
Compilation
TP 1 : Lexing

C. Alias & G. Iooss

The first step of a compiler is to divide the program text into lexical units (called token, or lexeme).
Writing a lexical analyzer is fastidious, and it is out of question to do everything by hand... Thus, we will
build a compiler (or compiler) which generates automatically the C code from a lexical analyzer, given a
lexical description.

Exercise 0. Warming up

Let us consider the regular expression a∗b | c over the alphabet Σ = {a, b, c}. The Thompson construction
and its determined version are given in the following figure:

Questions.

• Check that the Thompson construction and its deterministic version are the results of the algorithm
given during the course.

• By applying the course algorithm, minimize the deterministic automaton. Notice that the deter-
ministic automaton is also complete. This hypothesis is essential for the minimization. Check this
by minimizing the deterministic automaton without state 4.

Exercise 1. Regular expressions

Download the file lexer_V1.tar.gz and decompress it. Our lexical analyzer generator is formed of the
following files:

• Regexp.*: Regular expressions

• Automaton.*: Automatons: Thompson construction, determinization, minimization.

• Lexer.*: Lexical analyser generator (will be given later)

Manipulations:

• Open the file Regexp.h. A regular expression is a type sum which can be naturally described by
boolean fields (is_epsilon, is_letter, etc). Notice the pretty-constructors. Have a look at the
implementation in Regexp.cc.

• In the file main.cc, write the code to build and print-out a∗.b | c.

Exercise 2. Automatons
The first step is to build a deterministic, complete and minimal automaton which represents the lexical
description. These steps are considered point by point in this exercise.

Manip.

• Open the file Automaton.h. An automaton includes a set of states (line 34), a relation of transition
(line 35), an initial state and a final state. Two auxiliary classes are needed: State (lines 15–18)
where every instance represents a different state, and Label (lines 20–28) which represent either a
letter, or ε.

• Open the file Automaton.cc. Complete Thompson construction to manage the union (line 83),
by using the figure on the course slides.

• Analyze the method determinize() (after the lines 169–171) and minimize() (after the lines
273–275), that implements directly the algorithms we saw during the course.

• Open the file main.cc. Add the Thompson construction, the determinization and the mini-
mization for the expression a∗b | c. Use the method print_dot() to print-out the automaton
graphically. To do this, place the generated script on a file test.dot, and generate the automaton
by using the command dot -Tps test.dot > test.ps.

• Create and print-out the automaton for the expression
(
while\1 | b\2 | ␣\3 | ([w|h|i|l|e|b])*\4

)
*

where the characters \1, \2, \3 et \4 are markers. What is remaining to be done to build a lexical
analyzer?

Exercise 3. Lexical analyzers
One the automaton is build, we need to (i) generate the tables (transition tables and table of the recognized
lexemes for each states), and (ii) generate the C code of the analyzer.

A) Table production

In the file Automaton.cc, the method transition_table returns three data:

• The transition table of the automaton, where the lines are the states and the columns the letters
of the alphabet.

• A mapping letter → column to know which column is corresponding to what.

• A mapping state → recognized token, which returns the code of the recognized token in the
considered state. The lexeme code is the ASCII code of the associated marker. In exercise 2, the
code of while is 1, b is 2, etc. If no lexeme is recognized in the considered state, we associate to
this state the code 0.

Manip.

• Open the file main.cc. Apply get_transition to the minimized automaton. Print-out the
computed data (the table and the two mappings). How does the ambiguous states are treated
(states on which we can recognized several lexemes)?

• On paper, write down the main loop of the lexical analyzer.

B) Code generation for the lexical analyzer

Download the file lexer_V2.tar.gz in your repository and decompress it. The file Lexer.cc imple-
ments the code generation of the lexical analyzer. More precisely:

• The constructor takes as arguments an alphabet (without the markers) and a lexical description.
The lexical description is implemented by a vector of regular expressions Regexp, the rank of a
regular expression indicates its priority. The construction creates a minimal automaton for the
given lexical description. The markers we use are the ASCII characters of code 1, 2, etc.

