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Résumé des travaux

Ce manuscrit présente une synthèse de mes travaux de recherche
dans le domaine des réseaux complexes. Ces activités ont com-
mencé en 2008, un an après l’obtention de mon doctorat en
informatique. Ces travaux touchent à des problématiques di-
verses du domaine : la métrologie de l’Internet, l’analyse des
réseaux dynamiques, la modélisation des réseaux statiques et
les codages efficaces pour les graphes. Chacune de ces théma-
tiques donne lieu à un chapitre. Une caractéristique essentielle
de ce mémoire est qu’il mêle l’utilisation de méthodes empiriques
(mesure et simulation) et de méthodes formelles (preuve). C’est
une particularité de mon activité de recherche et ce manuscrit
est écrit avec l’intention d’illustrer comment ces deux ensembles
de méthodes, souvent séparés, peuvent s’enrichir mutuellement.

Le premier chapitre traite de métrologie, qui est la science de
la mesure. Du fait qu’ils proviennent de contextes concrets, les
réseaux complexes ne peuvent être connus que par une opéra-
tion de mesure. Dès lors, se pose la question de savoir si le
résultat de la mesure est fidèle au réseau réel ou s’il est induit
par le procédé de mesure lui-même, auquel cas on parle de bi-
ais. Une grande controverse a éclaté à ce propos concernant la
distribution des degrés de l’Internet. Toutes les mesures effec-
tuées jusqu’à présent ont confirmé que cette distribution est en
loi de puissance. Cependant, il a été montré, à la fois empirique-
ment et formellement, que le résultat de ces mesures ainsi que



le procédé utilisé pour les obtenir sont biaisés. Il en ressort que
nous n’avons actuellement à disposition aucune estimation fiable
de cette distribution, qui est pourtant d’importance primordiale
pour la gestion du réseau. Ce premier chapitre présente une
méthode de mesure pour estimer rigoureusement la distribution
des degrés du coeur de l’Internet. Deux implémentations de la
méthode sont exposées : une dédiée à la topologie logique, au
niveau IP, et une dédiée à la topologie physique.

Le deuxième chapitre concerne l’analyse des réseaux dyna-
miques. Il contient une étude de cas et deux travaux méthodo-
logiques. L’étude de cas porte sur le réseau dynamique des
contacts entre individus dans un hôpital, enregistrés avec une
précision de 30s pendant une durée de six mois sur toute la
population de l’hôpital, patients et personnels. Cette mesure a
été effectuée dans le but de mieux comprendre la diffusion des
souches de staphylocoque en milieu hospitalier et l’apparition de
souches résistantes aux antibiotiques. Nous présentons une anal-
yse de la structure des contacts, dans sa dimension topologique
et sa dimension temporelle, selon un découpage prédéfini de
l’hôpital en services et en catégories socio-professionnelles. Le
premier des deux travaux méthodologiques concerne la structure
des changements de la topologie d’un réseau dynamique au cours
du temps. Le réseau est décrit comme une série de graphes et on
s’intéresse aux différences entre deux graphes consécutifs de la
série. La question est de savoir si les changements de topologie
d’un instant à l’autre sont répartis dans l’ensemble du réseau ou
s’ils sont au contraire concentrés autour d’une partie restreinte
des noeuds. Le deuxième travail méthodologique concerne la
description des réseaux dynamiques par une série de graphes.
Nombre de réseaux dynamiques sont naturellement des flots de
liens, c’est-à-dire un ensemble de triplets (u, v, t) signifiant qu’il
y a un lien entre les noeuds u et v au temps t. La plupart
des travaux sur ces réseaux commencent par les transformer en
séries de graphes sur lesquelles sont menées toutes les analyses.
Le procédé utilisé pour ce faire est l’agrégation. Il consiste à for-



mer le graphe des liens ayant existé dans une fenêtre de temps
choisie. Malheureusement, cette transformation induit une perte
d’information qui altère le flot de liens original. Cette altéra-
tion est d’autant plus grande que la largeur de la fenêtre utilisée
est grande. Nous proposons une méthode pour déterminer quelle
elle est la largeur maximale de la fenêtre d’agrégation qui garan-
tisse que la série de graphes formée conserve, pour l’essentiel, les
propriétés du flot de liens original.

Le troisième chapitre est dédié à la modélisation des réseaux
statiques, c’est-à-dire la génération de topologies synthétiques
réalistes. Le but est de générer aléatoirement des graphes qui
ont les propriétés connues des réseaux issus du monde réel, en
particulier : une faible densité globale, des distances courtes,
une distribution des degrés hétérogène et une densité locale
élevée (appréciée par le coefficient de clustering). La méth-
ode connue sous le nom de modèle de configuration permet de
générer des graphes présentant les trois premières propriétés.
Depuis, le domaine bute sur la difficulté à générer aléatoire-
ment des graphes ayant une forte densité locale. Nous explorons
deux nouvelles voies pour lever cette difficulté. La première
consiste à générer des graphes non par leurs arêtes mais par
leurs cliques, en respectant la structure de chevauchement de
ces dernières. Cela soulève le problème de la terminaison d’un
procédé itératif de factorisation de bicliques dans un graphe mul-
tiparti, pour lequel nous élaborons deux solutions. La deux-
ième voie de modélisation que nous proposons consiste à ap-
proximer les réseaux réels par des graphes fortement structurés,
c’est-à-dire définis par une propriété mathématique. Il s’agit
de représenter un réseau complexe par une paire formée d’un
graphe fortement structuré et de l’ensemble des différences entre
ce graphe et le réseau original, ces deux parties de la topologie
étant ensuite générées indépendamment. Dans le but d’obtenir
de telles représentations pour des réseaux issus du monde réel,
nous développons ou améliorons plusieurs algorithmes d’édition
et de complétion minimale de graphes, notamment pour les



classes des graphes d’intervalles, des graphes de permutation et
des cographes. L’approche de modélisation proposée est testée
en utilisant les résultats fournis par l’algorithme d’édition min-
imale développé pour les cographes.

Le but du quatrième et dernier chapitre est de développer des
codages efficaces pour les graphes, qui soient à la fois compacts
en espace et qui ne pénalisent pas le temps d’exécution des re-
quêtes faites par les algorithmes. Cela est primordial en pratique
pour stocker en mémoire limitée les immenses jeux de données
constitués par les réseaux complexes sans allonger les temps de
traitement de ces données. Nous nous intéressons à garantir un
temps d’exécution optimal pour la requête de voisinage (lister les
voisins d’un sommet donné), qui est probablement la requête la
plus utilisée par les algorithmes et qui est également utilisée pour
l’exploration et la visualisation. Deux paramètres de codage, la
contigüıté et la linéarité, sont étudiés. Ils sont basés sur un
ou plusieurs ordres linéaires des sommets du graphe considéré,
dont le but est de grouper autant que possible les voisinages
des sommets. La contigüıté utilise un seul ordre dans lequel les
voisinages des sommets peuvent être segmentés en plusieurs in-
tervalles. La linéarité, que nous introduisons, utilise plusieurs
ordres dans lequel chaque sommet retient un unique intervalle
formé par certains de ses voisins. Il découle de leurs définitions
que la linéarité est toujours au plus égale à la contigüıté. Nous
montrons qu’il existe des familles de graphes pour lesquelles la
linéarité est asymptotiquement négligeable devant la contigüıté,
ce qui implique que le codage par linéarité est strictement plus
puissant que celui par contigüıté. Au passage, nous fournissons
des bornes supérieures et inférieures atteintes sur la contigüıté
et la linéarité dans le pire des cas des cographes à n sommets.

Le manuscrit se termine en décrivant deux directions de
recherche ouvertes que je crois particulièrement importantes
pour le domaine des réseaux complexes dans les prochaines an-
nées. La première est le développement d’une théorie des flots
de liens, comme un nouvel objet mathématique, pour étudier



les réseaux dynamiques sans passer par les graphes, ce qui est
actuellement à l’origine de nombreux blocages. La deuxième
direction concerne l’approximation des réseaux complexes par
des graphes fortement structurés et l’avènement d’une théorie
algorithmique des graphes presque structurés.
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Introduction

This thesis presents my research work in the field of complex
networks, started in 2008, one year after the end of my PhD in
computer science. It is intended to give a synthetic description
of my contributions and does not provide the details of their
technical content, which can be found in the corresponding arti-
cles. Instead, in this manuscript, I concentrate on, and discuss
in depth, the meaning of the results I obtained, the main ideas
that support them and the perspectives they raise. As a result,
this document can be used by non-specialists as an introduc-
tion to the field, through a very partial sample of some of its
problematics, or by specialists to have a synthetic view of my
contributions and of some open research directions they raise.

This manuscript also positions my results in the general pic-
ture of the field, but avoids to make an exhaustive description of
it. The domain is so vast that making its exhaustive description
is practically unfeasible and would give an outcome quite unex-
citing to read. Instead, I prefer to mention the articles that had
a strong influence on the field or on my own research, and the
articles that open new directions in which I particularly believe.
Extensive and specific states of the art of the topics I worked on
can be found in the articles I published.

Almost all works presented here have been accomplished in
collaboration with other researchers and many of them in col-
laboration with students that I advised or co-advised for their
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research internships or for their PhD thesis. In particular, the
work on Internet metrology presented in the first chapter has
been accomplished within the PhD thesis of Elie Rotenberg,
which I co-advised with Matthieu Latapy. In Chapter 2, the
analyses of the contact network between individuals in a hospi-
tal have been realised in the PhD thesis of Lucie Martinet and
the work on aggregation of link streams into series of graphs is
part of the PhD thesis of Yannick Léo, whom I both co-advised
with Eric Fleury.

The synthesis of my research activity presented here leans on
articles that I cite throughout the document. All of them are ei-
ther published in journals or acts of conferences or under review
at the time I write this manuscript, all texts being available on
my personal webpage. Only the last part of Chapter 3 diverges
from this rule and describes an original work that has not been
published nor presented anywhere else previously. This is the
reason why this part is technically more detailed than the rest
of the document.

Complex networks

A network (see example in Figure 1) is a set of entities, called
nodes, which are involved in some pairwise relationships between
them, called links. Complex networks are those networks en-
countered in practice in various contexts, such as computer sci-
ence, social sciences, biology, linguistics, medicine, transporta-
tion, communications, industry, economy and others. In com-
puter science, well-known examples include the Internet, where
nodes are computers and links are communication cables be-
tween them, and the web, where nodes are web pages and links
are hypertext links between these pages. In social sciences,
nodes are often people and links are the acquaintances between
them, in biology, nodes may be proteins and links the possible
interactions between them (see Figure 1), etc. From one con-
text to another, the meaning of nodes and links is usually very
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Figure 1: Example of a complex network: a protein-protein
interaction network. Nodes are proteins and links are possible
biochemical interactions between them [41].

different, but if we forget these meanings, the underlying object
has the same mathematical nature: it is a network.

The reason why these networks are called complex is that it
is usually very difficult to catch a comprehensive view of their
organisation at the first glance. And often, even after exten-
sive analysis, including the use of statistics, visualisation tools
and other investigation means, their organisation remains only
partially revealed and explained. There are mainly two reasons
for this. The first one is that the size of the complex networks

3



studied in the contexts mentioned above is usually very large,
typically from thousands to billions of nodes and links, which is
far beyond the cognitive capacities of humans. The second rea-
son to call these networks complex is that the structure of their
links does not appear to be regular. In other words, it seems
that this structure cannot be caught by a simple rule that would
allow to think of the network as a very large but clearly organ-
ised object, like a cycle or a grid for example (see Figure 2). In
the absence of any such rule given a priori, they seem not to fol-
low any. Their organisation appears rather anarchic and messy
(see example in Figure 1). Combined with their large size, this
makes these networks difficult to understand and to mentally
visualise: they are said to be complex.

At the time when I am writing this manuscript, the domain
of complex networks is well established in the landscape of in-
ternational research. There are a large number of venues and
journals specifically dedicated to complex networks or where
complex networks are one of the major topics. Despite this, it is
not that clear why it is a scientific domain in itself. One reason
is that the domain is young, less than 20 years, and its devel-
opment strongly leans on the recent digitisation of all sorts of
human activities that nowadays provides a constant flow of data
of huge size (known as big data) to analyse and exploit, a good
proportion of it being organised in the form of a network. Then,
one may legitimately wonder if complex networks is not simply
a scientific trend rather than a long-lasting research domain.

Another reason is that the domain of complex networks is in-
trinsically interdisciplinary, which makes it difficult to identify.
The questions that are studied about complex networks are to-
tally dependent on the contexts where these networks come from
and they are expressed using the terms and the concepts of these
specific contexts. For example, in the Internet context, one asks
whether the network is resilient to failure and attacks; in social
sciences, one wants to understand how the connections between
people affect the adoptions of new ideas and beliefs; in molec-

4



ular biology, one wants to understand the role of the proteins
involved in processes occurring into a cell. All these questions
appear to be quite different and specific to the disciplines where
they arise. Therefore, it is unclear why they should be grouped
together and form a common scientific domain.

There are two main reasons that make it relevant to do so.
These studies are unified by a common general problematics
and common methods of investigation. Their common problem-
atics is that they address questions which go far beyond the sole
structure of the network (because they involve for example psy-
chological issues, or chemical properties, etc.) and for which, at
the same time, this organisation into a network is a crucial in-
gredient to answer the questions addressed, therefore requiring
to interweave these different aspects in order to obtain accurate
answers. Furthermore, even though the considered questions
strongly depend on the context, the set of methods used to take
into account the structure of the network shares a wide common
basis composed of statistics, experiments, simulations, visuali-
sation and algorithmic treatments. As a conclusion, complex
networks is a scientific domain in the sense that it is united by
a common type of objects, a common general problematics and
common methods of investigation.

Very often, researchers of the domain justify its unity and
its existence by the two following reasons. Firstly, despite the
fact that complex networks come from very different contexts,
their structures often share common properties (such as low den-
sity, short distances, heterogeneous degree distribution and high
clustering coefficient, see technical preliminaries, page 13, for
definitions) which makes it relevant to study them as a same
class of objects. Secondly, even though the questions studied
are very specific to the context, on the structural side, they of-
ten involves the same questions, such as community detection
and the study of diffusion properties for example. These two
facts are largely responsible for the identification and the emer-
gence of the domain of complex networks. The reason why I
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Figure 2: Three examples of strongly structured networks. The
cycle on n vertices (a), the kth power (depicted with k = 2) of
the cycle on n vertices (b), used by Watts and Strogatz [76], and
the n× n grid (c), used by Kleinberg [43].

took some time here to give my own, and different, definition
of the domain is that I believe that the most exciting perspec-
tives for its future development are precisely to go beyond the
two points mentioned above. Efforts in the domain should be
put on i) distinguishing different types of topology and exploit-
ing their properties in order to provide better answers than in
the generic case and ii) using and defining structural properties
that are more specific, and then more relevant, to the questions
considered.

A subtopic of graph theory?

Since the domain of complex networks studies networks1, what-
ever may be its motivations, one could think of it as a subtopic
of graph theory. There are strong reasons why, in my opinion, it

1Which is a synonym for graphs. I will clarify this point further in the
technical preliminaries, page 13.
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should not be considered as such, despite the very strong ties be-
tween the two domains (which remain insufficiently developed).

Firstly, while the purpose of graph theory is to understand
networks, the questions pursued by the domain of complex net-
works are beyond the scope of networks themselves: e.g. how
to retrieve relevant information in the web? how does a living
cell works? or how does a language evolve? These are questions
from other disciplines whose answers do not involve only net-
work concepts. Moreover, the part concerning networks cannot
always be isolated and networks often have to be augmented
with an amount of external information to encompass the other
aspects of the question. This either gives objects derived from
graphs that are considered denatured by graph theorists, or this
gives questions that are so constrained by these other aspects
that they loose their interest for graph theorists.

Secondly, rather surprisingly, complex networks do not cor-
respond to any kind of graphs studied in graph theory. Graph
theory mainly studies two cases. The first one is the case of
classes of graphs satisfying a given mathematical property, for
example graphs excluding a certain configuration, or graphs ad-
mitting a special representation or again graphs having a certain
parameter bounded by a constant. The second case of study is
random graphs. In this case, one studies the expected properties
of a graph chosen uniformly among a usually very broad2 class
of graphs, such as graphs on n vertices or graphs on n vertices
and m edges for example, for fixed n and m.

It turns out that complex networks precisely lay in the gap
between these two cases of study, and it could stand for a def-
inition of them. They do not satisfy any strict mathematical
property and they are very different from random graphs (on the
same number of vertices and edges). This is the core idea of the
paper of Watts and Strogatz [76] which is often consider as the

2When the class considered is more restricted, i.e. satisfies some math-
ematical property, one comes back to the previous case.
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founding act3 of the domain. [76] shows that complex networks
cannot be considered as random graphs and suggests that they
could instead be seen as perturbations of strongly structured
graphs. In other words, they are nearly structured graphs and
this "nearly" is the reason why they have been mainly out of
scope of graph theory so far. This also explains why until now
these objects are usually treated using empirical approaches or
techniques from other disciplines, in particular from physics.

Therefore, despite the fact that the study of complex net-
works inevitably relies on graphs, it considers problems that are
external to graph theory, on a kind of objects that is not consid-
ered classically in graph theory and with methods that are very
different from those used in graph theory.

Relationship with computer science and other
disciplines

By nature, the domain of complex networks is interdisciplinary.
It involves all disciplines where these objects appear together
with questions they raise and it also involves disciplines that
provide methods to address these questions. There are three
disciplines that, from my point of view, have deeper and special
involvement in the domain of complex networks.

