architecture support for accelerator-rich CMPs. In 49th Design Automation Confer-

ence (DAC), pages 843–849, June 2012.

[18] Wonnacott David, Tian Jin, and Allison Lake. Automatic tiling of ”mostly-tileable” loop

nests. In Proceedings of the 5th International Workshop on Polyhedral Compilation Tech-

niques, Amsterdam, The Netherlands, January 2015.

[19] Florent de Dinechin, Patrice Quinton, and Tanguy Risset. Structuration of the Alpha

language. In Massively Parallel Programming Models, pages 18–24. IEEE, 1995.

[20] R.H. Dennard, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-implanted

MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits,

9(5):256–268, Oct 1974.

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug

Burger. Dark silicon and the end of multicore scaling. SIGARCH Computer Architecture

News, 39(3):365–376, June 2011.

[22] Paul Feautrier. Array expansion. In Proceedings of the 2nd International Conference on

Supercomputing, ICS’88, pages 429–441, New York, NY, USA, 1988. ACM.

[23] Paul Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,

22(3):243–268, 1988.

[24] Paul Feautrier. Dataflow analysis of array and scalar references. International Journal of

Parallel Programming, 20(1):23–53, 1991.

[25] Paul Feautrier. Some efficient solutions to the affine scheduling problem: I. one-dimensional

time. International Journal of Parallel Programming, 21(5):313–348, October 1992.

215

[26] Paul Feautrier. The power of polynomials. In Alexandra Jimborean and Alain Darte,

editors, 5th International Workshop on Polyhedral Compilation Techniques (IMPACT’15),

Amsterdam, Netherlands, January 2015.

[27] Pierrick Gachet, Christophe Mauras, Patrice Quinton, and Yannick Saouter. Alpha du cen-

taur: A prototype environment for the design of parallel regular alorithms. In Proceedings

of the 3rd International Conference on Supercomputing, ICS’89, pages 235–243, New York,

NY, USA, 1989. ACM.

[28] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Verdoolaege.

Hybrid hexagonal/classical tiling for GPUs. In 12th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’14, page 66, February 2014.

[29] Armin Grosslinger, Martin Griebl, and Christian Lengauer. Introducing non-linear param-

eters to the polyhedron model. In Proceedings of the 11th Workshop on Compilers for

Parallel Computers (CPC 2004), pages 1–12, 2004.

[30] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:

Formal linear algebra methods environment. ACM Transactions on Mathematical Software,

27(4):422–455, December 2001.

[31] C.A. Gunter. Semantics of Programming Languages: Structures and Techniques. Founda-

tions of computing. MIT Press, 1992.

[32] A. Hartono, M.M. Baskaran, J. Ramanujam, and P. Sadayappan. Dyntile: Parametric tiled

loop generation for parallel execution on multicore processors. In International Symposium

on Parallel Distributed Processing (IPDPS),, pages 1–12, April 2010.

[33] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Cohen, Sriram Kr-

ishnamoorthy, Boyana Norris, J. Ramanujam, and P. Sadayappan. Parametric multi-level

tiling of imperfectly nested loops. In Proceedings of the 23rd International Conference on

Supercomputing, ICS ’09, pages 147–157, New York, NY, USA, 2009. ACM.

[34] Guillaume Iooss, Christophe Alias, and Sanjay Rajopadhye. On program equivalence with

reductions. In Markus Muller-Olm and Helmut Seidl, editors, Static Analysis Symposium,

216

volume 8723 of Lecture Notes in Computer Science, pages 168–183. Springer International

Publishing, 2014.

[35] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’88, pages

319–329, January 1988.

[36] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Verification of loop and arithmetic trans-

formations of array-intensive behaviors. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 32(11):1787–1800, Nov 2013.

[37] Richard M Karp, Raymond E Miller, and Shmuel Winograd. The organization of compu-

tations for uniform recurrence equations. Journal of the ACM, 14(3):563–590, 1967.

[38] Christoph W. Kessler. Pattern-driven automatic parallelization. Scientific Programming,

5(3):251–274, August 1996.

[39] DaeGon Kim and Sanjay Rajopadhye. Efficient tiled loop generation: D-tiling. In Pro-

ceedings of the 22Nd International Conference on Languages and Compilers for Parallel

Computing, LCPC’09, pages 293–307, Berlin, Heidelberg, 2010. Springer-Verlag.

[40] DaeGon Kim and Sanjay V. Rajopadhye. Parameterized tiling for imperfectly nested loops.

Technical Report CS-09-101, Colorado State University, February 2009.

[41] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay V. Rajopadhye,

and Michelle Mills Strout. Multi-level tiling: M for the price of one. In Proceedings of

the ACM/IEEE Conference on High Performance Networking and Computing, SC 2007,

November 10-16, 2007, Reno, Nevada, USA, page 51, 2007.

[42] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric multi-level block-

ing. SIGPLAN Notices, 32(5):346–357, May 1997.

