
Compilation
TP 0.0 : The target architecture: Digmips

C. Alias & G. Iooss

The goal of these TPs is to construct a C compiler for Digmips, a small MIPS processor implemented
using the Diglog logic simulation software. The purpose of this TP is to start working with Diglog
and Digmips, by constructing some programs in assembly language.

Exercise 1. Diglog warm up
Add the directory /home/calias/M1-Compilation/diglog/bin to your PATH environment variable. Open
a terminal and enter diglog.

• Diglog is comprised of two windows called mylib and mycrt. mylib lets you construct a circuit,
while mycrt is an auxiliary window used for interaction (load/save, etc.). Diglog allows for an
intuitive way for drawing circuits with the help of a GUI.

• At the bottom of the mylib window, there is an area containing some logic gates and connectors.
This bar allows you easy access to the logic gates you use most frequently. To place a logic gate
inside this bar, simply click on it and drag it to the desired place. If you place a gate on an already
existing gate, the new one will take its place.

• On the left and on the right there are menus, but most of the commands can be launched from the
keyboard, which is usually faster.

• For placing a logic gate, click on the gate inside the bottom bar and drag it to the desired location
inside the window.

• Pour tracer un fil, utilisez la souris comme dans un logiciel de dessin. En cliquant sur le bouton
gauche vous commencez un fil, vous marquez un angle ou la fin du fil en cliquant à nouveau et
quand vous avez terminé, vous cliquez sur le bouton droit.

• For adding a wire, use the mouse like in a usual drawing application. By click on the left mouse
button you start drawing a wire, mark an angle or specify the end of the wire. When you are done
tracing the wire, you must click on the right mouse button.

• To set the boolean value transmitted through a wire, we can use a generator, meaning the
component situated on the left of the bottom bar. By clicking in the center of the generator, we
can toggle its value between 0 and 1.

• To visualize the value transmitted through a wire, we can use a probe. It’s the square
component situated on the right of the generator. We can just as easily pass to glow mode by using
the g key. To exit glow mode, press g again.

• To use other logic gates, you can use the catalogue. It is available by clicking on CAT (located
bottom left) and afterwards on the chosen component. If this is not enough, you can search inside
the component library by clicking on LIBR. A list of components will be displayed inside the newcrt
window. You can navigate through the different component categories by using the +, - keys. To
select a component, it suffices to click under it. To quit, press the space key.

• Diglog is composed of tabs, accessible through the numeric keys 1, 2, 3, etc.

• To save the current tab inside a file, use Shift+S. Enter the name of the file inside the newcrt
window.

• To load a file inside the current tab, use Shift+L. Enter the name of the file inside the newcrt
window.

• To quit Diglog, enter Shift+Q. A confirmation box will appear inside the newcrt window.

Try it yourself.

• Construct a 4-bit AND circuit. Add the emitters. Experiment using glow-mode.

• Insert a clock. Set the frequency at one cycle per second. To do this, go in CNFG mode
(bottom right) and click on the clock. The clock parameters will be displayed inside the newcrt
window. Modify the values using the arrow keys. Validate your choice using the space key and
return to the main window.

• Save your work inside a file called tp1.lgf.

Exercise 2. Digmips warm up
Copy the content of the directory /home/calias/M1-Compilation/digmips/ inside your account. Go to
your digmips/ directory, and use the command diglog *.lgf to load the MIPS processor.

The processor is composed of several files:

• base.lgf (tab 2) contains all the base components (multiplexers, decoders, etc.)

• alu.lgf (tab 1) contains the 8-bit ALU.

• register.lgf (tab 6) contains 8 8-bit registers.

• datapath.lgf (tab 4) contains the processor datapath.

• control.lgf (tab 3) contains the control circuit for the processor.

• io.lgf (tab 5) contains a screen and a small keyboard used for I/O operations.

Notre processeur peut adresser unemémoire de données de 8 Ko (adresses sur 13 bits), et comporte
8 registres 8 bits de r0 à r7. Les instructions sont codées sur 16 bits (voir annexe) et seront détaillées
plus tard.

Our processor can work with a 8KB data memory (addressable on 13 bits) and has 8 8-bit
registers labeled from r0 to r7. It operates using 16-bit instructions (see appendix). They will be
detailed later on. Programs are stored inside the instruction memory, which is split in two 8 bit SRAMs:

• The memory on the right contains the 8 least significant bits of each instruction

• The memory on the left contains the 8 most significant bits of each instruction

Diglog allows loading data into memory with information stored in a file. The data inside the file
must be in hexadecimal form for it to be loaded into the available RAMs. Because of this, two files
are necessary: one file for the RAM on the left containing the 8 most significant bits of each instruction
and another one for the RAM on the right containing the 8 least significant bits of each instruction. The
hello_hi.ram and hello_lo.ram files contain the encoding of a program which prints “Hello” on the
screen.

Pour charger un fichier dans une SRAM, il suffit de se placer en mode CNFG (en bas à droite), puis
de cliquer sur la RAM. Dans la fenêtre newcrt, descendre le curseur à file name to load en appuyant
sur la flèche du bas, puis entrer le nom du fichier. Enfin, appuyer sur espace pour valider et revenir
dans la fenêtre mylib.