Among the disciplines interested in complex networks be-
cause of their need to treat such objects in their field of study,
social sciences is probably the one who contributes more to the
domain. This comes from the fact that this is one of the context
where the concept of the link (the tie as it is called in this do-
main) has the deeper meaning and importance. This led social
sciences to study many social systems organised in the form of a
network (which also constitute important case studies for other
disciplines interested in methodological aspects) and to develop

3This is the beginning of this trend of study and according to Google,
the paper has been cited by nearly 30 000 other documents since it was
released in 1998.
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approaches that deal with the structure of these networks. It is
striking to see that pure concepts of graphs, such as the small
world phenomenon [73] and the distinction between strong and
weak ties [35], that one would expect to have been introduced
in the field of complex networks by graph theorists during the
recent rise of the domain were actually introduced in social sci-
ences almost fifty years ago.

There are some other disciplines that contribute on the meth-
ods but not necessarily generate objects. This is the case of
physics for example, which offers only few objects of study but
which have a strong interest in the domain for the methodolog-
ical aspects. In particular, one central question in complex net-
works is the relationships between the local structure of inter-
actions in the network, at the microscopic scale, and its global
organisation and behaviour, at the macroscopic scale. This ques-
tion has been pursued by statistical physics from centuries and
largely explains the interest and the achievements of physicists
in the domain. Interestingly, this question is also a point of
convergence with computer science where the local vs global ap-
proaches are transverse in many topics such as graph theory,
distributed algorithms and multiagent systems.

Finally, computer science is also one of the main actor in the
field of complex networks. However, it could be expected at an
even higher level of contribution taking into account that the do-
main of computer science has all the reasons to be involved in the
study of complex networks. Firstly, the domain generates an im-
portant number of objects of huge size organised in the form of a
network, having a technological nature or related to information
and communication. Let us cite for example computer networks
such as the Internet, mobile and ad-hoc networks, smartphone
networks, networks of sensing and intelligent devices (at home,
in buildings, in cities), the web, blogs, emails, online social net-
works, peer to peer networks, and others. All these contexts
raises questions about these networks. Secondly, graphs are an
important object of study in theoretical computer science, in
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particular for the algorithmic aspects. Consequently, computer
science actively participates in the development of graph theory
and has a natural interest for these objects. Finally, complex
networks constitute huge amounts of data that need to be repre-
sented, stored and treated, algorithmically and computationally.
These aspects lay in the scope of computer science and are an-
other reason of the natural involvement of the discipline in the
domain of complex networks.

My personal approach

One important characteristic of this thesis is that it uses both
empirical methods (mainly in Chapters 1 and 2), i.e. experimen-
tation and simulation, and formal methods (mainly in Chap-
ters 3 and 4), i.e. proofs. The reason is that the aim of my
research work is to provide practical solutions to concrete prob-
lems, as measuring the topology of the Internet or limiting the
spread of nosocomial infections in hospitals. In this case, all
means are valuable as soon as they provide a better under-
standing of the problem. To this regard, formal and empirical
approaches are complementary.

From a certain point of view, empirical methods are more
powerful, in the sense that they often provide a simpler way to
investigate dependencies between properties, which may be out
of reach by formal approaches in some cases. This greater sim-
plicity has a price: empirical methods do not provide indubitable
conclusions. Concretely, it means that there is a possibility that
the conclusions derived are induced by the way they are derived.
This cannot happen with proofs, in theory, because their valid-
ity, based on logic principles, is universal and can be checked.
Nevertheless, if the experimental protocol or the simulation pro-
tocol is designed carefully enough, the results obtained from it
are usually quite informative, and gives a very valuable insight
into the problem. Because of their nature, complex networks,
which do not satisfy any strict mathematical property, are prone
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to be treated by empirical approaches, which easily accommo-
date with errors, uncertainty and randomness that are contained
inside these objects.

Nevertheless, formal methods are also very useful to the field.
They can be used for example to ensure that the conclusions
derived are not particular to the networks on which they are
obtained or induced by an undesired particularity of the experi-
mental protocol (which, for practical reasons, cannot always be
as general as one would wish). In other cases, certainty is re-
quired, for example to design and to prove the correctness of
the computational methods used in empirical approaches, and
formal methods are then needed as well.

But beyond their specific contributions and interests, both
approaches, empirical and formal, rely on a common basis: on
concepts, properties and relations between them. This is why,
they are not to be opposed but are instead strongly comple-
mentary. Empirical approaches must nourish themselves from
the rich set of concepts developed in formal contexts and formal
approaches must benefit from the relations pointed out by em-
pirical means. This is how I found very useful and fascinating
to work with both at the same time. This thesis is written with
the intention to provide examples of how this mutual enrichment
can operate.

Outline of the thesis

This thesis contains four chapters. Each of them includes a par-
tial conclusion that outlines the direct perspectives opened by
the works presented in the chapter. In the second and third
chapter, these perspectives are not postponed to the end of the
chapter but instead detailed at the end of each section. In ad-
dition, the manuscript also contains a general conclusion which
discusses two directions of research in which I particularly be-
lieve for the domain of complex networks, and that I will pursue
in the next years.
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The first chapter deals with the measurement of the degree
distribution of the Internet topology. Our approach is based
on a new principle called property oriented measurement, which
provides more faithful information by focusing only on one tar-
get property, without collecting a map of the network. Two
methods are presented, one for measuring the degree distribu-
tion of the logical topology and one for measuring the degree
distribution of the physical topology.

Chapter 2 presents three works on the dynamics of com-
plex networks. The first one is a case study on the dynamic
network of contacts within a hospital and the other two are
methodological developments dedicated to dynamic networks in
general. One is about characterising the structure of changes of
the topology of a dynamic network, the other one addresses the
problem of finding appropriate time scales in order to aggregate
a dynamic network into a series of graphs.

Chapter 3 deals with complex network modelling. The aim
is to design random generation processes that output synthetic
networks having properties as close as possible from those ob-
served for real-world networks. We describe two different ap-
proaches toward this goal. One is based on the entanglement
structure of maximal cliques, while the other one is based on
the approximation of complex networks by strongly structured
graphs.

Finally, the last chapter considers the problem of design-
ing very compact encodings of graphs that do not penalise the
queries made during algorithmic treatments, such as listing the
neighbours of one given vertex. We investigate the efficiency
of two related encodings, named contiguity and linearity, which
use linear orderings of the vertices of the graph.
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Technical
preliminaries

We denote |X| the cardinal of a finite set X, i.e. its number of
elements. When a set X, not necessarily finite, is totally ordered
by ≤, we denote [a, b] the interval of X comprised between a and
b, where a, b ∈ X and a ≤ b, that is [a, b] = {x ∈ X | a ≤ x ≤ b}.
If X is a discrete set, typically integers, we denote Ja, bK instead
of [a, b].

In the domain of complex networks, network and graph are
synonyms. In this manuscript we use both terms. We use the
term network in the context of works using mainly empirical
methods (Chapters 1 and 2) and for real-world objects, while
we use the term graph in the context of works using mainly
formal methods (Chapters 3 and 4) and for the definitions given
in these technical preliminaries.

A graph G (or network) is a couple denoted G = (V,E),
where V is the (finite) set of vertices (called nodes with the
vocabulary of networks) and E is a subset of pairs of vertices
which are called edges (or links with the vocabulary of net-
works). The set of vertices of a graph G is also denoted V (G)
and its set of edges E(G). In the following, an edge {x, y} ∈ E
is simply denoted xy or yx, indifferently. In all the manuscript,
the number of vertices is denoted n = |V | and the number of
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edges is denoted m = |E|. The density of a graph (also called
global density), denoted ρ, is the number of edges divided by
the number of possible edges (i.e. the number of couples of ver-
tices), that is ρ = m

n(n−1)
2

= 2m
n(n−1) . For X ⊆ V a subset of

vertices, the graph induced by X, denoted G[X], is defined as
G[X] = (X, {xy ∈ E| x ∈ X and y ∈ X}).

Two vertices x and y of a graph G are adjacent if there is
an edge between them. In this case, we also say that x is a
neighbour of y, and reciprocally that y is a neighbour of x. The
set of neighbours of x is called the neighbourhood of x and is
denoted N(x). The degree of x, denoted d(x) (or d◦(x)) , is
its number of neighbours, i.e. d(x) = |N(x)|. The mean degree
d̄ of a graph is the arithmetic mean of the degrees of all its

vertices, that is d̄ =

∑
x∈V

d(x)

n . Note that it is related to the
density of the graph by ρ = d̄

n−1 , as for any graph
∑
x∈V

d(x) =

2m. The closed neighbourhood of x is denoted N [x] and defined
as N [x] = N(x) ∪ {x}. For sake of clarity, when we use the
notion of closed neighbourhood, we usually use the term open
neighbourhood instead of just neighbourhood.

The degree distribution of a graph G (and more generally the
distribution of a function f) is the function k 7→ P (k), where
P (k) is the proportion of vertices having degree exactly k (resp.
the proportion of elements x such that f(x) = k). One classi-
cally distinguishes two families of distributions. The first one is
homogeneous distributions, which are centred around their mean
and where there is consequently a notion of normal value. One
typical example of homogeneous distributions is the Poisson dis-
tribution, P (k) = λk

k! e
−λ, where λ is a parameter, namely the

mean of the distribution. Opposed to homogeneous distribu-
tions are heterogeneous distributions, where there is no notion
of normal value as the mean is not representative. Instead, het-
erogeneous distributions span a wide range of values spread on
several order of magnitudes. They are said to be heavy tailed,
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meaning that the value of P (k) slowly decreases when k goes
through very large values. In most cases, slowly means poly-
nomially, as opposed to homogeneous distributions that exhibit
an exponential decay. The typical example for heterogeneous
distributions is the power-law distribution, where P (k) is pro-
portional to k−α, with α > 0 being one parameter, called the
exponent of the power law.

A path in a graph is a sequence of vertices P = a0, a1, . . . , ak,
where k ≥ 0, such that for all i ∈ J0, k − 1K, ai and ai+1 are
adjacent. When a0 = ak, P is called a cycle. The length of a
path P = a0, a1, . . . , ak is k. The distance δ(x, y) between two
vertices x, y is the minimum length of a path between these two
vertices, i.e. a0 = x and ak = y, if such a path exists and the
distance is infinite otherwise, by convention.

A subset X ⊆ V of vertices is connected if and only if for
all vertices a, b ∈ X, there exists a path from a to b. If V
itself is connected, we say that the graph G is connected. The
connected components of a graph are its connected subsets of
vertices that are maximal for inclusion. The diameter of a graph
is the maximum of the distance between all couples of vertices,
it is infinite if G is not connected. The mean distance δ̄ of a
connected graph is the arithmetic mean of the distances between

all couples of vertices, that is δ̄ =

∑
x,y∈V

δ(x,y)

n(n−1)
2

.

Distinct from the notion of global density, there is a no-
tion of local density of a graph which aims at quantifying how
dense is the graph in the neighbourhoods of its vertices. Usu-
ally, the local density is appreciated by the clustering coeffi-
cient of the graph. There are two definitions of clustering co-
efficient, which we denote CC1(G) and CC2(G). The most
immediate one, CC1(G), is based on the local clustering co-
efficient of a vertex x, which is denoted cc1(x). cc1(x) is the
density of the graph induced by the neighbourhood of x, that
is cc1(x) = ρ(G[N(x)]) = |E(G[N(x)])|

|V (G[N(x)])|(|V (G[N(x)])|−1)/2 . CC1(G)
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is then defined4 as the mean of cc1(x) for all vertices x ∈ V ,

that is CC1(G) =

∑
x∈V

cc1(x)

n . The second definition of the clus-
tering coefficient, CC2(G), does not go through local quanti-
ties, it is directly expressed as CC2(G) = |Triangles|

|Pretriangles| , where
Pretriangles = {(a, b, c) ∈ V 3 | ab ∈ E and ac ∈ E} and
Triangles = {(a, b, c) ∈ V 3 | ab ∈ E and ac ∈ E and bc ∈ E}.
The two clustering coefficients CC1(G) and CC2(G) are incom-
parable in the sense that there does not exist any constantK > 0
such that for all graphs G, CC1(G) ≤ K .CC2(G) or for all
graphs G, CC2(G) ≤ K .CC1(G).

Trees are a particular kind of graphs that play a very special
role in graph theory. In this manuscript, we often use rooted
trees. A rooted tree is a graph G = (V,E) which can be defined
in the following way. For each vertex x ∈ V , except one vertex
r ∈ V called the root, choose a vertex distinct from x to be the
parent of x, denoted parent(x), in such a way that the edge set
E = {{x, parent(x)} | x ∈ V } makes V connected.

A partial order on a set X is a binary relation, denoted ≤,
that is reflexive (∀x ∈ X,x ≤ x), antisymetric (∀x, y ∈ X, if
x ≤ y and y ≤ x then x = y) and transitive (∀x, y, z ∈ X, if
x ≤ y and y ≤ z then x ≤ z). A total order, or linear ordering,
on a set X is a partial order ≤ such that all the elements of X
are comparable. Formally, this means that ∀x, y ∈ X,x ≤ y or
y ≤ x. In a linear ordering on a finite set X, there exists one
unique element m such that ∀x ∈ X,m ≤ x and there exists one
unique element M such that ∀x ∈ X,x ≤M . The element m is
called the minimum of ≤ and M its maximum.

4Note that this definition is actually subject to slight variations as well,
depending on how the density is defined in the special case where the neigh-
bourhood of x contains 0 or 1 vertex, and depending on whether such ver-
tices x are taken into account in the mean or not.
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Some classes of graphs

Throughout the manuscript, we sometimes present or use algo-
rithmic results and representation results for some graph classes,
such as chordal graphs, interval graphs, permutation graphs and
cographs for example. We therefore give a very brief introduc-
tion to these classes. For more, the reader may refer to [11].

Chordal graphs are the graphs that do not contain any in-
duced cycle of length at least 4. One of their most useful char-
acterisations is that their maximal cliques can be arranged into
a tree T such that for each vertex x, the set of maximal cliques
containing x forms a (connected) subtree of T . Chordal graphs
are known to admit very efficient solutions to algorithmic prob-
lems that are hard for graphs in general.

Interval graphs is one of their subclasses. Their most im-
mediate definition is that they are the intersection graphs of
intervals of the real line. In other words, a graph G is an in-
terval graph if and only if it admits an interval realiser, i.e.
its vertices can be mapped to a set of intervals of the real line
such that two vertices x and y of G are adjacent if and only if
their corresponding intervals intersect. Even stronger than for
chordal graphs, their maximal cliques can be arranged into a
path having the property that the maximal cliques containing
any vertex x are consecutive on the path. Such paths are called
consecutive arrangements of the maximal cliques and they are
the canonical interval realisers of the graph. It is remarkable
that, while there may be many of them, up to Ω(n!), the set of
all canonical realisers can be represented very efficiently, thanks
to a tree called the PQ-tree, in space O(n), which is also the
space needed to represent one single of these realisers.

Permutation graphs are the intersection graphs of segments
whose endpoints lay on two parallel lines. They are represented
by two linear orderings of their vertices: the orders of occurrence
of the endpoints of the segments on the two parallel lines. As
for interval graphs, such a representation is called a realiser and
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all realisers of a permutation graph can also be stored in space
O(n) thanks to a tree called the modular decomposition tree.

In the following, we are particularly interested in a subclass
of permutation graphs called cographs. Cographs are the graphs
that have no induced path on 4 vertices. They are also the
graphs that can be obtained from single vertices using the dis-
joint union and the complete union of graphs (disjoint union
plus all possible edges between the graphs involved). The mini-
mal tree encoding the operations used to build a cograph is an
O(n)-space representation of it and it is also its modular decom-
position tree.
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Chapter 1

Property oriented
measurements: the
case of the degree
distribution of the
Internet

Context

In 1999, Faloutsos et al. [32] showed, using a data set collected
in 1995 by Pansiot and Grad [62], that the degree distribution of
routers in the Internet approximately follows a power law. This
means that the proportion P (k) of routers of degree k is propor-
tional to k−α for some α > 0, which we write P (k) ∼ k−α. Since
then, huge campaigns of measurement of the Internet topology
have been led and this observation was confirmed many times
independently. This fact is crucial as it is known that the degree
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distribution of routers of the network has a key impact on many
aspects of the management of the Internet, in particular on the
resilience of the network to failures and attacks, on the speed of
spreading phenomenons (e.g. viruses) and the ability to contain
them and on the quality of services on the network (e.g. for
routing or broadcast).

Beyond the sole Internet topology, this result participated
to a wide stream of works exhibiting the scale-free property of
many complex networks from various contexts, meaning that
the degree distribution of these networks is heavy tailed, like a
power law. In this trend of work, the power law is practically
erected as a universal law of nature, as the Gaussian law of
errors was before, that appears almost everywhere and not only
in the degree distribution of complex networks. In this latter
context, the appearance of the power law was partially explained
by an argument concerning the formation and the evolution of
networks, known as preferential attachment [5].

The impact these observations had on the scientific com-
munity also brought a counter-stream of works that objectively
criticised the way some of these power laws had been observed,
arguing that they were sometimes introduced by the way the
distribution had been evaluated [13]. In the case of the degree
distribution of the Internet, this stream turned into a big sci-
entific controversy. The data coming from measurements, on
which was appreciated the degree distribution, was shown to be
biased [45]. This bias was even explained both empirically [45]
and formally [1], showing that, with the methods of measure-
ment employed, it is possible to observe power-law look-alike
distributions even when the real distribution is homogeneous,
which is the diametrically opposed case. In addition to these
theoretical arguments, there were voices from practitioners and
engineers that design the network that rised to argue that any-
way, the real degree distribution of the network is certainly not
heavy tailed since, for practical and technological constraints, a
router can have only a very limited number of neighbours. Nev-
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ertheless, it remains that all the measurements of the Internet
degree distribution made until now find it to be heavy tailed.
In the light of the controversy above, it points out that there is
no trustful estimation of this distribution available so far.

