
Compilation
TP 8: Code generation

A. Isoard & C. Alias

credits: G. Iooss

In this TP we will study the last part of the compilation process: the final Digmips code generation.
As seen in the lecture, it is usually decomposed intro three stages: (i) instruction selection, (ii) instruction
scheduling, and (iii) allocation of temporaries

Exercise 1. Selection, scheduling
The first step is to choose the instruction in the Digmips assembly to evaluate the DAG of each basic
block, and to find an execution order.
Download the full compiler digcc.tgz and unzip it.
Open the file Backend.cc.

• backend() (line 255) takes the intermediate representation (cfg) and produce the final code by
applying successively the three following steps:

• select() (line 226) execute the first two steps. For each basic block, it produce a DAG and se-
lect/schedule the instructions, thanks to the select_dag function. The result is a CFG for which
nodes are Digmips instructions over temporaries. The liveness of those temporaries have to then
be computed.

• select_dag() (line 210) visits each root of the DAG, and produce the code in a depth first order,
from left to right, with a call to select_root. The ordering of the instructions is therefore direct,
without any attempt to optimize.

• select_root() (line 47) performs the actual instruction selection. As the grain of the Digmips
instructions is finer that the intermediate representation, the tiling strategy does not apply, and
we only need to translate each node of the DAG independently. This translation is done by the
digmips_translate that adds a new Digmips instruction to the resulting CFG. Naturally, we
should not forget to copy the results of a node into each register marked as live-out (because they
are used outside the current block).

Open the file CodeDigmips.h.
The CodeDigmips class describes the Digmips instructions. It inherits from Code which allows to build a
Digmips instruction CFG and to compute the liveness of the temporaries by using the method of CFG.
The file also provides:

• constructors (lines 105–123) that adds an instruction to the provided CFG.

• macros (lines 126–137) that produces the instruction sequence equivalent to each pseudo-instructions.

• and the main translation functions (lines 144–end).

Manip.

• In the file Backend.cc:

1. uncomment lines 257–274 (to display the DAG of each basic block)
2. uncomment the line 284 (do display the Digmips code produced after selection/scheduling)
3. comment the line 336 (to not display the final code)

Compile and run it on tests/simple.c.

• We are interested by the block that starts by alloc_0 (second DAG, lines 19–36). Explore the
translation. How is r14 = 1 translated? Why?

• Put the file into its initial state.



Exercise 2. Allocation
The produced code from the previous stage still manipulate temporaries. We now have to allocate
registers and stack space for them. This stage is realized by Backend.cc (lines 287–307).

Manip.

• The last stage of the select function is to compute the liveness of the temporaries. Display the
result by uncommenting the corresponding line. Tests again on tests/simple.c. Comment back the
line.

• From those informations, we build an interference graph. We only need to declare a conflict between
two temporaries live at the same time in the live-in of an instruction, or in the live-out. Display the
interference graph by uncommenting the corresponding line. Note that certain reserved temporaries
(r0,r1,r6,r7) are ignored. Its fine, as they are already allocated to corresponding registers. Comment
back the line.

To allocate the registers and the stack space, we now need to color the graph. As we want the r2
temporary to be stored into the r2 register, we pre-color the graph1. We then start the register allocation
over 4 registers. Indeed, r0 and r1 are reserved for the spill, and r6 and r7 for the stack. We only have
r2-r5 free to use (that the allocator name 0-3).
Open the file Allocation.h. The Allocation class contains the final mapping for the temporaries: tem-
poraru → physical temporary (register or stack).
Open the file Allocation.cc. The constructor starts at line 146. We use the Chaitin algorithm to build
our allocation. We therefore need a way to add/remove nodes to the interference graph. We use a simple
node list that list existing nodes and that we initialize with all the nodes and that the allocator will
update. The allocator takes in parameter the interference graph, the ”existing node” list and the number
K of physical registers. It is a direct implementation of the algorithm of the lecture. Remark the recursive
call over G − {s}. Once registers are allocated, we need to allocate stack space when temporaries are
spilled. We simply color with +∞ colors the part of the graph that will be spilled. The color with then
be seen as a shift of the temporary, in the stack.

Manip.

• In Backend.cc, uncomments the line to display the allocation. Test over tests/simple.c.

Exercise 3. Code generation
Now that we have all we need, we simply have to produce spill-code each time a temporary is allocated
on the stack. For each instruction produced at the first step, the digmips_apply function produce the
stack allocated version.

Open the file CodeDigmips.cc and go to line 309. We start by replacing the lucky temporaries by
their physical registers. Then we produce the code by inserting the spill-code of read registers. We then
add the instruction, “patched” with physical registers, and we insert the spill-code of the writen register
when needed.

Manip.

• Produce the final code over tests/simple.c.

• With the help of the produced code of exercise 1 and its allocation, check its application and the
production of spill-code.

• How and why do we avoid spill-code in the prelude and postlude of a function?

Exercise 4. Have fun!
Try the other tests programs, and/or write your own.

1with r0, but which will actually become r2...