[43] Martin Kong, Antoniu Pop, Louis-Noël Pouchet, R. Govindarajan, Albert Cohen, and

P. Sadayappan. Compiler/runtime framework for dynamic dataflow parallelization of tiled

programs. ACM Transactions on Architecture and Code Optimization, 11(4):61:1–61:30,

January 2015.

217

[44] Athanasios Konstantinidis, Paul H.J. Kelly, J. Ramanujam, and P. Sadayappan. Parametric

gpu code generation for affine loop programs. In Calin Cascaval and Pablo Montesinos,

editors, Languages and Compilers for Parallel Computing, volume 8664 of Lecture Notes

in Computer Science, pages 136–151. Springer International Publishing, 2014.

[45] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam, Atanas

Rountev, and P. Sadayappan. Effective automatic parallelization of stencil computations.

SIGPLAN conference of Programing Language Design and Implementation, 42(6):235–244,

June 2007.

[46] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subpro-

grams for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, September 1979.

[47] H. Le Verge. Reduction operators in alpha. In Daniel Etiemble and Jean-Claude Syre,

editors, PARLE’92 Parallel Architectures and Languages Europe, volume 605 of Lecture

Notes in Computer Science, pages 397–411. Springer Berlin Heidelberg, 1992.

[48] Hervé Le Verge. Un environnement de transformations de programmes pour la synthèse

d’architectures régulières. PhD thesis, Université de Rennes 1, October 1992.

[49] Nuno P. Lopes and José Monteiro. Automatic equivalence checking of programs with

uninterpreted functions and integer arithmetic. International Journal on Software Tools

for Technology Transfer, pages 1–16, 2015.

[50] David B. Loveman. Program improvement by source-to-source transformation. Journal of

the ACM, 24(1):121–145, January 1977.

[51] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The accelerator

store: A shared memory framework for accelerator-based systems. ACM Transactions on

Architecture and Code Optimization (TACO), 8(4):1–22, January 2012.

[52] Vijay Menon and Keshav Pingali. High-level semantic optimization of numerical codes. In

Proceedings of the 13th International Conference on Supercomputing, ICS’99, pages 434–

443, New York, NY, USA, 1999. ACM.

218

[53] Vijay Menon, Keshav Pingali, and Nikolay Mateev. Fractal symbolic analysis. ACM

Transaction on Programming Languages and Systems, 25(6):776–813, November 2003.

[54] R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to Program

Optimization. MIT Press, 2000.

[55] Gordon E. Moore. Progress in digital integrated electronics. In International Electron

Devices Meeting 1975, volume 21, pages 11–13, 1975.

[56] David Padua, Denis Barthou, and Alexandre X. Duchateau. Hydra: Automatic algorithm

exploration from linear algebra equations. In Proceedings of the 2013 IEEE/ACM Inter-

national Symposium on Code Generation and Optimization (CGO), CGO’13, pages 1–10.

IEEE Computer Society, 2013.

[57] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization using

idioms. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL’91, pages 79–92, New York, NY, USA, 1991. ACM.

[58] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Bernhard Steffen, editor,

Tools and Algorithms for the Construction and Analysis of Systems, volume 1384 of Lecture

Notes in Computer Science, pages 151–166. Springer Berlin Heidelberg, 1998.

[59] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar. Gated-

vdd : A circuit technique to reduce leakage in deep-submicron cache memories. In Proceed-

ings of the 2000 International Symposium on Low Power Electronics and Design (ISLPED

’00), pages 90–95, 2000.

[60] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,

Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen,

Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP transforms.

Proceedings of the IEEE, special issue on “Program Generation, Optimization, and Adap-

tation”, 93(2):232– 275, 2005.

219

[61] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient nested loops

from polyhedra. International Journal of Parallel Programming, 28(5):469–498, October

2000.

[62] Patrice Quinton, Sanjay Rajopadhye, and Doran Wilde. Deriving imperative code from

functional programs. In Proceedings of the Seventh International Conference on Functional

Programming Languages and Computer Architecture, FPCA’95, pages 36–44, New York,

NY, USA, 1995. ACM.

[63] Patrice Quinton and Vincent van Dongen. The mapping of linear recurrence equations

on regular arrays. Journal of VLSI signal processing systems for signal, image and video

technology, 1(2):95–113, 1989.

[64] Sanjay V. Rajopadhye, S. Purushothaman, and Richard M. Fujimoto. On synthesizing

systolic arrays from recurrence equations with linear dependencies. In Kesav V. Nori,

editor, Foundations of Software Technology and Theoretical Computer Science, volume 241

of Lecture Notes in Computer Science, pages 488–503. Springer Berlin Heidelberg, 1986.

[65] Xavier Redon and Paul Feautrier. Detection of recurrences in sequential programs with

loops. In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE’93 Parallel Archi-

tectures and Languages Europe, volume 694 of Lecture Notes in Computer Science, pages

132–145. Springer Berlin Heidelberg, 1993.