This question on the accuracy of the observation of proper-
ties of complex networks is not particular to the Internet but is
general to all networks. Indeed, as complex networks come from
a real-world context, they are always known through an oper-
ation of measure, specific to this context, e.g. by downloading
webpages to measure the web graph, or by questioning people
to measure their social ties or by performing chemical reactions
to measure interactions between proteins. Since the knowledge
we have of these networks comes from a measurement operation,
the question arises to know whether the result of the observation
is consistent to the real network or whether it is shaped by the
measurement method itself, in which case we say the observa-
tion is biased. This is the question addressed by metrology. This
general question calls several sub-questions: can we detect the
bias in the result of a measurement? can we quantify it? can
we correct it? and finally, can we design measurement methods
that are free of bias? One of the beauty of metrology is that it
is sometimes possible, as in the case of the Internet, to detect
the bias introduced by the measurement even without knowing
how the original network looks like. On the other hand, correct-
ing it is in general difficult as the bias introduced is usually not
reversible: many different original networks may be observed in
the same wrong way.

Approach

The question we address here is to design a measurement method
that is free of bias. Of course, the possibility of successfully im-
plementing such a method entirely relies on the measurement
primitives available in the context of the measure. In the case
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of the Internet, we show how these primitives can be used in
order to obtain non biased information on the network. Never-
theless, it is worth noting that the idea underlying our approach
is not particular to the case of the Internet topology and may
be potentially applied in any context. The idea is to avoid to
entirely map the network and instead design a measurement
method which is only dedicated to one property of interest, here
the degree distribution. By operating such a restriction, it is
possible to obtain a more faithful information than the one ob-
tained when trying to get the complete knowledge of the topol-
ogy of the network. This idea is similar to a well known principle
in physics1, called the Heisenberg’s uncertainty principle, which
states that some pairs of physical properties cannot be known
simultaneously with an infinite precision. This sets an absolute
limit on the possibility of knowing accurately all the properties
of one system simultaneously. But this limit does not stand if
one restricts oneself to one specific property. Our work shows
that this idea is relevant to network measurements and can im-
prove the quality of the information obtained.

The classical method used for estimating the degree distri-
bution of the Internet is based on traceroute. This software
provides a path in the network between one source, where is
run the software, and one destination, which can be any ma-
chine of the Internet. The tendency until now was to perform
extensive traceroute measurement campaigns. One launches
traceroute from a usually restricted set of sources toward as
many destinations as possible2 and one collects the obtained
paths. Then, these paths are merged together into one single
network, which is the result of the measurement and on which all
properties are estimated, including the degree distribution (see

1It also carries an idea similar to the one of the popular wisdom stating
that "you can’t have your cake and eat it too".

2There is no real limitation on the number of destinations one can use.
One can probe any IP address, i.e. any 32-bit integer. On the opposite,
having many sources is a real challenge as one must possess a user account
on them in order to launch the traceroute program.
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Figure 1.1: Comparison of our method to the classical
traceroute method. (a): a traceroute measurement from 1
monitor (square node) toward 25 targets (bullet nodes). This
measurement needs 97 probes. (b): measurement with our
method from 9 monitors (square nodes) toward 10 targets (bul-
let nodes). See Figure 1.2 for the detail of how the links of each
target are discovered. This measurement needs 90 probes. (c):
the true degree distribution of the network together with the
estimates obtained by both methods.
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Figure 1.2: Measurement of the degree of 10 targets using our
method. We display 10 copies of the network, one for each
target measurement. On each copy we show the routes followed
by the probes sent from the 9 monitors (square nodes) toward
the corresponding target (bullet node).

example in Figures 1.1.a and 1.1.c). The idea underlying this
approach is that if the measurement is extensive enough then
the network obtained from it faithfully represents the original
network. This is precisely the idea that is contradicted in [45, 1]
where it is shown that this method is intrinsically biased and
that conducting wider measurements does not necessarily lead
to more accurate observations.

The measurement method we design is drastically different.
We do not resort to any map of the network. Instead, we ran-
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domly select one target router and directly measure its degree
by sending probes to this router from monitors scattered all over
the Internet (see example in Figures 1.1.b and 1.1.c), each probe
discovering one neighbour of the target (see Figure 1.2).

Another originality of our approach is to take into account
some particularity of the topology of the Internet in the design
of our measurement method, as this particularity has a strong
influence on the information obtained from the measurement
primitive. Our method is specifically intended to measure the
degree distribution of the core of the network, which is the key
part of its topology. Formally, the core (2-core with the vocab-
ulary of graph theory) of the network is the part that remains
after one iteratively removes degree-one nodes until there are
none of them left. More intuitively, the set of nodes removed
during this iterative process, which is called the border, form
trees that are attached to the network and the core is the rest
of the nodes (see Figure 1.3.a).

The behaviour of our distributed probing method is very
different depending on whether the target is in the border or
in the core of the network. If the target is in the border (see
Figure 1.3.c), then our method is likely to miss most of its neigh-
bours, which are deeper in the border, and to discover only the
neighbour of the target which is its parent in its border tree.
When the target is in the core, the situation is quite different:
if our set of monitors is distributed well enough, it is likely to
discover all or most of the neighbours of the target that are in
the core, and then to correctly estimate the core degree of the
target, which is our goal.

Therefore, our method relies on two key points:

1. uniformly randomly select one router in the core, and

2. rigorously measure its degree in the core.

Doing so for many randomly selected targets in the core of the
Internet gives an estimate of its degree distribution. Unlike in
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(b) a target in the core (c) a target in the border

Figure 1.3: (a): the core and the border of the network; the
border is the set of all trees connected to the network, the core
is the part remaining when one removes these trees. (b): a set
of monitors (the squared nodes) send probes toward a target
core router r(t) and obtain its four neighbours in the core (or,
equivalently, its four core interfaces). (c): the same monitors
send probes toward another target router r(t′) belonging to the
border and miss most of its neighbours (or, equivalently, most
of its interfaces).

the classical traceroute method, if we are able to achieve the
two tasks above, the estimated degree distribution is guaranteed
to converge to the actual one when the random sample of core
routers grows. It must be clear that both of these two tasks
constitute challenges in themselves. In the next section, we show
by simulation that our distributed probing approach satisfyingly
fulfils the second point. The question of uniformly randomly
selecting routers in the core will be addressed later.
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Proof of concept [27]

In [27], we conduct an extensive set of simulations. Its goal
is to determine whether our primitive for the measurement of
the degree of one router in the core, which consists in sending
probes from a set of monitors scattered over the Internet toward
this router, is able to correctly estimate its degree. The main
questions we want to answer are: given a number of monitors,
what is the risk that we do not correctly estimate the degree
of one node of degree k? how many monitors are necessary in
order to correctly estimate the degree of most of the nodes of
the network?

To answer these questions we randomly generate two dif-
ferent kinds of synthetic topologies: networks with a Poisson
degree distribution, parameterised by their number of nodes n
and their mean degree d̄, representative of the homogeneous dis-
tributions, and networks with a power-law degree distribution,
parameterised by their number of nodes n and the exponent α
of their power-law, representative of the heterogeneous distribu-
tions. For both kind of topology, we make their parameters vary
in order to appreciate the generality of the conclusions derived
with one setting.

For the set of targets, we use all the nodes in the core of the
network. For monitors, as we want to appreciate the influence
of their number, we make it vary from one dozen to some hun-
dreds, which corresponds to the range of values we can expect
in the practical settings of our measurements. As one can guess,
the quality of observation does not only depend on the number
of monitors but also on their location. Since for simulation pur-
poses there is no clear choice of where should be located the
monitors, we choose to locate them uniformly at random among
the nodes of the network. As this choice is certainly favourable
to the performance our method, in [48], we design metrics to
appreciate how well distributed is the set of monitors we use in
practice in our measurements. These metrics indicate that it is
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indeed rather fairly distributed over the network. Consequently,
the settings of our simulations, where monitors are chosen uni-
formly randomly among the nodes of the network, are relevant.

Finally, we also need to model the path of the network taken
by the probe between the monitor and the target. As in most
works, we choose to model them by a shorter path from the mon-
itor to the target, randomly breaking the ties3 between paths of
equal length.

Our simulations show that our method is able to correctly
estimate the degrees of the nodes in the core of the network.
For example, in the case of Poisson topology of mean degree 25,
using 100 monitors, this estimation is almost perfect for almost
all core nodes. For power-law topology of exponent 2.1, using
200 monitors, the quality of the observation is excellent for core
nodes of reasonably low degree, let say at most 10. This shows
that in this theoretical setting, the only limitation of our method
seems to be the observation of high-degree nodes in power-law
networks. One important second conclusion is that even for
those nodes, the observed degree is in the same order of magni-
tude than the actual degree. For example, nodes of degree 60 in
the power-law topology are observed with an average degree of
37. This implies that despite the fact that our method may not
be able to correctly estimate the degree of high-degree nodes, it
will succeed in detecting their presence, because a high-degree
node in the core is observed with a similarly high degree. Fi-
nally, one important conclusion of [27], is that the quality of
observation does not depend on the size of the network, but
only on the kind of topology (homogeneous or heterogeneous)
and on the ratio between the number of monitors and the degree
of the observed node. Therefore, the results of these simulations,
made on networks of some millions of nodes, should still hold
for networks of the size of the Internet.

3In [27], we investigate three different ways of randomly choosing one
shortest path. Our results shows that the choice of one of these three ways
has only a very little impact, if any, on the degree estimated for each node.
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Measurement of the IP level topology
[21]

In the controversy about the degree distribution of the Internet
topology, a pretty large amount of confusion has been added
by the fact that there are two different topologies, physical and
logical. One usually has in mind the physical one, made of the
cable connections between routers of the Internet. However, the
topology measured by the classical traceroute approach is the
logical one. In this topology, two routers are linked if they are
separated by only one IP hop, which means that they can send
IP packets to each other directly without packets being han-
dled by any other router. For many links, there is no difference
between the two topologies. If two routers are linked by a ca-
ble, they are also separated by one IP hop. But the converse
is not true, two routers may be at one IP hop from each other
even if they are not connected by a cable, as there exist lower
level intermediate devices that connect routers of the Internet
but that are invisible at the IP level, such as switches for exam-
ple. These intermediate (non-router) devices may be connected
to many routers, making all of them potentially appear at one
IP hop from each other, giving rise to a clique in the IP level
topology. For this reason, nodes of high degrees are much more
plausible in the IP level logical topology than in the physical
one.

Despite these differences, the two topologies coincides on
many parts and measuring the IP level topology has often
been considered as a proxy for measuring the physical topol-
ogy. Another reason why measurements are usually conducted
at IP level is that most measurement primitives, including
traceroute, give information at IP level. Here, for sake of clar-
ification, we make a clear distinction between these two topolo-
gies and we design one measurement method for each of them.

Another great benefit of doing so is that the technical chal-
lenges raised in both cases are different and require different
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solutions. Until now, we considered only two kinds of limita-
tions applying to Internet measurements: i) the network is too
large and ii) we cannot use every machine as a monitor. As a
result, we can obtain only a partial view of the topology, which
motivated the paradigmatic shift we operate in the way we mea-
sure the network. Actually, there are some other very practical
limitations that affect the result of the measurement. The two
more important are: 1) some routers do not answer to probes
and their information is therefore not available and 2) paths
output by traceroute contain false links, i.e. links that do
not exist. These undesirable effects have been quantified by
the networking community. They are rather frequent and have
non-negligible consequences on the accuracy of measurements.
It is remarkable that, beside the fact it provides theoretically
sound foundations for the measurement method, the property
oriented approach also allows to reduce and almost eliminate
the consequences of the practical limitations of the measure-
ment primitives.

The first limitation mentioned above is the result of the se-
curity policy applied by some network administrators and one
must accept that this information is not available. Consequently,
for our measurements, these nodes simply do not exist. Never-
theless, the impact of the absence of this information is entirely
dependent on the measurement method adopted. In the conclu-
sion of this chapter, we explain why this impact is limited in the
case of our property oriented measurements, both for the logical
topology and the physical one.

In the measurement method we design for the IP level topol-
ogy [21], we address the problem of false links. This consti-
tutes another valuable improvement on the classical traceroute
method, where the effects of this erroneous information are of-
ten ignored. Many false links in traceroute outputs come from
the conjunction of two facts: i) each router on the output path
is discovered by a different and independent probe which fol-
lows one path from the source to the destination and ii) for
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sake of the repartition of the charge over the network (called
load balancing), there exist in general several different paths
from the source to the destination. Because of the property
oriented approach we use, we are interested only in the router
immediately preceding the destination on the path output by
traceroute, which is the only one contributing to the degree of
the destination. It turns out that, when all the paths from the
source to the destination have the same length, even if there are
many of them, the router preceding the destination is always
a real neighbour of it. Consequently, to avoid the presence of
false neighbours of the routers targeted by our measurement,
we make 10 repetitions of traceroute for each couple m, t of
monitor and target. If t is not always discovered at the same
distance from m in all the 10 repetitions, then it indicates that
there exist routes of different lengths between m and t. Con-
sequently, the output of traceroute is likely to contains false
neighbours for the target, so we simply discard the information
obtained from monitor m to observe target t (however, m may
still be used to observe other targets). On the opposite, if all
the 10 repetitions of traceroute from m to t have discovered
t at the same distance, then we assume that there is no route
that would discover t at another distance (the probability that
it is not true is sufficiently low) and that consequently, all the
neighbours of t observed by m are indeed real neighbours of t in
the topology. We then keep the information provided by m in
the observation of t.

We implemented our method on a distributed set of mon-
itors and conducted a measurement. We built a list of tar-
gets by probing 250 000 IP addresses chosen uniformly at ran-
dom and keeping the first 10 000 that answered to our ICMP
ECHO REQUEST message (the same kind of message used by
traceroute). For the set of distributed monitors, we used the
nodes of PlanetLab. This is a consortium that provided at that
time (July 2009) a set of 952 machines made available to re-
searchers by 483 institutions (mainly research labs) widely dis-
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tributed in the world. The measurement protocol is as follows.
On each monitor, we upload the list of 10 000 target IP ad-
dresses and the monitor shuffles the list (for balancing in time
the load induced on each target). Then, every second, it sends
one traceroute to the next target in the list, and repeat the list
10 times. The measurement took 30 hours. We filtered the
obtained data by keeping for each target the monitors that ob-
served it only with routes of the same length, and we discarded
targets that were not observed by sufficiently many monitors.
We thereby obtain a set of 6101 targets that have been observed
by at least 350 monitors with routes of the same length.

This measurement is only intended to demonstrate the prac-
tical efficiency of our approach. It does not directly provide
an estimation of the degree distribution. To this purpose, one
should still address two important questions. Firstly, we did not
select routers uniformly at random but we instead selected ad-
dresses uniformly at random, which is quite different as routers
do not all have the same number of addresses. Secondly, the list
of neighbours we obtain for one target is a list of IP addresses.
Some of these IP addresses actually belong to the same router.
In order to get the degree of the target in the IP topology, we
should identify such subsets of addresses and count them as
one neighbour. Doing so, is a classical problem in networking,
known as anti-aliasing, for which relatively satisfying solutions
exist, but we did not implement one of them. We address these
two questions rigorously for the physical topology, in the next
section.

Nevertheless, this measurement still provides one valuable
conclusion. Among the 6 101 target addresses that we measured,
the maximum number of neighbouring IP addresses we observed
is 57. For the reasons explained above, the actual number of
routers designated by these 57 addresses is even expected to be
less than 57. Since the targets have been selected at random,
it indicates that the probability for a router in the Internet to
have more than 57 neighbours in the IP level topology is quite
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low, in the order of magnitude of 10−3. Then, if such routers
exist, there are only very few of them.

Measurement of the physical topology
[47, 48, 67]

The method presented in this section is dedicated to the mea-
surement of the degree distribution of the physical topology [47,
48]. The general principle of the approach is the same as for the
IP level topology, but the technical implementation is different.
Here, we want to measure the number of interfaces of one router
that are connected, by cables, to other devices. To this purpose,
we do not use traceroute but a measurement tool we designed,
which we call udp-ping. Unlike traceroute, the monitor m
running udp-ping sends only one probe to the target t, desig-
nated by one IP address. This probe is a UDP packet sent to an
unallocated port. On receiving such a packet, the target answers
with an ICMP error message Destination unreachable, with
an error code meaning Port unreachable. The key point that
we exploit is that if the target correctly implements the recom-
mendations of the RFC 1466 of IETF4, the source address of the
ICMP error message sent by the target t is the address of the
interface it actually uses to send the message to m. Then, by
sending udp-ping probes from a set M of distributed monitors
toward a target t, we discover the set of interfaces that t uses
to send messages to the monitors in M . Therefore, if t is a core
router and if the monitors ofM are well distributed enough over
the Internet, we expect to discover all the core interfaces of t.

Note that in this case, unlike in the case of the IP level topol-
4The Requests For Comments (RFC) are a series of official documents,

published by an open international organisation named the Internet Engi-
neering Task Force (IETF), which contain standards and recommendations
on the technical aspects of the design, the use and the management of the
Internet.
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ogy, there is no problem of anti-aliasing: all the interfaces dis-
covered by udp-ping belong to the target t. The only question
that remains to be addressed is to uniformly randomly select
one router (not one IP address) in the core of the Internet. We
now give a rigorous way to do so. It relies on the possibility to
distinguish between core and border routers and between inter-
faces that are directed toward the core of the network and those
that are directed toward its border, which we simply call core
interfaces and border interfaces respectively. To decide whether
an interface observed in our measurement is directed toward the
core or toward the border of the Internet, we use an auxiliary
measurement. In this measurement, which is very light, from
each monitor m in our set, we probe randomly chosen addresses
over the Internet and we determine (in a way which is not de-
tailed here) what is the set of border interfaces that are visible
from m. In this way, for each interface discovered in our main
measurement, we can decide whether it is a border interface by
checking whether it appears in the list of border interfaces vis-
ible from some monitor m in our set. The other interfaces are
necessarily core interfaces. Once we are able to distinguish be-
tween core interfaces and border interfaces, we can do the same
for routers themselves: border routers are those that have ex-
actly one core interface, the interface linked to their parent in
their border tree. All core routers have by definition at least
two core interfaces and, provided that our monitor set is well
distributed enough, we actually discover at least two of them.

