
Compilation
TP 5 : Syntax-directed translation

A. Isoard & C. Alias

It is now time to translate programs to the assembly language we saw in TP0. More
specifically, we will try to compile in one pass : the assembly code will be produced by
the parser (without going through an intermediate representation).

Reminder of the targeted assembly language
– add rdest, r1, r2 : adds the content of registers r1 and r2, and puts the result inside
register rdest.

– sub rdest, r1, r2 : computes r1 − r2 and puts the result inside register rdest.
– ld rdest, [rbase+imm7] : loads inside register rdest the data at the memory address
rbase + imm7, where imm7 is a 7 bit integer. Also referred to as an immediate value,
since the actual value is immediately in the statement.

– st r1, [rbase + imm7] : stores the value of register r1 into memory at address
rbase + imm7.

– ble r1, r2, imm7 : if r1 ≤ r2, jumps to the instruction located at address pc +
imm7 + 1. (else, continue to the next instruction). imm7 can be negative (using 2-
complement), which allows to jump backward. This instruction allow to implement
for loops, while loops and if.

– ldi rdest, imm8 : writes the immediate 8 bit integer value imm8 in register rdest.
– ja r1, r2 : jumps to the memory address (13 bits) defined by r2 (for the first less
significants 8 bits) and r1 (for the most significants 5 bits).

– j imm13 : jumps to the memory address (13 bits) imm13, where imm13 is an
immediate 13 bits integer value. This instruction, with ja, allows to implement
function calls.

There are only 8 registers, each one having a width of 8 bits. Data memory addresses are
also on 8 bits (total maximum of 256 bytes !) while instruction memory addresses are on
13 bits (there can be up to 8192 instruction in the program).

Description of compiler classes
As usual, we reuse the compiler of the previous TP. You should know most of those

files now. Here is the list :
– lexer.l. Syntactic Analyzer (not changed)

– parser.ypp : Grammar of our C like language.

– (New) Attributes.h/.cc : Data structures to store information related to left hand
side (lhs) and right hand side (rhs) of expressions. Try to guess the meaning of
those class attributes.

– (TP3) Type.h/.cc and SymbolTable.h/.cc : Classes used for type-checking. The
symbol table implements the context ρ, that matches each variable (argument or
local variable) to the temporary in which it is stored.



– (New) Label.h/.cc : Manages a lot of counters in order to generate new labels
with unique names in the assembly program.

– (New) Register.h/.cc : Produce temporary “fresh” variables (improperly called
registers).

– (New) CodeDigmips.h/.cc : Contains functions that produce the assembly code
on the standard output.

Exercise 1. Ready... Steady... Generate !
Manip.

• Look at Label.h/.cc and Temporary.h/.cc. Try to create new labels and fresh
temporary variables.

• (Idioms) Open CodeDigmips.h/.cc and complete the holes in the cjump macro.
• (Expressions/Conditions) Open parser.ypp. Complete the holes inside parts

1/ Expressions 2/ Conditions, by drawing your inspiration from the other rules
already completed.

• (Control) Go to part 3/ Statements and implement the missing parts for trans-
lating while and for control structures. In case you have difficulties, look at the
if/then/else one.

• (Memory Allocation) Open Type.cc and study the allocate() function.
• (Functions) Find where are functions translated. How ρ is build ? How is it used
inside the expressions ? How is the result returned ?

Exercise 2. The use of the compiled code
Manip.

• Run your compiler on the provided examples from the test directory.
• Can the produced code be directly sent to the simulator under diglog ? What is
missing ?