[66] Xavier Redon and Paul Feautrier. Detection of scans in the polytope model. Parallel

Algorithms and Applications, 15(3-4):229–263, 2000.

[67] D. A. Reed, L. M. Adams, and M. L. Partick. Stencils and problem partitionings: Their

influence on the performance of multiple processor systems. IEEE Transactions on Com-

puters, 36(7):845–858, July 1987.

[68] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay V. Rajopadhye, and

Michelle Mills Strout. Parameterized tiled loops for free. In Proceedings of the ACM

SIGPLAN 2007 Conference on Programming Language Design and Implementation, pages

405–414, June 2007.

220

[69] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay V. Rajopadhye, and

Michelle Mills Strout. Parameterized loop tiling. ACM Trans. Program. Lang. Syst.,

34(1):3, 2012.

[70] Yannick Saouter and Patrice Quinton. Computability of recurrence equations. Theoretical

Computer Science, 116(2):317–337, August 1993.

[71] Shigeyuki Sato and Hideya Iwasaki. Automatic parallelization via matrix multiplication.

SIGPLAN Notice, 46(6):470–479, June 2011.

[72] Robert R. Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–59,

Jun 1997.

[73] Markus Schordan, Pei-Hung Lin, Dan Quinlan, and Louis-Noël Pouchet. Verification of

polyhedral optimizations with constant loop bounds in finite state space computations.

In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal

Methods, Verification and Validation. Specialized Techniques and Applications, volume 8803

of Lecture Notes in Computer Science, pages 493–508. Springer Berlin Heidelberg, 2014.

[74] Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, and Jörg Henkel.

Dark silicon as a challenge for hardware/software co-design: Invited special session paper.

In Proceedings of the 2014 International Conference on Hardware/Software Codesign and

System Synthesis, CODES’14, pages 1–10. ACM, 2014.

[75] K.C. Shashidhar, Maurice Bruynooghe, Francky Catthoor, and Gerda Janssens. Verifica-

tion of source code transformations by program equivalence checking. In Rastislav Bodik,

editor, Compiler Construction, volume 3443 of Lecture Notes in Computer Science, pages

221–236. Springer Berlin Heidelberg, 2005.

[76] Jeremy G. Siek, Ian Karlin, and E. R. Jessup. Build to order linear algebra kernels. In

IEEE International Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008,

pages 1–8, April 2008.

221

[77] Daniele G. Spampinato and Markus Püschel. A basic linear algebra compiler. In Proceedings

of Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, pages 23–32. ACM, 2014.

[78] Sanket Tavarageri, Albert Hartono, Muthu Baskaran, Louis-Noël Pouchet, J. Ramanujam,

and P. Sadayappan. Parametric tiling of affine loop nests. In Proceedings of the 15th

Workshop on Compilers for Parallel Computers, 2010.

[79] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei Fukuda,

Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors, Lecture Notes in

Computer Science, International Congress on Mathematical Software (ICMS 2010), pages

299–302. Springer, September 2010.

[80] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking of static

affine programs using widening to handle recurrences. ACM Transactions on Programming

Languages and Systems (TOPLAS), 34(3):1–35, November 2012.

[81] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking of static

affine programs using widening to handle recurrences. ACM Transactions on Programming

Languages and Systems, 34(3):1–35, November 2012.

[82] Richard Vuduc, James W Demmel, and Katherine A Yelick. OSKI: A library of automati-

cally tuned sparse matrix kernels. In Institute of Physics Publishing, 2005.

[83] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In

Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98, pages 1–27,

Washington, DC, USA, 1998. IEEE Computer Society.

[84] Doran Wilde and Sanjay Rajopadhye. The naive execution of affine recurrence equations. In

Proceedings of the IEEE International Conference on Application Specific Array Processors,

ASAP ’95, pages 1–, Washington, DC, USA, 1995. IEEE Computer Society.

[85] David Wonnacott. Time skewing for parallel computers. In In Proceedings of the Twelfth

Workshop on Languages and Compilers for Parallel Computing, pages 477–480. Springer-

Verlag, 1999.

222

[86] David Wonnacott. Achieving scalable locality with time skewing. International Journal of

Parallel Programming, 30(3):181–221, 2002.

[87] Jingling Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, Norwell, MA,

USA, 2000.

[88] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria Garzaran,

David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A comparison of empirical

and model-driven optimization. SIGPLAN Notices, 38(5):63–76, May 2003.

[89] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay V. Rajopad-

hye. Alphaz: A system for design space exploration in the polyhedral model. In Languages

and Compilers for Parallel Computing, 25th International Workshop, LCPC 2012, pages

17–31, September 2012.

[90] Yun Zou and Sanjay Rajopadhye. Scan detection and parallelization in ”inherently sequen-

tial” nested loop programs. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO’12, pages 74–83. ACM, 2012.

223

	Abstract
	Résumé
	Acknowledgements