In order to uniformly randomly sample Internet core routers
in a rigorous way, we proceed as follows. We randomly choose
a 32-bit IP address t and keep it only if it answers to one test
udp-ping probe, otherwise it is discarded. Then, we launch our
distributed measurement on this target address and we deter-
mine whether the router r(t) to which it belongs is a core router
and whether t is a core interface of r(t), as explained above. If
the two tests are positive, we keep r(t) in our sampling, other-
wise it is discarded. At the same time, we obtain a measure of
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the degree k of r(t) in the core of the network. Doing so for a
set of randomly generated 32-bit integer, we obtain a sample of
Internet core routers. This sample is biased, in the sense that
routers are not selected uniformly at random. But because we
discard all routers that were selected by one of their non-core in-
terfaces, we know precisely what is this bias and we can correct
it a posteriori when inferring the degree distribution. Indeed,
the probability of one router r to be in our random sample is
proportional to its number of core interfaces, which we deter-
mine by our measurement. Then, the observed fraction p′k of
routers of core degree k sampled with this bias is proportional
to k times the fraction pk of routers of core degree k sampled
uniformly at random: p′k ∼ k · pk. As a consequence, we obtain:

pk =
p′k
k
· 1∑

i>1
p′i
i

where the second term is nothing but a normalisation constant
to ensure that

∑
k pk = 1. We then use this formula to infer the

true degree distribution pk from the observed one p′k.
As for the IP-level degree distribution, we implemented our

distributed measurement method for the degree distribution of
the physical topology using the monitors of PlanetLab. For the
targets, we built a list of 3 millions random IP addresses that
answer udp-ping probes. This took approximately 10 hours us-
ing one single machine. Then, we uploaded this target list on
each monitor (shuffled for sake of load repartition on the targets)
and asked it to probe the list three times in a row. One probing
round on the whole list, simultaneously from all monitors, lasted
4 hours. Therefore, in total, the measurement, building the list
and probing it three times from each monitor, lasted less than 24
hours. We then gathered the data locally, applied our sampling
process and corrected the resulting bias in order to infer the de-
gree distribution, as described above. Figures 1.4 and 1.5 shows
the corrected distributions determined by the three consecutive
iterations of our measurement procedure. They constitute the
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measurement

deg 1-st 2-nd 3-rd

2 0.74770 0.74371 0.75214
3 0.19434 0.19838 0.19258
4 0.02727 0.02727 0.02585
5 0.01551 0.01588 0.01486
6 0.00708 0.00640 0.00644
7 0.00206 0.00224 0.00230
8 0.00175 0.00196 0.00147
9 0.00127 0.00131 0.00145
10 0.00057 0.00044 0.00052
11 0.00056 0.00052 0.00047
12 0.00040 0.00044 0.00047
13 0.00020 0.00023 0.00017
14 0.00025 0.00031 0.00031
15 0.00032 0.00009 0.00017

measurement

deg 1-st 2-nd 3-rd

16 0.00014 0.00025 0.00024
17 0.00023 0.00018 0.00015
18 0.00007 0.00007 0.00007
19 0.00007 0.00009 0.00009
20 0.00002 0.00000 0.00002
21 0.00008 0.00015 0.00008
22 0.00006 0.00000 0.00004
23 0.00000 0.00000 0.00002
24 0.00002 0.00000 0.00002
25 0.00000 0.00005 0.00002
26 0.00000 0.00002 0.00002
27 0.00002 0.00000 0.00002
28 0.00000 0.00002 0.00000
29 0.00002 0.00000 0.00001

Figure 1.4: The degree distributions obtained from our three
measurements (after bias correction). For each degree k, we
give the estimated fraction pk of core routers with degree k.

most reliable estimations of the degree distribution of the Inter-
net available so far.

The three measurements obtain very close values of pk for
each degree (see Figure 1.4), which shows that the procedure is
robust. The first striking observation is that 75% of the nodes
in the core have core degree 2 and 19% have core degree 3. Note
that, since our method is able to correctly estimate the degrees
of low-degree nodes independently of the kind of topology, there
is a high confidence on the first values of the distribution, say un-
til degree 10. At the first glance, it is difficult to assert whether
the distribution observed by our measurement is heterogeneous
or not. However, there are some clear and objective conclusions
that can be derived from the result of our measurement. First,
given the accuracy of observation of low-degree nodes, if the
distribution is a power-law then the exponent of this power-law
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Figure 1.5: Inverse cumulative degree distributions obtained
from our three measurements, after bias correction. For each
value x on the horizontal axis, we plot the fraction of core routers
having degree higher than or equal to x (log-log scale). We also
plot the power law of exponent α = 3.8 to show that obtained
distributions are incompatible with a power law of exponent
lower than this.

is necessarily greater than 3.8 (see Figure 1.5). Practically, for
such exponents, it is difficult to distinguish between an expo-
nential and a polynomial decay of the tail of the distribution.
Therefore, in both cases, the degree distribution of routers in the
core of the Internet appears not to be heavy tailed. The maxi-
mum degree we observed in our measurement is 29. Of course,
we may miss some of the core interfaces of this router but from
our simulations, there is only little chance than its true degree
is much higher. This indicates that if there exist routers of very
high degree in the core Internet, they are very rare. Therefore,
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the few high values observed in the distribution seem to be out-
liers rather than consequences of its supposed heterogeneity.

Finally, let me mention that in [67] we showed that the result
of our measurements can be used to obtain information not only
about the topology of the network but also about routing tables
of the routers in the core Internet.

Conclusion

Beside the knowledge it brings on the actual degree distribution
of the Internet, the property oriented approach and our measure-
ment method possesses remarkable features, which open exciting
perspectives.

On the purely methodological side, our work shows that re-
stricting one’s attention to one single property and restricting
the information one uses allows to design methods that are the-
oretically sound and free of bias. In the case of our measurement
of the physical topology, discarding the information of routers
that are not selected by one of their core interfaces introduces
an artificial bias in the sampling, which we can correct a poste-
riori while we could not do so for the original uncontrolled bias.
Limiting the information one uses also allows to limit the impact
of the errors in the measurement primitives available, as in our
measurement of the logical topology where we discard couples
of monitor and target for which there exist routes of different
lengths.

Finally, the use of sampling instead of exhaustive collection
of information has a very positive impact on the sensitivity of
the method to missing information. For example, we mentioned
that some routers implement a security policy that does not al-
low them to answer traceroute-like probes, which include clas-
sical traceroute probes and our udp-ping probes. This makes
these routers invisible for such measurements. To understand
the difference of sensitivity to this missing information, imagine
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two perfect measurements having an exact information on the
degree of all nodes: one made by the classical method and one
by the udp-ping method. Randomly choose half of the nodes
and forbid them to answer to the probes of both measurements.
With the classical method, the observed degrees of the remain-
ing nodes are drastically affected and so is the output degree
distribution. On the opposite, in the udp-ping method, the
observed degree distribution is about the same, it is simply es-
timated on half of the nodes, but the information on the degree
of the remaining nodes is not affected by the disappearance of
the information of the other nodes.

Applying these general principles to the measurement of net-
works from other contexts or to other properties of the Internet
could lead to significant improvements of the accuracy of the
knowledge we have of these networks. In the case of the Inter-
net, the method for measuring the degree distribution of the IP
level topology could be completed by uniformly sampling core
routers (the method we design for the physical topology applies
in this case as well) and solving anti-aliasing. This would allow
to compare the two kinds of topology, which is an exciting per-
spective in itself. Moreover, this would open the way to measure
another property of interest, namely the clustering coefficient,
that cannot be measured with the udp-ping approach but which
could be measured at the IP level.

More generally, our work also calls for measurement meth-
ods focusing on one very precise part of the topology or one very
specific kind of configuration in the network. For example, one
could determine what is the size of the core and the size of the
border, design a specific method to measure the degree distri-
bution of border routers, design a method to precisely evaluate
the proportion of high-degree nodes. This specific information
would be highly valuable for network design and management.

One key benefit of our measurement method is that it in-
duces a very low load on the network compared to the classical
traceroute method. There are two reasons for this: i) each
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monitor sends only one probe to each target, while one execu-
tion of traceroute sends 10 to 15 probes in average, and ii)
with our method, which uses random sampling, probing only a
relatively limited number of targets is statistically sufficient to
infer the distribution. This low load on the network has some
advantages. Our measurement is very quick, 4 hours only, while
the data is usually gathered over months or years in the clas-
sical approach. This prevents the measurement from being too
sensitive to the dynamic of changes in the structure of the net-
work (i.e. changes in routing). In first approximation, these
changes can be neglected on a period of some hours, while they
cannot on a period of some months. In other words, the mea-
surement with our method can be considered as almost instan-
taneous compared with the time scale of the dynamics of the
network topology. Moreover, since it induces a low load on the
network, it can be periodically repeated to study the dynamics
of the degree distribution of the Internet5. This is a key per-
spective as we have practically no information on the way the
Internet evolves. Understanding this evolution and managing it
is very important from a practical point of view to guarantee
the stability of the services leaning on the Internet. From the
theoretical side, it would open the way to answer some appeal-
ing questions. Among them is the question of knowing whether
the growth of the Internet approximately follows the law of evo-
lution of the preferential attachment [5], or whether it follows a
different law. Then, the next step would be to assert whether
this law will asymptotically respect the shape of the distribution
we measure nowadays or if the characteristics of the topology
are in deeper transformation.

5Of course, studying the dynamics of other structural properties of the
Internet, like those mentioned above, would be of great interest. But dedi-
cated measurement methods should first be developed.
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Chapter 2

Dynamic networks

The study of complex networks started with static networks,
where the existence of nodes and links is independent from any
notion of time. Static networks have concentrated the earliest
developments of the field and also the most advanced ones. Nev-
ertheless, in parallel, the field has quickly come to the study of
another kind of objects, referred to as dynamic networks, where
the notion of time applies and where the existence of links and
nodes is time sensitive: they do not necessarily exist at all times.

It is worth emphasising that dynamics is not just a charac-
teristics of a network among other characteristics, nor a variant
or an augmented version of static networks. They are a fun-
damental concept. Many networks encountered in real-world
contexts are intrinsically dynamic and time variation is a key
dimension of their organisation and life. For example, contacts
between individuals change along one day, communications by
messages are intrinsically dynamic, etc. Going further, in sev-
eral cases, the static networks one studies are an abstraction
or a simplification of a real object which is actually dynamic.
For example, social networks are usually thought of as being
networks where people are linked by acquaintances essentially
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stable over time. But these relationships actually lay on interac-
tions between people that happen at a very short scale in time,
like some minutes or some hours, and which are repeated several
times over the period of study. This is the repetition of these in-
teractions that gives rise to the abstraction of one acquaintance
between the involved individuals. Therefore, in these situations,
dynamic networks fit better to the context of study and consti-
tute a more fundamental form of organisation for the network
considered.

In this manuscript, and in particular in this chapter, the
term dynamic applies to the changes of the topology of the net-
work. The same term is often used to refer to the dynamics of
phenomena taking place over the network, like spreading phe-
nomena for example. Such phenomena are dynamic in the sense
that the state of nodes in the network is changing, but not nec-
essarily the topology of the network. The spreading of epidemics
for example has received a lot of attention in the context of static
networks, where the topology is fixed but the state of nodes, e.g.
infected or recovered, can change over time. Recently, the ten-
dency has been to encompass the two kinds of time evolution
under the same term of dynamics. This is in particular moti-
vated by the fact that some important case study of dynamic
phenomena take place on highly dynamic topologies, like con-
tacts between individuals, and that the interplay between the
dynamics of the topology and the one of the phenomenon itself
plays a key role in this context. Nevertheless, the two kinds
of time evolution should be distinguished, as one may happen
without the other one. Here, except explicitly mentioned oth-
erwise, the terms dynamics and dynamic networks refer to the
time evolution of the topology of the network: appearance and
disappearance of nodes and links.

The domain of complex networks is young. Even for static
networks, which have received earlier attention and a greater
amount of developments, and which directly benefit from the
notions of graph theory, there are still many important chal-
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lenges that need to be addressed in order to set solid bases for
the domain. In the case of dynamic networks, this is even more
true. Taking into account the evolution of their topology ap-
pears to be quite challenging. Most of the notions and concept
to deal with these objects are still to be developed and to be
exploited for their analysis and their modelling. One revealing
fact about the state of advancement of the domain of dynamic
networks is that there is no clear consensus even on the way to
represent these networks. One reason for this is that adapting
the notions from graph theory to the dynamic case by incorpo-
rating the time inside these notions turns out to be difficult and
gives rise to concepts that are often unsatisfying or that only
partially capture the nature of dynamic networks.

Dynamic networks have often been thought of as graphs that
are changing in time. This is appropriate in some contexts. For
example the Internet topology, both at IP level or physical level,
is a graph which is changing under the effect of rerouting and
rewiring. In this case, the network is mainly stable and changes
are events. But in some other contexts, links exist only during
a very restricted time, which has a short duration or which is
an instant, and the network is constituted by the sum of these
versatile links. For example, the network of emails sent between
employees of a company is such a dynamic network: links only
exist at the very precise moment when the email is received.
In this case, there is no stable network and the events are the
existence of links.

The dynamic networks we consider in this chapter are of this
latter kind. The chapter presents three works, a case study and
two methodological developments. The case study deals with
the network of contacts between people in a hospital, the second
work deals with the structure of changes in dynamic contact
networks and the last one considers the choice of an appropriate
time scale to form the graph series describing the dynamics.
As these three works are mainly independent, the perspectives
of each of them are discussed at the end of the corresponding
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section. Nevertheless, broader perspectives raised by this series
of works for the study of dynamic networks are detailed in the
general conclusion of the manuscript.

The dynamic network of a hospital [56,
57]

In the past decades, the worldwide rise of AMRB (AntiMicro-
bial Resistant Bacteria) in hospital environment has became a
major issue for public health. The number of persons contami-
nated by AMRB in hospitals has strongly increased and at the
same time AMRB became more and more resistant to currently
available antibiotic treatments. This has dramatic consequences
such as delays or failures of therapies, prolonged hospitalisation
stay and increased mortality. When an individual is colonised
by an AMR bacteria, he becomes an occult carrier and can dis-
seminate the bacteria to other individuals, for example when
transferred to other facilities. In this context, rehabilitation
centres are considered to be a large reservoir of AMRB, offer-
ing a great potential for development and dissemination into
the community. There are many factors that impact the spread
of AMRB, but it is widely acknowledged that the support of
transmission is close proximity interactions1 between individu-
als, which we simply call contacts here, and that the next step
to reduce transmissions is to control the flux of contacts within
the hospital.

To this purpose, within the framework of the MOSAR
project, the contacts between individuals in the hospital of
Berck-sur-Mer, France, were recorded using sensor networks.
The work presented here is about the analysis of the collected
data. Its goal is to get an insight into the structure of con-

1A close proximity interaction is an event consisting of two individuals
being at a short distance from each other (typically less than 1 to 1.5 meter)
during a while.
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tacts within the hospital, both in the topological dimension and
in the temporal dimension, the goal in fine being to exploit
this understanding for lowering the risk of spreading within the
hospital. Compared to other data sets collected in similar en-
vironments, the data set we analyse here possesses several key
characteristics. First, it includes all the individuals of the hos-
pital, both patients and staffs, and not just one part of them,
which is crucial in order to accurately evaluate the possibilities
of transmission. Second, the measurement has been made on a
long period of time, more than 6 months, and with a fine-grain
resolution, 30 seconds, which provides a precise view of the con-
tacts and allows to assess the generality of observations made
on shorter periods of time, such as one day or one week.

In our data set, one contact between two individuals has a
duration which is a multiple of 30s, the resolution of timestamps
in the measurement. We analyse both the average daily pattern
of contacts in the hospital and the evolution hour by hour of
these contacts over one week. The regularity of contacts ob-
served from one day to another justifies that the average daily
network is meaningful and representative of one day of activity
of the hospital. Our analyses consider mainly three quantities
associated to contacts: the number of contacts during one pe-
riod of observation (like one day or one hour), the cumulated
length of contacts during this period and the number of adja-
cency pairs, i.e. the number of couples of individuals that had
at least one contact during the period. These analyses are led
following a predefined segmentation of the hospital into groups,
which are relevant to the management of the hospital: 1) seg-
mentation of the hospital into 9 services dedicated to different
cares and tasks, 2) separation between patients and staffs and
3) segmentation into 12 socio-professional categories of staffs,
which have distinct roles. Our results [56, 57] show that these a
priori defined axes are very relevant for the analysis of contacts
in the hospital. They reveal clearly marked differences that are
likely to have a strong impact on the way bacteria may spread
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into the dynamic network of the hospital.
For example, the activity of patients and staffs is not sim-

ilar at all: patients have a much longer cumulated duration of
contacts while staffs interact with a higher number of different
people during one day. We also observe clear differences in the
level of activity of patients or staffs depending on the service
they belong to.