To load a file inside a SRAM, you have to enter CNFG mode (bottom right of the window) and click
on the SRAM. Inside the newcrt window use the cursor to descend to file name to load by clicking on
the bottom arrow and entering the name of the file to load. To finish, press space to validate your choice
and go back to the mylib window.

Try it yourself.

• Load the “Hello” program. Place the reset switch on 1 (en under the clock) to reset the
instruction counter to zero. To launch the application, place the reset switch to 0. Use tab 5
(input/output) to observe the result.

• Set reset to 1. Use a switch instead of the clock. Set reset to 0 and click on the switch to
execute the program step-by-step.

Exercise 2. Programming with 1s and 0s
Our processor has the following instructions:

• add rdest, r1, r2: adds the content of registers r1 and r2, and stores the result inside the rdest
register.

• sub rdest, r1, r2: computes r1 − r2 and places the result inside the register rdest.

• ld rdest, [rbase+ imm7]: loads into rdest the data located in memory at the address rbase+ imm7,
where imm7 is a 7-bit integer. We also talk about an immediate value since the integer is directly
available inside the instruction.

• st r1, [rbase + imm7]: stores the value located in the r1 in memory at the address rbase + imm7.

• ble r1, r2, imm7: if r1 ≤ r2, jumps to the instruction located at the address imm7 + 1. (if not,
continue to the next instruction located at the current address plus 1). This instruction allows us
to implement for and while loops, as well as if.

• ldi rdest, imm8: writes the 8 bit integer imm8 inside the rdest register.

• ja r1, r2: jumps to the 13 bit address defined by r1 for the 8 least significant bits and by rb for the
5 (most significant) remaining bits.

• j imm13: jumps to the 13 bit address imm13, where imm13 is a 13-bit integer. This instruction,
along with ja, allows for the implementation of function calls.

Each instruction is encoded on 16 bits as specified in the appendix.

Try it yourself.

• On paper, write a program which initializes the r0 register to 1 and increments it until it
becomes equal to 10.

• Using the appendix, give the encoding of your program in binary and in hexadecimal form.

• Construct the corresponding .ram files and load your program inside Digmips. Execute
step by step.

Exercise 3. Programming in assembly
There is a tool which automatically generates the .ram files starting from a program written in machine
language. Such a tool is called an assembler. Here is a an example program accepted by our assembler:

ldi r1,1
ldi r2,1 // counter = 1
ldi r3,10 // max = 10

loop:
ble r2,r3,loop_stmt
j end_loop // counter > 10? => stop

loop_stmt:

ldi r4,’*’
st r4,[r0+255] // print a star

add r2,r2,r1 // counter = counter + 1
j loop // next iteration

end_loop:
j end_loop

loop et end_loop are labels. They help identify execution points inside the program to where we want
to perform jumps. The assembler is in charge of computing the correct offset for ble and the absolute
address for j.

Try it yourself.

• Add the directory /home/calias/M1-Compilation/asm/bin/ to your $PATH environment variable.

• Write the previous program inside a file and save it to affiche10.asm.

• Call the assembler using asm affiche10.asm. The assembler outputs:

– The corresponding hexadecimal code on the standard output.

– Two affiche10_hi.ram and affiche10_lo.ram which can be loaded into memory inside
Digmips.

• Test the resulting assembler files inside Digmips.

Exercise 4. Input/Output
Digmips also has an extra file (io.lgf, tab 5) which allows one to input data using a keyboard and output
data on a screen. Normally, we would use two dedicated instruction for doing input/output operations.
Because we can only have 8 instructions, the decision was made to recycle the ld and st instructions in
the following manner:

• To output a character on the screen. Place the ASCII code of the character to be printed inside
r and execute st r,[does_not_matter_what_register + 255]. The base register is not important,
what matters is that the immediate value be 255. For example:

ldi r0,’a’ // places the ASCII code of ’a’ inside r0
st r0,[r7+255] // outputs the content of r0.

• To read a character from the keyboard. In a similar fashion, it suffices to execute: ld
r,[does_not_matter_what_register + 255]. For example:

ld r,[r7+255] // Read the state of the keyboard.

The characters read from the keyboard are stored in size 4 buffer. It is possible that no character
is available to be read. In this case, the value 0 is read. As such, to read from the keyboard we
must loop until a character becomes available.

Try it yourself.

• Write a program reading.asm which outputs nb?, passes to the next line, reads an integer from 0
to 9 from the keyboard and outputs it on the next line. The program ends by printing the character
13 on a new line.

Instruction format
The instructions are encoded using 16 bits in the following manner. The ’-’ character specifies unused
bits.

Instruction Encoding

add rdest, r1, r2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 - - - -

opcode rdest r1 r2

sub rdest, r1, r2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 - - - -

opcode rdest r1 r2

ld rdest, [rbase + imm7]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0

opcode rdest rbase imm7

st r1, [rbase + imm7]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1

opcode rdest rbase imm7

ble r1, r2, imm7
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0

opcode r1 r2 imm7

ldi rdest, imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 - -

opcode rdest imm8

ja r1, r2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 - - - - - - -

opcode r1 r2

j imm13
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1

opcode imm13