• The method print_code generates the lexical analyzer C code. It first calls transition_table,
then generates the table (static array), and the necessary functions. The generated code supposes
the existence of the following functions:

– reset_input_flow() initializes the input stream (opening of a file, for example).

– read_next() reads the next character on the input stream.

– unread() go back of one character in the input stream.

– Eof is the end of stream character (\0 for a char stream, EOF for a file).

– accept(token,string) is called by the analyzer each time a token is recognized. Typically,
the implementation of "accept" could print it out.

– error(car_number) is called by the analyzer as soon as we encounter an error (non-valid
character which is not in the input alphabet; or unrecognized token).

Manip.

• Open the file main.cc. Add the code that produces the lexical analyzer for the lexical descrip-
tion we have seen in exercise 2. Redirect the code produced by the lexical analyzer for the lexical
description we have seen in exercise 2. Redirect the output of your executable toward the file
../src-gen/lex.c. Notice that a file automaton.dot is also generated with the minimal automa-
ton.

• Open the file lex.c and compare with the algorithm you had at the end of exercise 3A.

• Open the file main.c (in C) and implement the missing functions for the lexical analyzer. To
simplify, we will read the characters in a chain of characters (char*). We will add an integer that
will indicate the current position in this chain. Test your implementation.

• Push the analyzer to its limits... What part takes the most of the time? What could we optimized?

Exercise 4. Flex
flex is a very effective lexical analyzer generator (which is open-source) and is broadly used in the
community of compiler developers.

A) Basic functionalities

Download the file flex.tar.gz and decompress it.
The file lexer.l contains the lexical description of our C compiler. If you have some time, you could

try to generate it using the analyzer from exercise 3. A flex specification file is composed of 3 disjoints
parts, separated by %%.

• The first part contains some C/C++ code which will be directly copy/paste at the beginning of
the analyzer code (between {% et %}). Typically, we have inclusions, such that #include “parser.h”
(line 32) which imports the token symbols to be recognized.

• The second part contains the lexical description under the form of a serrie of pair "regular
expression"-"action to be done when we encounter it". typically, we transmit the recognized token
to the syntactic analyzer through a return.

• The third part contains some C/C++ code which will be directly copy/paste at the end of the
analyzer code. Typically, a main() function when we just want to try the lexical analyzer, as it is
the case in this exercise.

The generated analyzer by flex export a function yylex() that returns the first recognized token
in the file FILE* yyin (which needs to be opened). The following invocation of yylex() will return the
following token, etc. When there is no more token to be read, yylex() returns 0.

Manip.

• Open the file lexer.l. Add a function main() which opens the file given as an argument (in
argv[1]) and which will print-out all the recognized tokens. Try it on the file bd.c.

• Modify the lexical description to print-out the token when it is an identificator (TK_ID et
TK_TYPE_ID). We will use the variable char* yytext (containing the value of the string corre-
sponding to the token). Test it.

B) Start conditions

flex allows us to build several automatons and to switch between each others. Each automaton is
called a start condition.

• An automaton (start condition) is declared in the first part by using %x name_of_the_automaton.

• Then, the automaton lexical description is declared by prefixing each regular expressions (which
is corresponding with this automaton) by %x name_of_the_automaton.

• We ask the analyzer to switch the automaton by calling the macro BEGIN(name_of_the_automaton).

• The default automaton is called INITIAL. So, we can come back to the default automaton
by calling BEGIN(INITIAL).

Manip.

• Add the comments management // et /* ... */

Exercise 5. Bonus: Transition table compacting
The generated transition tables might be huge. To save some memory state, it can be useful to compress
them. Invent a compacting algorithm. We could use the transition tables generated by the lexical
analyzer generator to test its performance.
Remark: Often, the regular expressions describe tokens that have only a few letter in common. They do
not use (or almost) the same column in the transition table.