In order to study the impact of the segmentation into services
on the contacts occurring within the hospital, we computed, for
each service, the ratio between the amount of contacts inside the
service and the amount of contacts with individuals from other
services. We then compared this ratio in the real network of the
hospital and in some reference random network where contacts
have been randomly redistributed, while preserving the level of
activity of each service. This shows that services are strongly
introverted, meaning that they all strongly favour contacts in-
side the service itself rather than contacts with other services.
By fixing different parameters of the reference random network
used for comparison, we can even show that this propensity to
internal contacts cumulates for our three quantities of interest.
In other words, even knowing the tendency of forming internal
rather than external adjacency pairs, there is in addition a ten-
dency to prefer repetition of contacts for adjacency pairs within
one service. And knowing these two tendencies, it is still visible
that a longer cumulated duration of contacts is favoured inside
services rather than outside. The fact that services are widely
introverted suggests that spreading will propagate fast inside
services. The possibilities of propagation in the whole hospital
then relies on the structure of interconnections between services.

By using again comparisons to well-chosen random networks,
we could draw a map of the affinities between services without
suffering the effect of the differences in their sizes and in their
levels of activity, see Figure 2.1. It shows, in the current con-
figuration of the hospital, which are the couples of services that
tend to favour contacts between them. A very interesting fact is
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Figure 2.1: Structure of the favoured relationships between ser-
vices of the hospital. Only clearly favoured relationships are
depicted. Bold lines are for relationships that are particularly
strongly favoured.

that most of the relationships that are not clearly favoured are
actually clearly unfavoured. This means that the structure of
contacts between the services of the hospital is clearly marked
and probably impacts the spreadings that may occur in the dy-
namic network. These observations are very useful in practice.
They raise questions for practitioners on the reasons why these
relationships are favoured and not others, giving the opportu-
nity to discover new elements of understanding and opening the
way to try to control the flux of contacts in the hospital, in order
to limit the configurations that may favour spreadings.

The analysis of the temporal evolution of contacts within
the hospital also reveals some important points. As one can ex-
pect, the level of activity of the hospital during one day is very
heterogeneous in time (see Figure 2.2). In particular, there is
a circadian effect that makes the activity during day time and
night time very different. There are also some moments in the
day when the quantity of contacts is much higher, for exam-
ple around 12 AM, at lunch time. Of course, these moments
are particularly sensitive for the spread of infections and this
characteristics of the dynamics of contacts certainly plays an
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important role in the way infections can propagate and in their
speed of propagation.

Another striking fact revealed by separately observing the
time evolution of the cumulated length of contacts of patients
(Figure 2.2.a) and of staffs (Figure 2.2.b) is that the activity
patterns of these two kinds of individuals are quite contrasting.
For patients, the evolution of their cumulated length of contacts
matches perfectly the evolution of the mean cumulated length
per adjacency pair. This means that their cumulated length of
contacts is higher when they stay longer with the individuals
they meet. For staffs, the situation is very different, the evolu-
tion of their cumulated length of contacts follows the evolution
of their number of contacts, but not the evolution of the mean
length per adjacency pair (not depicted). This means that their
cumulated length is made by accumulating numerous contacts
with various individuals. Again, these differences between pa-
tients and staffs are crucial to understand the role that each of
these two groups plays in the propagation of infections.

Conclusion. Our work constitutes a first step toward under-
standing the influence of the structure of the dynamic network
of contacts on the spreadings taking place in the hospital. The
next step would be to assess the actual impact of the character-
istics of the contacts we highlighted above, such as the introver-
sion of services and their specific affinities, on the possibilities
of diffusion, for example by using synthetic diffusions.

Another exciting perspective is to use the micro-biological
data collected during the MOSAR experiment, which traces
week by week the bacteriological strains carried by participants.
The data set contains several cases of individuals becoming new
carriers. One should design metrics of exposure, based on the
contacts of a participant, that are able to explain the contami-
nations observed in the data set. This would be of great interest
as it could also allow to identify in advance individuals that are
more likely to be affected by future spreadings.
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Figure 2.2: (a): for patients, mean number of adjacency pairs,
denoted degree, per individual and per hour (light green), cu-
mulated length of contacts per individual and per hour (dark
blue) and mean cumulated length per adjacency pair and per
hour (thin purple line). (b): for staffs, mean number of con-
tacts per individual and per hour (light red), cumulated length
of contacts per individual and per hour (dark blue) and mean
cumulated length per contact (thin purple line).



Finally, the analyses we presented here are led at the level
of large groups of individuals. It would be highly desirable to
be able to detect particular roles played by some individuals as
well. For example, one individual or a restricted subgroup of
individuals may play a key role in connecting two or more ser-
vices together, or in connecting individuals inside a given ser-
vice. Identifying such individual configurations and their roles
in spreadings would be a valuable contribution toward the goal
of limiting the diffusion of AMRB in hospitals.

Structure of changes in dynamic net-
works [60]

In the case study presented above, we separately studied where
the contacts occur in the hospital during one day and the evo-
lution of the quantity of contacts in the whole hospital hour
by hour. Doing so, we separated the topological dimension and
the temporal dimension of the dynamic network and we studied
them independently. This approach gives some valuable infor-
mation about the network under study. Nevertheless, separating
the topological and temporal dimensions of dynamic networks
does not allow to fully take into account the deep nature of
these objects, where the two dimensions are intimately inter-
woven. Currently, the domain of dynamic networks does not
propose fully satisfying methods to deal with this dual nature.

In the lack of such methods, there is at least one object avail-
able to encompass simultaneously both dimensions of dynamic
networks: graph series. In the series describing a dynamic net-
work, each graph, called a snapshot, is formed by the links that
have existed between the nodes of the network during a certain
time window. In the rest of the chapter, like in many studies,
the time windows are disjoint, they all have the same length and
they span the entire period of study of the dynamic networks2.

2But the tools presented here are useful in the other cases as well.
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Moreover, the set of nodes of the network is fixed, it is the same
in all the graphs of the series. In many contexts, this is nat-
ural, and in others, this is not a limitation as one can always
consider the set of nodes that have existed along the whole pe-
riod of study. In this way, we concentrate our attention on the
dynamics of the links.

The main reason why researchers use the formalism of graph
series to describe dynamic networks is because it reduces the
study of dynamic networks to the study of graphs. This is very
practical as graphs are a widely studied object. Consequently,
one immediately benefits of the notions and concepts developed
in graph theory. The convenience of using graphs actually hides
a risk in which many studies on dynamic networks fall: to focus
on the properties of the snapshots instead of the properties of the
series. Indeed, since most of these studies consider snapshots in-
dependently, they are unable to capture a key information about
the dynamics: the relationships between consecutive graphs of
the series. This information is essential to understand the evo-
lution of the network, which is more than a simple juxtaposition
of states unrelated to each other.

This failure to take into account the relationships between
the snapshots has a particularly strong impact in modelling.
Producing a synthetic series of graphs by generating indepen-
dently each graph of the series does not provide a satisfying
model of the dynamics. Even if the properties of each graph
of the synthetic series are identical to the properties of the cor-
responding graph in the real series, the produced series is not
similar to the original one, because correlations between consec-
utive graphs are lost. For this reason, several works introduced
correlations between the consecutive states of the network, ei-
ther at the level of links (see e.g. [14]) or at the level of nodes
(see e.g. [63]). The limitation of such models is that topological
correlations are not taken into account and, as a consequence,
the structure of the snapshots produced is not realistic. This
comes back to the situation of considering separately the two
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dimensions of dynamic networks. Therefore, many approaches
have spent some effort to encompass simultaneously temporal
and topological correlations in the evolution of dynamic net-
works. The most flourishing trends in the recent years are prob-
ably approaches using external characteristics of nodes, like in
latent space models (see e.g. [38]) and extensions of stochas-
tic block models (see e.g. [78]), or using agent based modelling
(see e.g. [70]). But despite some promising works [68, 49], the
domain is still lacking a consensual and satisfying solution to
capture both temporal and topological correlations in the evo-
lution of dynamic networks.

The approach we follow in [60] to reconcile these two dimen-
sions is based on difference graphs. The difference graph ∆G of
two consecutive graphs G1 and G2 in the series has the same set
of vertices as G1 and G2, and for two vertices u and v, uv is an
edge in ∆G if and only if either uv is an edge in G1 and not in
G2, or uv is an edge in G2 but not in G1

3. In other words, the
difference graph is the graph whose edge set is formed by all the
pairs of vertices whose adjacency relationship changes between
G1 and G2. This is the rationale behind difference graphs: they
contain the changes between two consecutive graphs of the se-
ries, and therefore capture the structure of the time evolution
of the topology.

The question we investigate in [60] is to characterise the
structure of the difference graphs of the series describing a dy-
namic network. In particular, we want to know whether the
changes from one step to another in the series are well spread
all over the network or rather concentrated in some restricted
part of it. To this purpose, we use two distinct metrics on differ-
ence graphs, aiming at evaluating the concentration of changes
in the series. The first one is very simple, this is the number
of vertices affected by changes, that is the vertices for which at
least one of their adjacency relationships with the rest of the

3More formally, denoting ∆ the symmetric difference on sets, we have
V (∆G) = V (G1) = V (G2) and E(∆G) = E(G1) ∆ E(G2).
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vertices of the graph has changed. This is exactly the number
of non-isolated vertices in the difference graphs, i.e. vertices
having at least one neighbour. The second metrics we use is a
well known graph parameter called the Minimum Vertex Cover
(MVC) of the difference graph. Formally, a vertex cover in a
graph is a subset of vertices such that all edges of the graph
are incident to at least one vertex in this subset. The MVC is
the minimum number of vertices in a vertex cover. It is worth
to note that if S is a vertex cover in ∆G, then the rest of the
vertices V \ S have no edges between them, meaning that the
adjacency relationships linking them are unchanged between G1

and G2. All the changes involve at least one vertex of the vertex
cover S. Then, intuitively, the MVC of the difference graph gives
the minimum number of vertices that can be held responsible
for all the changes occuring in the network.

We apply these metrics to a specific kind of dynamic net-
works, which we call dynamic contact networks. They are net-
works of close proximity interactions between individuals (cf.
footnote p. 44), measured by sensors carried by participants to
an experiment. We study data sets gathered in various contexts,
ranging from a scientific conference to a rollerblade tour in Paris,
and including the experiment conducted in a hospital that we
presented in the previous section. For each of these data sets, we
formed a graph series describing the dynamic network and we
computed the series of difference graphs between two consecu-
tive graphs of the series. Forming the initial graph series implies
the choice of a length, called aggregation period, for the windows
on which the contact data of the original dynamic networks is
aggregated. We choose these values based on our intuition of
what is an appropriate time scale to study the dynamics of the
network, depending on the context and the settings in which the
data was collected. Beside this, we also study the impact of the
chosen aggregation period on the results we obtain. The ques-
tion of systematically determining an appropriate aggregation
period for representing a dynamic network by a graph series is
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the object of the next section.
Once the series of difference graphs is computed, we compute

for each of these difference graphs its number of non-isolated
vertices and the value of its MVC. Computing the MVC of an
arbitrary graph is NP-hard. In order to obtain the optimal
value, we use a straightforward exponential algorithm together
with a simplification rule known as the leaf removal technique
(see e.g. [77]). This technique is known to perform very well
on sparse random graphs and it turns out that it performs even
better on the real-world data we use. Thanks to this, we could
compute the exact value of the MVC for series of more than 500
difference graphs over more than 300 vertices.

Our results show that in almost all the dynamic contact net-
works we studied, the changes from one graph of the series to
the next one are very concentrated. For these networks, the
number of non-isolated vertices of the difference graph, i.e. the
number of vertices affected by changes between two consecutive
graphs, is quite restricted. It is much less than the number of
non-isolated vertices in random graphs on the same number of
vertices and edges. This shows that this observation is not only
due to the sparsity of these graphs but instead denotes a very
specific property of concentration on a limited proportion of
vertices of the graph. This property of concentration is further
emphasised by the MVC. Indeed, the number of vertices in-
volved in a MVC is even much more restricted than the number
of non-isolated vertices. And again, it is much less than what is
expected for graphs of this number of vertices and edges. Push-
ing further, we generate random graphs having as many edges as
the original difference graph and as many vertices as its number
of non-isolated vertices. We observe that the expected value of
the MVC in such synthetic graphs is clearly higher than the one
of the original difference graph. This shows that the low value
of the MVC of the difference graphs of the original series is not
only a consequence of their number of non-isolated vertices but
instead denotes an even stronger property of concentration of
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changes.
In order to assess the generality of these observations, we

also vary the value of the aggregation period we use to form
the original series. The conclusions we obtain, though they are
quantitatively slightly different, remain qualitatively the same
on a wide range of aggregation periods around a reasonable value
(ratio of 10 between the smaller and the larger period used).
This shows that the property of concentration of changes is a
fundamental characteristics of these dynamic networks, which
appears independently of the aggregation period, at least when
it is chosen in an intuitively reasonable range of values4.

Conclusion. Our results show a very special structure of the
changes between two consecutive graphs in the series describing
a dynamic contact network. This constitutes a promising char-
acteristics to exploit in order to encompass both temporal and
topological dimensions in the analyses and modelling of dynamic
networks, which is a key challenge for the field.

One of the first perspectives of our work is to extend these ob-
servations to other structural properties of the difference graphs
and to other types of dynamic networks. Concerning the use
of difference graphs for modelling purposes, much remains to
be done in order to get a satisfying model. One natural way
to generate synthetic dynamic networks is to start from a seed
graph and to decide at each time step what are the adjacency
relationships to be modified. Instead of doing so independently
for each edge, like in the Markovian Edge model [14, 6], which
raises the limitations previously mentioned, one could generate
simultaneously all the changes, i.e. the difference graph, by
respecting their special structure, for example with regard to
their property of concentration around a few vertices. Unfor-
tunately, reproducing the structure of the difference graphs is
not enough. One must also decide which vertices should play

4For example, 5 to 45 min for the experiment led in the conference
environment.
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the role of the non-isolated vertices and which ones should play
the role of the vertices in the MVC. Consequently, in addition
to the structure of the difference graph, one should also study
how this structure connects to the structure of the graph of the
series itself. To this purpose, distinguishing between edges of
the difference graph that correspond to the appearance of one
edge and those that correspond to the disappearance of one edge
would probably be of great help.

Aggregation of dynamic networks into
series of graphs [51, 50]

Many real-world dynamic networks are naturally given in the
form of a finite collection L of triplets (u, v, t), which we call a
link stream, where u, v ∈ V are two nodes of the network and
t is a timestamp, with the meaning that nodes u and v have a
link between them at time t. Depending on the context, these
links can represent IP packets sent between two machines of the
Internet, emails sent between people, commercial transactions
between companies, etc. As we mentioned before, a very com-
mon approach to study those dynamic networks is to transform
them into series of graphs. The process used to do so is called
aggregation. It consists in choosing a time window [a, b] ⊆ [0, T ]
in the initial series, where T is the length of the period of study,
and forming the graph G[a,b] with all edges u, v such that there
exists a triplet (u, v, t) ∈ L with t ∈ [a, b]. Doing so for a col-
lection of windows that covers the entire period of study, one
obtains a representation of the dynamic network as a graph se-
ries. Very often, as here, the windows are disjoint and all have
the same length, but in some studies they may overlap or have
different lengths. In all cases, once the series is formed, all sub-
sequent analyses are led on it.

One major motivation for aggregating link streams is to rep-
resent them by graphs, and then benefit from the rich set of
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notions of graph theory to analyse these dynamic networks. An-
other reason is that, in many cases, it does not make sense to
study the network at the scale of the time resolution of the
timestamps of the given link stream. For example, in an email
dataset, the timestamps of the events (sending of emails) are
often given with a 1-second resolution. However, studying the
dynamic network at this time scale does not give a general and
comprehensive view of its organisation. Hence, aggregation al-
lows to study the network at a scale which is relevant compared
to its activity.

If the benefits of aggregation are clear, on the other hand,
they also come with some important concerns. Indeed, the
length chosen for the aggregation window usually has a strong
impact on the properties of the aggregated graph series, see
e.g. [65]. This raises the question of which time scale should
be chosen to study a given dynamic network and how much the
properties studied, based on which conclusions are derived, are
sensitive to the length of the aggregation period used. As a
consequence, this period should not be chosen without well es-
tablished evidence, as it is currently done in most of the studies.

Pushing further, it is not even clear whether an aggregated
series faithfully describes the original link stream. Indeed, the
aggregation process goes along with a loss of information: in
each aggregation window, the information on the exact times
at which links occur in this window is lost. In particular, in
a given time window, it is impossible to know whether a given
link (a, b) has occurred before or after another one (b, c). This
question, which determines whether it is possible to go from
node a to node c, via b, which we call a transition, within this
time window (only if ab has occurred before bc) is crucial for
many phenomena taking place on the dynamic network, such as
epidemic spreads, possibilities of communication and cascades
of influence for example. The wider the aggregation period, the
greater the amount of information lost. At the limit, aggregating
a link stream over the whole period of study yields one single
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static network which misses all the information on the order of
occurrences of links and which therefore very poorly captures
the structure of the original dynamic network, see e.g. [59].
Then, more generally, for a given aggregation period, one can
ask whether the obtained graph series is a faithful representation
of the original link stream.

There have been several works aiming at determining ap-
propriate time scales for aggregation of link streams into graph
series. The work of [72] is probably the closer to our motivations
as they also care about the loss of information due to aggrega-
tion. The specificity of our approach is that we want to avoid to
decide what is the amount of loss which is acceptable. Instead,
we aim at observing a natural change in the way the link stream
responds to aggregation at a given time scale, which we call the
saturation scale and which we denote γ. The difficulty of do-
ing so, as the need for doing so, comes from the fact that when
the aggregation period grows, the classical properties of the ag-
gregated graph series drift from one extremal value to another.
Moreover, they do so monotonically and smoothly and do not
undergo any noticeable change at any time scale.

