
Compilation
TP 9: Abstract Interpretation

A. Isoard & C. Alias

Program analysis offers new tools to the programmer and to the compiler. Knowing properties on
the program at compile time allow to do more complex code transformations, to predict more precisely
the performance of the program and even verify critical properties over the program. In this TP we will
study a powerful program analysis named: Abstract Interpretation.

This analysis is done in three steps: (i) transform the program into an automaton, (ii) associate to
each transition an abstract interpretation and (iii) compute for each state the abstract domain of every
possible memory state by following the abstract interpretation of the program (fix point computation).

var n:int, x:int;
begin

assume n >= 50;
while (x < 2*n) do

x = x+1;
done;
while (x > n) do

x = x-1;
done;

end
(a) Pseudo code

0start 1 2 3

n ≥ 50
.

x < 2n

x = x + 1

x ≥ 2n

.

x > n

x = x− 1

x ≤ n

.

(b) Automaton

Figure 1: Toy example

Exercise 1. Abstracting with Intervals
This is the abstract interpretation seen in the lecture. For each instruction in the program we associate
to each variable an interval representing the range of its possible values.

Step by step.

State 0 How many variable(s) do we have? Give their initial abstract domains.

State 1 What is the new domain of n? Can we deduce something on x? Why?

State 2 What is the new domain of x? And after one loop? And after widening? And after one loop
again (narrowing)?

State 3 What is the final domain of x?

Exercise 2. Abstracting with Polyhedrons
To improve the precision of the analysis, we want to allow inter-variables constraints. In order to be
able to arbitrarily compose abstract representations we restrict ourself to affine constraints, as this keep
everything computable (with gauss eliminations). In our case we will only allow conjunctions of affine
inequalities, thus an abstract space can be viewed as a convex polyhedron in a n-dimensional space where
n is the number of variables.

Union will be implemented using t the convex union over polyhedrons. The figure ?? illustrate the
widening operator. The idea is: P∇Q is composed of the constraints of P tQ that were already enforced
by P .

As a side note, the previous abstraction was a particular case of this one, where the only allowed
polyhedron were axis aligned rectangles.

1



x

n

n ≤ x
50 ≤ n
x ≤ 2n

∇

x

n

n ≤ x− 1
50 ≤ n

x− 1 ≤ 2n

−→

x

n

n ≤ x
50 ≤ n

Figure 2: Widening

Questions.

1. Describe in two different ways (with inequalities only) a non empty polyhedron. (clue: try a flat
polyhedron)

2. Show that the widening operator depends on the representation.

3. (Bonus) Try to define a widening operator that does not depends on the representation, by using
the generator representation: with vertices and rays instead of constraints.

Step by step.

State 0 How many variable(s) do we have? Give the initial abstract domain.

State 1 What is the new domain? Can we deduce something on x? Why?

State 2 What is the new domain? And after one loop? And after widening? And after one loop again
(narrowing)?

State 3 What is the final domain?

Exercise 3. Real tools
Abstract interpretation is actually used to verify properties over real programs, like absence of inte-
ger overflow, detection of aliasing, prediction of worst case execution time, ... A lot of different tools
implement some kind of abstract interpretation. Lets try one of them.

Manip.
Try the code of figure ?? on the online Interproc analyser.1
Experiment with different abstract domains: box is our interval abstraction, convex polyhedra is our

polyhedral abstraction. Try to guess (and verify) what octagon is.
Iteration/Widening options allow you to perform a certain number of standard iteration before re-

sorting to widening, and allow you to specify the number of iteration to do during narrowing.
Try the other examples or custom made ones. Have fun!

Interested? Want more? Contact Laure Gonnord at firstname.lastname@ens-lyon.fr for
internship/Ph.D opportunities! By the way, an other tool, Pagai2 is capable of analysing C code (based
on clang/llvm).

1online demonstrator http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
2sources available at http://pagai.forge.imag.fr/

2

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pagai.forge.imag.fr/

