
Compilation
TP 6: Intermediate representations – CFG and DAG

A. Isoard & C. Alias
credits: G. Iooss

While the direct code production is quick, the resulting program yields poor performances. In order
to provide a common base for optimisation, code selection, scheduling, memory allocation, etc. we will
work on an intermediate representation of our program. The objectives of this TP is to define, build and
optimize this intermediate form.

Exercise 1. Pseudo-code, control flow graph
Download and unzip the file src_tp6.tar.gz. Compared to the previous TP, the new classes are the
following:

• Register.h/.cc replace maintenance of temporaries. We assume that we possess an infinite number
of registers and we will take care of their actual allocation (on the stack or inside one of the 4 free
registers) at code generation.

• BitVector.h/.cc is simply a class to manipulate bit vectors.

• Code.h contains an abstract class. It gathers methods common to different classes that implements
intermediate representations (PseudoCode, BasicBlock, . . . ).

• PseudoCode.h represents a single pseudo-instruction. Remark the implementation of the differ-
ent abstract methods of the Code class. The first group of instructions (line 15) corresponds to
instructions seen in the lecture. Next groups implements specialized ones (over reserved registers:
SP, ARP). Finally, remark the pretty-constructors, alike the ones generating the Digmips code in
the previous TP.

• Cfg.h implements a control flow graph. Every node of this graph contains a Code object (thus,
either a PseudoCode, or a BasicBlock). live-in[i] contains the temporaries that are live just
before executing the i node. live-out[i] contains the temporaries that are live just after the
execution of the i node. Remark the pretty-constructors, that add one pseudo-code instruction to
a global CFG (cfg variable, defined inside parser.ypp, line 53).

Manip.
• In main.cc, build the CFG corresponding to the following code (the temporaries are created using

the new_register() function):

r0 = 1
r1 = 0
r2 = 10

loop :
cjump r1, GE, r2, end_loop
r1 = r1 + r0
r3 = 1
r4 = r3 + r0

end_loop :
r4 = r4 + r0

• Display the CFG. For this, produce the dotty representation by calling cfg->print_dot(cout),
then compile the result1.

• Compute live ranges using the do_liveness() methods of Cfg. Displays the resulting CFG.

• Extract the basic blocks using the extract_basic_blocks() method of Cfg. The extraction
has to be done after the computation of the live ranges. Displays the resulting CFG.

1The command is still dot -Tps cfg.dot > cfg.ps



Exercise 2. DAG generation
Dag.h implements a direct acyclic graph between pseudo-instructions. node_reg[tmp] is the root node
of the expression computed inside the temp temporary. node_def[noeud] is the list of temporaries that
contains the results computed until node noeud.

Manip.

• Open Dag.cc and review the constructor. It is a variation of the redundancies elimination seen
in the lecture, but without hash function. For each instruction r = r’ op r”, we examine if r’
and r” are associated to existing nodes, and if those nodes have a common ancestor n, that executes
op. If yes, node_reg[r] := n. Similar rules exist for the other kinds of operator.

• In main.cc, build the DAG for node 22. Display it with dag->print_dot(cout);.

Exercise 3. Production of intermediate code
parser.ypp is modified to create a new CFG for every function (line 812). Remark the use of the pretty-
constructors of Cfg.h inside the translation rules. After having opened the function, we compute live
ranges (line 827), then extract the basic blocks (line 830) and finally produce a DAG for each basic block
(line 834 and following).
Manip.

• In main.cc, comment your additions and uncomment the call to the parser. Try it over test/test.c.

2With the instruction: Dag* dag = new Dag((BasicBlock*)cfg_bb->node[2]);, where cfg_bb is the CFG with basic
blocks built during exercise 1