A key contribution of our work [51, 50] is to exhibit a prop-
erty that is able to reveal a qualitative change in the way the
link stream responds to aggregation at a certain time scale. Our
method is based on the occupancy rate of minimal trips in the
aggregated graph series. These notions, which we introduce, are
based on the classical notion of temporal path in a graph series.
A temporal path is a series of links occurring chronologically at
pairwise distinct times in the graph series.

Definition 1 (Temporal path) In a series of graphs G =
(Gk)1≤k≤K , a temporal path P is a sequence (ui, vi, ti) of
triplets, with 1 ≤ i ≤ l and l > 0, such that ∀i, uivi ∈ E(Gti)
and ∀i > 1, ui = vi−1 and ∀i, j, if i < j then ti < tj.

There are two notions of length associated to a temporal
path P : the topological length, also called number of hops and
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denoted hops(P ), which is the number l of links in the path and
the temporal length, more simply called duration and denoted
time(P ), which is the number of graphs tl − t1 + 1 of the series
between the starting time t1 and the arriving time tl of P .

Definition 2 (Trip and minimal trip) A trip is a quadru-
plet (u, v, tdep, tarr) such that there exists a temporal path from
u to v whose starting time from u and arriving time at v are both
in the interval [tdep, tarr]. A trip (u, v, tdep, tarr) is minimal if
there exists no trip from u to v in an interval [t′dep, t

′
arr] strictly

included in [tdep, tarr] ( i.e. [t′dep, t
′
arr] ( [tdep, tarr]).

Definition 3 (Occupancy rate) For a graph series G and a
temporal path P in G, the occupancy rate of path P , denoted
occ(P ), is defined as occ(P ) = hops(P )/time(P ). The occu-
pancy rate of a minimal trip (u, v, tdep, tarr) is the occupancy
rate of a temporal path starting from u at tdep and arriving at
v at tarr and having the minimum number of hops among such
paths.

Our method to determine the saturation scale γ is as follows.
We make the aggregation period ∆ vary from its minimal value,
the resolution of the timestamps, until the whole length T of
the period of study of the network. For each value of ∆ we form
the aggregated graph series G∆ for which we compute the set
of minimal trips and their occupancy rates. Then, for each ∆,
we plot the distribution of occupancy rates of all the minimal
trips in G∆ (considering all pairs of nodes and all time intervals),
see example in Figure 2.3.a for the Irvine network, a network of
online messages between students. The key observation here
is that when ∆ increases, the distribution of occupancy rates
goes from values concentrated around 0 to values concentrated
around 1 (which is expected) in a very particular manner5: it
first stretches until it occupies almost uniformly the segment

5We applied our method to several link streams and observed the same
behaviour.
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Figure 2.3: (a): Inverse Cumulative Distributions (ICD) of the
occupancy rates (x-axis) of the minimal trips of the aggregated
series G∆ for several values of the aggregation period ∆ in the
range [1, T ], for the Irvine network. (b): M-K proximity (y-
axis) of these distributions with the uniform density distribution
according to ∆ (x-axis).
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[0, 1] and then concentrates again, around the value 1. The
value of ∆ for which the distribution is maximally stretched
on [0, 1] is the saturation scale returned by our method. It is
computed as the value of ∆ maximising the proximity of the
distribution to the uniform density distribution on [0, 1] for the
M −K distance, see Figure 2.3.b.

This very particular behaviour of the distribution of occu-
pancy rates is intimately related to the loss of information in the
aggregation process. A very low occupancy rate for most mini-
mal trips of the series denotes that the data in each aggregation
window is sparse, which implies that the information contained
in the link stream is mainly preserved in the graph series. On
the opposite, a very high occupancy rate for most of the min-
imal trips reveals a loss of information. Indeed, this indicates
that, at each time in the graph series, there is a high probabil-
ity to find a next hop to perform on any given shortest path,
meaning that, in each snapshot, a high proportion of nodes are
involved in a high number of links. Then, at the same time, the
information on the temporal order between these links, i.e. the
existence or the non existence of a transition using two of these
links, is lost, which constitutes the essential loss resulting from
the aggregation process.

Around the saturation scale γ, there is a change in the way
the aggregation affects occupancy rates. In the first phase of
variation of the aggregation period, below γ, only the low val-
ues of the distribution increase, while the proportion of high
occupancy rates stays nearly constant. This means that dur-
ing this phase, the effect of increasing the aggregation period is
mainly to fill the lack of data in the aggregation windows with-
out inducing a significant loss of information. On the opposite,
in the second phase, beyond γ, there is a strong increase of the
proportion of minimal trips having a very high occupancy rate,
1 or close to 1, indicating that the loss of information due to
aggregation becomes non-negligible. Therefore, the saturation
scale γ appears as a separation between the range of values,
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below γ, where the aggregated graph series still faithfully de-
scribes the original link stream and the range of values, beyond
γ, where aggregation alters the properties of propagation of the
original link stream.

Conclusion. Our method applies to both discrete and con-
tinuous time, and to both undirected and directed links. Un-
fortunately, it is able to deal only with links that are punctual
events. However, in some contexts, the links of the dynamic
network last during an interval of time (e.g. physical contacts
between individuals). One of the main perspective of our work is
to adapt our method to this type of networks. A promising way
would be to develop a notion of minimal trip that is specifically
adapted to links that have a duration.

Another desirable enhancement of the method would be to
detect different aggregation scales for different parts of the dy-
namics. Many link streams have an activity level which is het-
erogeneous in time. As a result, the time scale at which the loss
of information occurs during the aggregation process depends on
the part of the dynamic considered. Therefore, the saturation
scale returned by our method should be seen as an average scale
taking into accounts all parts of the dynamics. It would be very
interesting to enhance the method so that it can automatically
identify different aggregation scales relevant to different parts
of the dynamics. This would allow either to aggregate the link
stream with a variable length window or to use the shorter scale
detected, which is also the more preserving one, to aggregate
the whole link stream.
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Chapter 3

Modelling complex
networks

The word model has many different meanings depending on the
community in which it is used. Talking about complex network
topology, which is a quite precise topic in modelling, three are at
least three kinds of models: 1) models that explain the topology
of complex networks, 2) models used as definition of complex
networks and 3) models that generate complex networks. Some
models eventually fulfils several of these goals.

The two most famous models of the first type are the model
of Watts and Strogatz [76], which shows how some characteris-
tics of complex networks can be obtained from strongly struc-
tured networks by perturbing them by a relatively small amount
of randomness, and the Barabási-Albert model [5], which shows
that the power-law degree distribution can result from a growth
process of the network based on the preferential attachment rule,
stating that new incoming nodes tend to favour links with high
degree nodes. Such models are not intended to be used in or-
der to generate synthetic networks, though they are sometimes
used, inadequately, to do so. For this reason they have received
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a lot of undeserved criticism, as their true goal is not to gener-
ate realistic topologies but simply to give more understanding
on some characteristics of the topology of complex networks.

The second kind of models, which I call definition models,
aims at capturing some key properties of the topology of com-
plex networks in a mathematical definition. One classical way
to do so is to equip the class of networks satisfying a given set
of properties with a uniform probability, like in [31, 58] for ex-
ample. Complex networks are then thought of as a uniformly
randomly chosen network among the class. This fulfils the lack
of mathematical definition of complex networks by artificially
giving them one, which is very useful to reason and to make
proof about these networks.

The goal of generation models, the third type above, is to
give a construction process to generate synthetic network topolo-
gies. They do not necessarily provide a nice or useful mathe-
matical definition of the class of networks they generate. Nev-
ertheless, they share a common goal with definition models: de-
limiting, by a generation process instead of a definition, a class
of networks which has all the common properties observed for
real-world networks and which remains general enough, meaning
that the class does not satisfy other undesired properties that
are in general not satisfied by real-world networks. Note that
one definition modelM would always give rise to a generation
model if it was possible to design a process to uniformly ran-
domly pick one network in the class mathematically defined by
M. Unfortunately, designing such a process in a way which is
computationally efficient is sometimes out of reach.

In this chapter, we adopt the point of view of generation.
Our goal is to design generation processes that faithfully repro-
duce the structure of complex networks. Ideally, we would like
to obtain a model that reproduces the four main properties ob-
served for these networks, while remaining general enough: low
global density, short distances, heterogeneous degree distribu-
tion and high local density (compared to the global one). Some
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of these properties are more easily reproducible by models, be-
cause they are properties of random graphs. Indeed, random
graphs parameterised by their number of vertices and their den-
sity have short distances even with a very low density. This is
the reason why, until the recent rise of complex network science,
the Erdös-Rényi model [31] was used to model networks encoun-
tered in practice. It is only after the discovery of the fact that
most of these networks actually have a heterogeneous degree
distribution (power-law like) that a new model has been used,
referred to as the configuration model [7, 58]. The configuration
model generates random graphs parameterised by their number
of vertices and by their degree distribution (which, in particu-
lar, fix the global density). It therefore produces networks that
have the three first desired properties: low global density, short
distances and heterogeneous degree distribution (fixed as a pa-
rameter of the model). This is probably the most widely used
model for generating complex network topologies.

However, this model also shows a sharp limitation: the
graphs it produces have a low local density (close to their
global density). Going beyond this limitation is a major chal-
lenge for the domain of modelling of complex networks. De-
spite several interesting approaches and many noticeable re-
sults [44, 30, 40, 52, 55, 61, 36, 33, 75, 69, 9], the domain does not
offer until now a fully satisfying solution for generating graphs
with high local density compared to their global density. The
difficulty to do so comes from the fact that a high local den-
sity is not a property of random graphs. On the opposite, it
is instead the property which most clearly reveals that complex
networks differ from random graphs. Following the idea of the
Watts and Strogatz model, the structure of complex networks
can be understood as a balance between a strongly structured
organisation of their topology, responsible for the high local den-
sity of these graphs, and a random organisation of some links in
the network, responsible for short distances.

Therefore, a very important challenge for the domain is to

65



randomly generate graphs with high local density. In this chap-
ter, we present two new ways toward this objective. For both
of them, the general idea sustaining our approach is to obtain
all properties of complex networks cited above as a consequence
of a higher order property. The first way proposes to focus on
the maximal cliques of complex networks and on their overlap-
ping structure, and to generate graphs having a similar structure
of their maximal cliques. The second way we present consists
in generating separately the strongly structured part of com-
plex networks and the part of randomness they contain. The
key point to obtain a satisfying generation model with this ap-
proach is to generate strongly structured topologies that are not
caricatural and that are indeed close to the actual topologies of
complex networks. To this purpose, we use graph editing prob-
lems to determine which combinatorial structures are closer to
those of real-world networks.

Overlaps of maximal cliques [46, 20, 26]

In this section, our goal is to generate synthetic graphs having
the classical properties of real-world networks not by trying to
encode these properties directly in the generation process but
instead by obtaining them as consequences of another, more
fundamental, property. We are in particular interested in lo-
cal density which is the property that appears until now to be
the most difficult to reproduce by random generation processes.
Usually, local density is measured thanks to the clustering co-
efficient. This coefficient admits two distinct definitions (cf.
technical preliminaries) which are based on similar ideas to ap-
preciate the density within the neighbourhood of a vertex, but
which are not mathematically equivalent up to a constant factor.
There may be several reasons why it is so difficult to generate
graphs with prescribed clustering coefficients. This may come
from the fact that the notions of clustering coefficient are not
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necessarily the best ones to appreciate local density, or from the
fact that, as mentionned above, local density is not a property
of random graphs. In order to overcome these difficulties, we
generate graphs by their maximal cliques instead of generating
them by their edges. Doing so, we obtain graphs with a high
clustering coefficient, induced by the properties of their maximal
cliques.

Clearly, generating cliques directly forces a high local density
for the graph. Moreover, generating cliques of prescribed sizes
is easy. It can be done thanks to the configuration model [7, 58]
applied to the vertex-clique-incidence bipartite graphB(G) ofG.
Bottom vertices of the bipartite graph B(G) are the vertices of
the graph G to be generated and top vertices are the maximal
cliques of G. Each vertex of B(G) is assigned a number of
half edges corresponding to its degree and the half edges of top
vertices are randomly matched with the half edges of bottom
vertices. The parameters of the model are the number of bottom
vertices of B(G) and their degree distribution, as well as the
number of top vertices of B(G) and their degree distribution.

This approach, named the bipartite model, has been initiated
in [61, 36, 37] and showed very promising results: in this way,
one can obtain graphs having a high local density (thanks to the
clique structure) and a heterogeneous degree distribution that
is controlled by the degrees of the vertices in the vertex-clique-
incidence bipartite graph. However, the bipartite model suffers
from a severe limitation: when generating the edges of the bi-
partite graph at random, the obtained neighbourhoods of the
upper vertices intersect only on one (or zero) vertex with a very
high probability (see [36, 37]). This is not the case in real-world
networks, where most of the maximal cliques have non-simple1

overlaps with some others. Thus, even though it gives the de-
sired properties concerning degree distribution and local density,
the bipartite model results in graphs having a caricatural struc-
ture and a too high global density (or equivalently too many

1In all this section, non-simple means of cardinality at least two.
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G0 = G G1 = B(G) G2 G3

Figure 3.1: Example of the weak-factor series of some graph G.
From left to right: the original graph G = G0, its vertex-clique-
incidence bipartite graph B(G) = G1, the tripartite graph G2 of
the series, and the quadripartite graph G3 on which the series
terminates. The dashed edges are those belonging to some non-
simple maximal biclique used in the factorisation steps. Note
that the multipartite graph obtained at termination of the series
constitutes an unambiguous encoding of the original graph, as
the factorising operation is reversible.

edges). This is an intrinsic limitation of the prescribed-degree
generation technique in the case where the bipartite graph is
sparse.

In [46], we introduce a new object intended to correct this
drawback. The idea is to encode the non-simple intersections of
maximal cliques of a graph G by the neighbourhoods of some
vertices in some other suitably defined graph, so that such ob-
jects can be randomly generated using the prescribed-degree
generation technique of [7, 58]. In order to define such an en-
coding of a graph G, we proceed as follows. We start from the
vertex-clique-incidence bipartite graph B(G) = (V0, V1, E) of G
and we create a new level V2 where each vertex x corresponds
to a non-simple maximal biclique2 B of B(G), x being made
adjacent exactly to the vertices of B. Then, we can delete the

2A biclique in a bipartite graph is a subset of vertices inducing a com-
plete bipartite graph, i.e. with all possible edges between top and bottom
vertices. Here, maximal means maximal for inclusion.
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edges between the vertices of B as they are now encoded by
the presence of x. Doing so simultaneously for all non-simple
maximal bicliques of B(G) gives a tripartite graph in which the
neighbourhoods on V0 of vertices at level V1 have no non-simple
intersections anymore. Then, we can iteratively repeat the op-
eration by considering, at each step of the process, the maximal
bicliques between the vertices on the uppermost level and the
rest of the vertices of the multipartite graph. This operation is
called the weak-factor and the series (Gk)k≥0, with G0 = G and
G1 = B(G), obtained by iteratively applying the weak-factor
operator is called the weak-factor series of G.

When the weak-factor series terminates, see example in Fig-
ure 3.1, we obtain a multipartite graph3 without any non-simple
intersection of neighbourhoods. We can therefore generate simi-
lar structures at random using the prescribed-degree generation
method without bumping into the problem raised by [36, 37]. Of
course, in order to obtain a multipartite graph that has no non-
simple neighbourhood intersections, it is mandatory that the
iterative factorising process terminates. It turns out that this
termination property is not granted with the most immediate
definition of the factorising operation, namely the weak-factor
operator defined above. There exist graphs for which the weak-
factor series does not terminate, see example in Figure 3.2.

This is the reason why the rest of this section is devoted
to slightly modifying the definition of the factorising operation
in order to obtain termination of the series for all graphs, and
therefore always obtain an object suitable for our modelling pur-
poses. Let me mention that this approach is new and somehow
orthogonal to the questions traditionally investigated in clique
graph theory. Most works in the field try to characterise the
graphs for which the series defined by an operator terminates
and those for which it does not, without questioning the defini-
tion of the operator itself. Here, the specificity of our approach

3Note that this multipartite graph is an encoding of the original graph,
as the factorising operation is reversible.
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Figure 3.2: An example graph for which the weak-factor series
is infinite. From left to right: the input graph G, its vertex-
clique-incidence bipartite graph B(G), and the tripartite graph
denoted B(G)+ of its weak-factor series. The shaded edges are
the ones involving vertex e, which plays a special role: all the
vertices of the upper level of the multipartite graph are adjacent
to e. The structure of edges between vertices of V2 and vertices
of V1 ∪ {e} in B(G)+ is identical to the one between levels V1

and V0 in B(G), revealing that the series will not terminate.

comes from the fact that we use the series to define a (multipar-
tite) graph, which requires termination.

In the example above (see Figure 3.2), the non-termination
of the weak-factor series is due to the fact that vertex e is the
base for an infinite number of factorisation steps. A natural idea
to avoid this is to restrict the set of bicliques used for creating
the vertices of level Vk. Instead of using all maximal bicliques
between the uppermost level Vk−1 and the rest of the vertices,
we use only the bicliques that have at least two vertices at level
Vk−2, and that are maximal for inclusion. In this way, we forbid
a vertex to be responsible for the creation of a new vertex an
infinite number of times, as the creation of a new vertex depends
only on levels Vk−1 and Vk−2. We call this restricted factorising
operation the factor graph. Unfortunately, this sole restriction
still does not guarantee the termination of the series. In [26],
we provide an example of a graph that gives rise to an infinite
factor series.

Consequently, in order to guarantee convergence, we con-
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strain further the definition of the factorising operation we
use. We obtain two distinct definitions that guarantee conver-
gence, which we call respectively the clean factor [20] and the
strong factor [26]. They are not directly comparable in terms
of strength of the restriction, though we give some arguments
explaining that the second one, the strong factor, can be consid-
ered as a lighter restriction than the one operated by the clean
factor. As a counterpart, the clean factor sheds some light on
the structure of the multipartite graph obtained at termination
which is remarkable in itself.

In the clean factor we do not only require that the neighbour-
hoods of vertices at level Vk−1 involved in the creation of a new
vertex at level Vk share at least two vertices at level Vk−2 but we
also require that those vertices have the same neighbourhood at
level Vk−3. Intuitively, this avoids redundant creations of ver-
tices that would threaten termination. But this supplementary
condition is not only a technical condition used to guarantee
termination. Actually, with this definition, the graph on which
the clean-factor series terminates is a fundamental combinato-
rial object. More explicitly, its vertices are in bijection with the
chains of the inclusion order L of the non-simple intersections
of maximal cliques of the input graph G. In addition to the sur-
prising link it shows between these two combinatorial objects, it
also opens the perspective to use directly L for modelling pur-
poses. Moreover, it makes the speed of termination of the series
explicit: the number of levels in the multipartite graph on which
the series terminates is exactly h + 3, where h is the height of
order L.

One consequence of restricting the factorising operation is
that the multipartite graph obtained at termination, which we
use for modelling, still contains couples of vertices for which the
intersection of their neighbourhood is non-simple (even though
the bigger part of those intersections has been removed by the
factorising process). The less restricted the factorising operation
used, the less important is this phenomenon. Therefore, in or-
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der to obtain the best possible multipartite graph for modelling
purposes, it is highly desirable to constrain the factorising oper-
ation as little as possible. This is the reason why in [26] we prove
termination of the series under a different restriction of the fac-
torising operation called the strong factor. In the strong factor,
as in the clean factor and the factor, we require that the neigh-
bourhoods of vertices at level Vk−1 involved in the creation of a
new vertex at level Vk share at least two vertices at level Vk−2.
On the other hand, we do not require equality of the neigh-
bourhoods at level Vk−3 of the involved vertices at level Vk−1.
Instead, we ask that the intersections of the neighbourhoods of
the vertices at level Vk−1 is at least 2 on all the other levels, that
is from level Vk−2 to level V0. It is not immediate to see why this
definition of the factorising operation is less restrictive than the
one of the clean factor. In [20], we prove that the equality condi-
tion on neighbourhoods at level Vk−3 actually implies equality
of neighbourhoods at all levels and also implies that all these
neighbourhoods have cardinality at least 2. Therefore, though
it does not appear directly in their definitions, the factorising
operation of the strong factor is less constrained than the one of
the clean factor. Moreover, it is quite remarkable that, despite
the fact that it is less restricted, the strong factor series never
terminates later than the clean factor series. It means that the
multipartite graph obtained at termination of the strong factor
series never has more levels than the one resulting from the clean
factor series, though its number of vertices is usually larger.

For the practical feasibility of our modelling approach, it is
essential to be able to compute the clean factor series and the
strong factor series for real-world networks. One difficulty for
doing so is that the problem of enumerating the maximal cliques
of a graph and the maximal bicliques of a bipartite graph is com-
putationally hard. On the positive side, there exist algorithms
to do so in (low) polynomial time per output maximal clique
and biclique. Then, the practical feasibility of computing the
series we defined mainly depends on the number of vertices in
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the multipartite graph obtained at termination. For arbitrary
graphs, this number (which is at least the number of maximal
cliques of the graph) may be exponential in the number of ver-
tices of G. Nevertheless, for the clean factor graph, we could
show that under reasonable assumptions of the structure of the
initial graph G, namely if the size of its maximal cliques and the
number of maximal cliques in which is involved one vertex are
both bounded by constants, the number of vertices in the multi-
partite graph on which the series terminates only grows linearly
in the number of vertices of G. In practice, we could compute
the clean-factor series for graphs of hundred of thousands of
vertices and millions of edges.

Using the results of these computations, we could test our
modelling approach. To this purpose, we used only the first
three levels of the multipartite graph. We found out that the
graphs generated in this way offer a clear improvement on the
bipartite model: as expected, their local density is high due to
the fact that they are generated by their cliques and at the same
time, their number of edges remain much closer from the num-
ber of edges in the original graph, which was the effect wanted
when introducing the multipartite model instead of the bipartite
one. These preliminary results are quite promising and could be
improved by using the upper levels of the multipartite graph
as well. On the other hand, in the generation of the tripartite
graph, the prescribed-degree generation technique cannot be ap-
plied directly. In order to get good results as the one we obtained
on the graphs we tested, we needed to couple this technique with
a rewiring step whose purpose is to avoid that some vertices of
the tripartite graph receive a too high number of neighbours
compared to what they should. This supplementary step makes
the generation process more intricate and less attractive.

Conclusion. The main perspective of this series of works is
to use the multipartite graphs that we define to generate syn-
thetic graphs. There are a number of way to do so that should
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be explored. The first one would be to control in a simpler
way the degree of vertices in the generation process of the tri-
partite model and also to extend this generation process to a
higher number of levels in order to get the full benefit of the
multipartite model.

Another appealing way is to avoid the direct generation of
the multipartite graph and instead use mixing techniques. These
techniques start from a given graph (here a multipartite graph)
and apply a series of random elementary modifications to this
graph, which preserves a certain property of the graph. In the
case of our multipartite model, such a property and an elemen-
tary modification preserving it are still to be defined.

Finally, the correspondence we highlighted between the clean
factor series and the inclusion order L of the non-simple inter-
sections of maximal cliques of the input graph G suggests that
L could also be used for modelling. The question is whether
generating L is easier than generating the multipartite graph.

Approximation by strongly structured
graphs [28, 29, 25, 24]

After the work of Watts and Strogatz [76], it became clear that
complex networks are not completely random graphs, as testi-
fied by their local density. Though they have some properties of
random graphs, they also have a special structure. Then, a nat-
ural idea is to describe their topology as the superposition of two
parts, a structured part and a random part, making them inherit
of some characteristics of both parts. Their structured part is
induced by the context where they come from, which imposes
constraints on the way links are established within the network,
e.g. geographical constraints, technical constraints, economical
constraints or sociological constraints. Their random part, on
the other hand, comes from the fact that these constraints are
not strict: most of the links follow them but a few links do not.
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For example, most of one’s acquaintances are geographically cen-
tred around the place one lives but one may still know one or
a few people living in a completely different part of the world.
The idea of separating a structured part and a random part in
the topology of the network is the one underlying the models
of [76] and [43], which are used to explain one phenomenon but
are not intended to generate realistic topologies.

On the contrary, here we use this idea for generation pur-
poses. We want to describe complex networks, and then gen-
erate them, as strongly structured graphs, i.e. graphs mathe-
matically defined as those exactly satisfying some property, al-
tered by a set of random modifications. There are many types
of modifications of interest one may consider, such as rewiring
of edges (as in [76]), addition of edges (as in [43]), deletion of
edges, swap of two edges [64], contraction or subdivision of edges
for example. Here, we focus on addition and deletion of edges.
These two simple elementary operations can simulate many of
the other kinds of modifications cited above. Then, the base idea
of our modelling approach is to start from a strongly structured
graph and to apply to it a set of randomly chosen edge addi-
tions and edge deletions in order to obtain a new graph which
is the result of our generation process. Randomly generating
such modifications is an easy task. The main challenge in or-
der to obtain realistic synthetic graphs is to start the generation
process with strongly structured graphs that do not have a cari-
catural structure but a structure close to the actual structure of
real-world networks. In order to determine whether there exist
such graphs and to find them, we need to consider the following
problem: given a real-world network, can we decompose it into
a strongly structured graph plus a small set of modifications?

This is precisely the question we address here, thanks to
graph editing problems which are formulated to this purpose.
Editing a graph consists in changing some of the adjacency rela-
tionships between its vertices: add some edges and delete some
others. The goal is to perform a number of modifications which
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is as small as possible so that the modified graph satisfies a tar-
get property given in advance (e.g. being chordal). The number
of adjacencies to be changed measures how far the initial graph
is to satisfy the target property. The interest is to retrieve the
underlying combinatorial structures of real-world networks by
removing the noise hiding them (corresponding to the changes
performed). In this way, we can describe real-world complex
networks as strongly structured graphs that are slightly altered.
In the rest of this chapter, we design algorithms to edit an ar-
bitrary graph into some target classes of graphs and we use the
results of edition obtained for real-world networks to test the
performances of our modelling approach based on the approxi-
mation of complex networks by strongly structured graphs.

Algorithms

This approach relies on the possibility, given an arbitrary graph
and a target property, to find a number of modifications to per-
form on the graph (addition or deletion of edges) which is as
small as possible to obtain the considered property. Unfortu-
nately, these problems are in general computationally difficult
(NP-hard) if one wants the minimum number of modifications.
This means that computing an exact solution to the problem
is practically unfeasible when the input graph is large, as it
is typically the case of complex networks encountered in prac-
tice. Dealing with this computational difficulty is a key issue
to be addressed for the feasibility of our modelling approach.
Fortunately, it is often possible to design polynomial time algo-
rithms that provide non-optimal but satisfying solutions to the
problem. To obtain such heuristics, one classical approach is
to restrict the modifications allowed to addition of edges only
(completion problems) and to ask for a set of edges to be added
which is only minimal for inclusion but not necessarily of min-
imum cardinality. This works for many target properties and
in particular for completion into chordal graphs, interval graphs
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and cographs, for which there already exist polynomial-time al-
gorithms. In this section, I present improved algorithms for
interval graphs and cographs as well as the first algorithm for
permutation graphs. These classes (see [11] for definitions, or
the technical preliminaries of this manuscript) are particularly
interesting in the present context as they have some character-
istics similar to those of real-world networks. Cographs, and
permutation graphs which are a generalisation of them, have a
natural multiscale community structure induced by their mod-
ular decomposition tree. The edition problems into the class of
cographs and into one of their subclass, quasi-threshold graphs,
have even been already used to analyse real-world complex net-
works [10, 42]. Interval graphs, and chordal graphs which gen-
eralise them, have simultaneously a high local density and a low
global density due to the arrangement of their maximal cliques
along a linear structure (or a tree-like structure in the case of
chordal graphs).

Most of the minimal completion algorithms in the literature,
as well as those presented here, are incremental. Starting from
an empty set of vertices, the vertices of the graph are added one
by one and at each step the algorithm computes a minimal com-
pletion restricted to the subset of vertices treated so far. The
key property that allows to design efficient algorithms in this
way is that, provided that the target class of graphs is closed by
induced subgraph and by addition of a universal vertex (which
is the case for all the three classes we consider here), at each
step, one does not need to reconsider the minimal completion
computed previously. Indeed, it is sufficient to compute only
a completion of the neighbourhood of the new incoming vertex
xi+1. Adding such a set of edges to the minimal completion
computed so far for G[{x1, x2, . . . , xi}] always results in a min-
imal completion of G[{x1, x2, . . . , xi, xi+1}]. This is why, in the
sequel, we only describe one incremental step of the algorithms.
The order in which the vertices of the graph are added does not
matter. Of course, one may still wish to use a special order with
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the aim of either improving the running time of the algorithm
or lowering the cardinality of the set of modifications returned,
but we do not seek to exploit this possibility here. In the algo-
rithms we describe, the order in which the vertices are treated
is arbitrary.

The algorithmic contributions presented here are as follows.
We improve the time complexity of minimal completion into an
interval graph from O(nm) to O(n2), we design the first algo-
rithm for minimal completion into a permutation graph, which
works in the same complexity, and we design an important im-
provement of the algorithm for cographs: a real edition algo-
rithm that uses both deletions and additions of edges and which
gives a set of modifications which is minimal for inclusion, run-
ning in O(n2) time as well.

Minimal interval completion. There were already several
existing algorithms for minimal interval completion of an arbi-
trary graph, the best complexity beingO(nm) [71]. The problem
of interval completion is closely related to the problem of chordal
completion (interval graphs are a subclass of chordal graphs),
which has been extensively studied because of its links with
treewidth and fast multiplication of sparse matrices. The two
best complexity for chordal graph completion are O(nm) [66]
and O(nα log n) [39], with α < 2.376, where O(nα) is the time
required for the multiplication of two n × n matrices. For the
problem of interval completion we devised an O(n2)-time algo-
rithm [28, 29]. In practice, this improvement of the complexity
is meaningful and can allow to treat graphs significantly larger
than those that can be treated with an O(nm)-time algorithm.
On the theoretical side, it is interesting to note that it brings
the complexity for interval completion below the best complex-
ity known for chordal completion.

Technically speaking, this result leans on two main ingredi-
ents. Firstly, given an interval realiser R of G and a vertex x
to be added to G along with its neighbourhood in G, we are
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able to find efficiently a completion H of the neighbourhood of
x such that i) G+x is an interval graph and ii) this completion
respects4 R and iii) it is minimal for inclusion among the com-
pletions satisfying the two preceding conditions. Unfortunately,
depending on the realiser R which is used for G, the minimal
completion respecting R may not be minimal among all comple-
tions of the neighbourhood of x. This difficulty can be overcome
by using a special representation of interval graphs, called PQ
trees, which represents all interval realisers of an interval graph
in space O(n). Then, the second key ingredient we use to solve
the problem is to find, thanks to the PQ tree, an interval realiser
for which it is ensured that all minimal completions respecting
it are minimal among all completions of G+x. One incremental
step of the algorithm requires at most O(n) time, resulting in
an O(n2) overall time complexity.

Minimal permutation completion. In [25], we designed an
O(n2)-time algorithm for computing a minimal completion of an
arbitrary graph into a permutation graph. To the best of our
knowledge, this is the first minimal permutation completion al-
gorithm. The approach we followed is similar to the one we use
for interval graphs, only the details dealing with the structure of
the target class are different. The first difference is that in the
case of permutation graphs, computing a minimal completion
of G + x respecting a given permutation realiser is technically
much more challenging than in the case of interval graphs. Nev-
ertheless, our algorithm remains conceptually simple as it can
be decomposed into two independent steps. The first step finds
a couple of intervals (I1, I2) in the permutation realiser (π1, π2),
with I1 in π1 and I2 in π2, such that it is guaranteed that the
segment of the new vertex x can be inserted in a way that re-
sults in a minimal completion respecting the realiser, without
determining the way it has to be inserted. Then, in the sec-

4A completion H of G+x respects a realiser R of G iff there exists some
realiser R′ of H such that removing x from R′ results in R.
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ond step, the algorithm finds such an insertion position for the
segment of x by scanning simultaneously the two intervals I1
and I2. Like in the case of interval graphs, the fact that the
minimal completion respecting a realiser is minimal among all
completions depends on the chosen realiser. Fortunately, as for
interval graphs there exists a tree representation of permutation
graphs, called the modular decomposition tree, that represents
all realisers of a given permutation graph in O(n) space. Using
this representation, our algorithm is able to compute a minimal
completion of G+ x in O(n) time.

Minimal cograph edition. We also considered the problem
of minimal completion of a graph into a cograph, whose class is
a proper subclass of permutation graphs. Before our work, there
was already an algorithm for minimal cograph completion [53],
running in linear time with regard to the size of the output
graph, i.e. O(n + m′), where m′ is the number of edges of the
completed cograph. We designed an algorithm that, in the same
complexity, at each incremental step, computes a completion of
the neighbourhood of the incoming vertex which is not only min-
imal but also of minimum cardinality [24]. It must be clear that
this does not guarantee that the final completion output at the
end of the algorithm is of minimum cardinality, this problem
being NP-hard. But on the other hand, this feature is highly
desirable in practice to improve the quality of the completion
returned by the heuristic. I also extended this work to the gen-
eral edition problem, where both addition and deletion of edges
are allowed. I designed an incremental algorithm that computes
at each incremental step a minimum number of modifications of
the adjacencies between x and G such that G+ x is a cograph.
The interest of using the general edition problem instead of the
completion problem is that the number of modifications to be
performed is by definition at most the number of additions, and
can be much less in some cases. In particular, in [24], we show
that very sparse random graphs are very likely to require Ω(n2)
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in any completion, while there exists some edition with only
O(n) modifications. Obtaining a cograph with a lesser number
of modifications is very valuable for the modelling purposes we
pursue, as we get a closer approximation of the input complex
network.

Finally, for the completion only algorithm, in the case where
any minimal completion is suitable at each incremental step, we
show that the complexity can be reduced to O(n log2 n) [24],
by using advanced dynamic data structures. With the remark
above on the number of edges required in the completion of
many very sparse graphs, this shows that for those graphs the
resulting improvement of the running time of the algorithm is
substantial, namely in the order of magnitude of n/ log2 n.

Real-world networks as almost-cographs

This section presents results of minimal cograph edition for
several real-world networks and the properties of the synthetic
graphs obtained by using these edition results as input for the
generation of almost-cographs, i.e. cographs altered by a num-
ber of modifications. This section is singular in the manuscript
in the sense that it presents original results that have not been
published anywhere else previously.

The algorithm I implemented is the minimal cograph edi-
tion algorithm described above, handling both deletions and
additions of edges, giving a minimum cardinality edition of the
neighbourhood of the new incoming vertex at each step of the
incremental algorithm, with a randomly chosen incoming order
on the vertices. The theoretical complexity of the algorithm is
quadratic but it seems faster than expected in practice, both on
real-world data and random graphs, which may suggest that its
average complexity is lower than the one in the worst case. I
ran the algorithm on 35 real-world networks coming from vari-
ous contexts (see Table 3.1) and 52 Erdös-Rényi random graphs
having between 1 000 and 1 000 000 vertices and mean degree be-
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tween 2 and 80, used for comparison purposes. For each graph,
I made 10 runs of the algorithm, each of them with a differ-
ent random incoming order for the vertices. I used 11 machines
with 2.4 GHz processors, divided in 16 to 64 cores, with 16 GB
to 256 GB memory. Only two graphs, namely cit-Patents and
LiveJournal, required more than 12h of computation per run,
respectively 32h and 22h.

Results are shown5 in Table 3.1 and Figure 3.3. There was
a very limited variability of results over the 10 runs, even for
real-world data. Table 3.1 shows the number of modifications
performed, averaged over the 10 runs. For real-world networks,
for 30 graphs out of 35, the difference between the minimum
number of modifications and the mean over the 10 runs is less
than 2.5%, for 4 of them it is less than 5.5% and only the 183
vertices graph, named foodweb, has a difference of about 12%.
For all the 35 graphs, most of the modifications performed are
deletions, more than 90% for 25 of them, between 80% and 90%
for 9 of them, and about 70% for foodweb. This emphasises
the interest of considering not only addition but also deletion of
edges.

The number of modifications performed to obtain a cograph,
expressed as a percentage of the number of edges in the input
graph, are widely spread in a range between 12% and 93%. For
8 graphs, it is less than 35%, for 8 of them it is more than 75%
and for the 19 remaining graphs it is comprised between 43%
and 71%. Then, it appears that the proximity with the class
of cographs highly depends on the graph considered. Very in-
terestingly, the context where the graph comes from seems to
play a preponderant role. The graphs that were found closest
from being cographs come from engineered objects, such as web

5For random graphs, only the results for the graphs on 1 000 000 vertices
and mean degree at most 20 are reported in Table 3.1. The results for
smaller graphs are very similar to those obtained with 1 000 000 vertices
and graphs with mean degree greater than 20 all received at least 95% of
modifications (see Figure 3.3).
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Context Network n m d◦ %mod #mod #add #del
WWW in-2004 1 148 875 12 281 937 21.4 0.12 1 482 193 259 959 1 222 234
WWW cnr-2000 227 058 2 187 201 19.3 0.19 408 278 56 988 351 290
PROTEIN reactome 5 973 145 778 48.8 0.22 31 961 4 723 27 238
SOFTWARE jdk 6 434 53 658 16.7 0.29 15 665 2 671 12 994
SOFTWARE jung-j 6 120 50 290 16.4 0.29 14 576 2 709 11 867
WWW eu-2005 835 044 15 718 784 37.7 0.29 4 631 218 469 270 4 161 948
CO-AUTHOR ca-GrQc 4 158 13 422 6.5 0.34 4 500 560 3 940
CO-AUTHOR ca-HepPh 11 204 117 619 21.0 0.34 40 572 2 369 38 203
SPECIES foodweb 183 2 434 26.6 0.43 1 045 310 735
CO-AUTHOR dblp 317 080 1 049 866 6.6 0.45 472 354 45 215 427 139
WORD-REL. wordnet 145 145 656 230 9.0 0.48 316 288 24 742 291 546
COMMUNIC. wiki-Talk 2 388 953 4 656 682 3.9 0.49 2 302 468 17 226 2 285 242
CO-SOLD amazon 334 863 925 872 5.5 0.49 453 288 74 719 378 569
CO-AUTHOR ca-CondMat 21 363 91 286 8.6 0.52 47 895 3 977 43 917
RANDOM ER-Gnm 1M-2 796 208 958 827 2.4 0.52 502 798 87 364 415 434
CO-AUTHOR ca-HepTh 8 638 24 806 5.7 0.54 13 349 1 296 12 053
INTERNET as2000 6 474 12 572 3.9 0.54 6 744 439 6 304
ROAD roadNet-TX 1 351 137 1 879 201 2.8 0.54 1 012 350 193 074 819 276
INTERNET as-caida2007 26 475 53 381 4.0 0.55 29 123 1 457 27 666
CO-AUTHOR ca-AstroPh 17 903 196 972 22.0 0.59 115 684 5 840 109 844
INTERNET topology 34 761 107 720 6.2 0.61 65 642 4 437 61 205
RANDOM ER-Gnm 1M-3 940 987 1 494 643 3.2 0.63 945 250 125 046 820 204
INTERNET as-skitter 1 694 616 11 094 209 13.1 0.64 7 112 672 690 571 6 422 101
CO-OCCUR bible-names 1 707 9 059 10.6 0.67 6 100 372 5 728
PROTEIN figeys 2 217 6 418 5.8 0.67 4 271 182 4 089
CITATION-SCI. cora 23 166 89 157 7.7 0.68 60 992 5 194 55 797
SOCIAL youtube 1 134 890 2 987 624 5.3 0.69 2 058 540 91 168 1 967 372
CO-ACTOR actor-col. 374 511 15 014 839 80.2 0.71 10 674 141 154 844 10 519 297
P2P-CONNECT. p2p-Gnutella 62 561 147 878 4.7 0.71 104 334 5 916 98 418
RANDOM ER-Gnm 1M-4 980 191 1 999 203 4.1 0.71 1 414 699 150 710 1 263 989
CITATION-SCI. citeseer 365 154 1 721 981 9.4 0.75 1 296 670 75 661 1 221 009
CITATION-PAT. cit-Patents 3 764 117 16 511 740 8.8 0.76 12 551 073 739 054 11 812 018
SOFTWARE linux 30 817 213 208 13.8 0.77 163 177 10 784 152 393
SOCIAL LiveJournal 3 997 962 34 681 189 17.4 0.78 27 122 844 1 336 779 25 786 065
CITATION-SCI. cit-HepTh 27 400 352 021 25.7 0.79 278 632 19 123 259 509
RANDOM ER-Gnm 1M-6 997 479 2 999 988 6.0 0.79 2 381 169 182 870 2 198 299
CITATION-SCI. cit-HepPh 34 401 420 784 24.5 0.81 341 515 20 521 320 994
RANDOM ER-Gnm 1M-8 999 684 3 999 999 8.0 0.84 3 362 818 201 406 3 161 412
RANDOM ER-Gnm 1M-10 999 952 5 000 000 10.0 0.87 4 346 649 210 128 4 136 521
RANDOM ER-Gnm 1M-15 1 000 000 7 500 000 15.0 0.91 6 822 082 222 329 6 599 753
SOCIAL orkut 3 072 441 117 185 083 76.3 0.91 107 125 003 2 992 486 104 132 518
RANDOM ER-Gnm 1M-20 1 000 000 10 000 000 20.0 0.93 9 302 868 224 073 9 078 795
WORD-REL. Thesaurus 23 132 297 094 25.7 0.93 274 847 3 697 271 150

Table 3.1: Results of minimal cograph edition for some real-
world networks (white rows) and some Erdös-Rényi random
graphs (grey rows). The columns give the number of vertices
(n), the number of edges (m) and the mean degree (d◦) of the
input graph, as well as the quantity of modifications performed
by the algorithm, expressed both in proportion of the number
of edges in the input graph (%mod) and in absolute number
(#mod), the number of these modifications that are additions
of edges (#add) and the number of deletions of edges (#del).



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90

%
 m

o
d
if

mean degree

Proportion of modifications

synthetic
real-world

Figure 3.3: Proportion of modifications made by the minimal
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(real-world) and the Erdös-Rényi random graphs (synthetic) of
Table 3.1.

graphs and graphs of dependency between classes in object ori-
ented software, and also include scientific co-authorship graphs
and the interactions between proteins of the reactome graph. On
the opposite, scientific citations and online social networks were
found quite far from being cographs, while spatially constrained
graphs such as the Internet topology and the road network of
Texas lay in the middle, between 54% and 64%.

For random graphs, the proportion of modifications to per-
form to obtain a cograph is entirely driven by their mean degree,
independently of their size, as shown in Figure 3.3. This per-
centage rises very quickly with the mean degree and reach 79%
for mean degree 6. Almost all real-world networks give results
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that are much lower to what is expected for their mean degree,
denoting the well-known specificity of their structure. More in-
terestingly, the graphs that were found relatively close from be-
ing cographs (those with less than 35% of modifications) have
mean degrees that cover a wide range, between 6.5 and 48. This
shows that their proximity with cographs is clearly a specificity
of them and of the context they come from.

Using the results of edition for real-world networks, I tested
the idea of modelling complex networks as almost-cographs, i.e.
cographs altered by a number of modifications (both addition
and deletion of edges). To this purpose, for each graph, I used
the result of the first of the ten runs. I started from the co-
graph returned by the minimal edition algorithm and I ran-
domly deleted from it nbadd edges and randomly added nbdel
edges, where nbadd is the number of edges that were added by
the minimal edition algorithm and nbdel the number of edges
that were deleted. Using only one particular run of the algo-
rithm avoid to bump on the question of defining what is the
mean cograph returned over the 10 runs and is justified by the
low variability of the results over the 10 runs. For each real-
world graph, I generated 5 random almost-cographs in this way,
as well as 5 configuration models using the degree distribution
of the original graph as input and 5 Erdös-Rényi graphs using
the Gn,m model with the number of edges in the original graph
as input. In all these three models, the number of edges, and
so the density and the mean degree, is guaranteed to be exactly
equal to the one of the original graph. The synthetic graphs gen-
erated by the three models were then compared to the original
graph in terms of mean distance, global clustering coefficient
(Table 3.3 also gives the number of triangles) and degree dis-
tribution. Using 5 random generation rounds allowed to check
that the variability on the properties of the obtained graphs is
very limited: Tables 3.2 and 3.3 give the mean value of each
parameter for the 5 generated graphs, while Figures 3.5 and 3.6
show the degree distribution of the first generated graph.

85



in
p
u
t
g
ra

p
h

(R
E
A
L
)
fo
r
th

e
m
o
d
e
ls

m
e
a
n

d
is
ta

n
c
e

C
o
n
te
x
t

N
e
tw

o
rk

n
m

d
◦

%
e
d
it

R
E
A
L

A
C
G

C
M

E
R

W
W

W
in

-2
00

4
1

14
8

87
5

12
28

1
93

7
21

.3
8

0.
12

8.
82

5.
3
1

3.
51

4
.8

5
W

W
W

cn
r-

20
0
0

2
27

05
8

2
18

7
20

1
19

.2
7

0.
19

9.
27

4.
7
0

3.
28

4
.5

0
P

R
O

T
E

IN
re

a
ct

o
m

e
5

9
73

1
45

77
8

48
.8

1
0.

22
4.

21
3.

0
1

2.
80

2
.6

6
S

O
F

T
W

A
R

E
jd

k
6

4
34

53
6
58

16
.6

8
0.

29
2.

12
2.

1
2

2.
66

3
.4

3
S

O
F

T
W

A
R

E
ju

n
g-

j
6

1
20

50
2
90

16
.4

3
0.

29
2.

11
2.

0
8

2.
66

3
.4

3
W

W
W

eu
-2

00
5

8
35

04
4

15
71

8
78

4
37

.6
5

0.
29

4.
64

3.
6
8

3.
13

4
.0

3
C

O
-A

U
T

H
O

R
ca

-G
rQ

c
4

1
58

13
4
22

6.
46

0.
34

6.
05

5.
6
7

4.
08

4
.6

8
C

O
-A

U
T

H
O

R
ca

-H
ep

P
h

11
20

4
1
17

61
9

21
0.

34
4.

67
3.

9
1

3.
19

3
.3

9
S

P
E

C
IE

S
fo

o
d

w
eb

18
3

2
4
34

26
.6

0
0.

43
2.

15
1.

9
5

2.
08

1
.8

7
C

O
-A

U
T

H
O

R
d

b
lp

3
17

08
0

1
04

9
86

6
6.

62
0.

45
6.

79
7.

4
2

5.
39

6
.9

2
W

O
R

D
-R

E
L

.
w

or
d

n
et

1
45

14
5

6
56

23
0

9.
04

0.
48

5.
53

5.
6
2

4.
31

5
.6

5
C

O
M

M
U

N
IC

.
w

ik
i-

T
al

k
2

38
8

95
3

4
65

6
68

2
3.

90
0.

49
3.

90
5.

5
8

4.
00

10
.9

0
C

O
-S

O
L

D
am

az
on

3
34

86
3

9
25

87
2

5.
53

0.
49

1
1.

95
8.

1
4

6.
36

7
.6

3
C

O
-A

U
T

H
O

R
ca

-C
on

d
M

at
21

36
3

91
2
86

8.
55

0.
52

5.
35

5.
1
4

4.
27

4
.8

9
C

O
-A

U
T

H
O

R
ca

-H
ep

T
h

8
6
38

24
8
06

5.
74

0.
54

5.
95

5.
6
9

4.
69

5
.3

8
IN

T
E

R
N

E
T

as
2
00

0
6

4
74

12
5
72

3.
88

0.
54

3.
71

4.
7
1

3.
93

6
.5

8
R

O
A

D
ro

ad
N

et
-T

X
1

35
1

13
7

1
87

9
20

1
2.

78
0.

54
41

5.
71

1
6.

29
17

.4
1

13
.6

8
IN

T
E

R
N

E
T

as
-c

ai
d

a2
00

7
26

47
5

53
3
81

4.
03

0.
55

3.
88

5.
2
9

4.
02

7
.4

3
C

O
-A

U
T

H
O

R
ca

-A
st

ro
P

h
17

90
3

1
96

97
2

22
0.

59
4.

19
3.

6
4

3.
36

3
.5

2
IN

T
E

R
N

E
T

to
p

ol
og

y
34

76
1

1
07

72
0

6.
20

0.
61

3.
77

4.
8
2

3.
72

5
.9

4
IN

T
E

R
N

E
T

as
-s

k
it

te
r

1
69

4
61

6
11

09
4

20
9

13
.0

9
0.

64
5.

07
5.

0
0

3.
73

5
.8

4
C

O
-O

C
C

U
R

b
ib

le
-n

am
es

1
7
07

9
0
59

10
.6

1
0.

67
3.

38
3.

4
3

3.
13

3
.4

2
P

R
O

T
E

IN
fi

ge
y
s

2
2
17

6
4
18

5.
79

0.
67

3.
84

4.
0
7

3.
60

4
.5

8
C

IT
A

T
IO

N
-S

C
I.

co
ra

23
16

6
89

1
57

7.
70

0.
68

5.
86

5.
1
2

4.
38

5
.1

6
S

O
C

IA
L

yo
u

tu
b

e
1

13
4

89
0

2
98

7
62

4
5.

27
0.

69
5.

28
6.

6
2

4.
46

8
.5

8
C

O
-A

C
T

O
R

ac
to

r-
co

l.
3
74

51
1

15
01

4
83

9
80

.1
8

0.
71

3.
71

3.
3
1

3.
06

3
.2

4
P

2
P

-C
O

N
N

E
C

T
.

p
2p

-G
n
u

te
ll

a
62

56
1

1
47

87
8

4.
73

0.
71

5.
94

7.
2
1

5.
82

7
.2

7
C

IT
A

T
IO

N
-S

C
I.

ci
te

se
er

3
65

15
4

1
72

1
98

1
9.

43
0.

75
6.

47
5.

7
3

4.
65

5
.9

5
C

IT
A

T
IO

N
-P

A
T

.
ci

t-
P

at
en

ts
3

76
4

11
7

16
51

1
74

0
8.

77
0.

76
8.

15
7.

2
4

6.
07

7
.2

2
S

O
F

T
W

A
R

E
li

n
u

x
30

81
7

2
13

20
8

13
.8

4
0.

77
3.

25
3.

3
5

3.
09

4
.2

2
S

O
C

IA
L

L
iv

eJ
ou

rn
al

3
99

7
96

2
34

68
1

18
9

17
.3

5
0.

78
5.

57
5.

6
8

4.
56

5
.6

5
C

IT
A

T
IO

N
-S

C
I.

ci
t-

H
ep

T
h

27
40

0
3
52

02
1

25
.6

9
0.

79
4.

28
3.

4
6

3.
24

3
.5

1
C

IT
A

T
IO

N
-S

C
I.

ci
t-

H
ep

P
h

34
40

1
4
20

78
4

24
.4

6
0.

81
4.

33
3.

6
3

3.
41

3
.6

3
S

O
C

IA
L

or
k
u

t
3

07
2

44
1

11
7

18
5

0
8
3

76
.2

8
0.

91
4.

22
3.

8
6

3.
46

3
.8

6
W

O
R

D
-R

E
L

.
T

h
es

au
ru

s
23

13
2

2
97

09
4

25
.6

9
0.

93
3.

49
3.

4
4

3.
39

3
.4

5

Table 3.2: Mean distances: comparison between the almost-
cograph model (ACG), the configuration model (CM) and
Erdös-Rényi random graphs (ER), using the real-world networks
(REAL) of Table 3.1 as input for the models.
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Table 3.3: Clustering coefficient and number of triangles: com-
parison between the almost-cograph model (ACG), the configu-
ration model (CM) and Erdös-Rényi random graphs (ER), using
the real-world networks (REAL) of Table 3.1 as input for the
models.



As expected, all three models correctly reproduce the prop-
erty of short distances in the original graphs (see Table 3.2)
since they all contain a part of randomness which induces this
property. Concerning the clustering coefficient and the number
of triangles, as shown in Table 3.3 and in Figure 3.4, for almost
all graphs, the values of the almost-cograph model are in the
same order of magnitude as those of the original graph, and are
even very close to the actual value for graphs that are close from
being cographs (less than 35% of modifications). The configu-
ration model has a larger variability of these two parameters
and is often some orders of magnitude below the actual value,
while, as expected, Erdös-Rényi graphs have values even lower
by some more orders of magnitude.

Figures 3.5 and 3.6 show the degree distributions obtained
with the three models for a selection of real-world networks span-
ning the range of the percentage of modifications performed in
the edition problem. The configuration model and Erdös-Rényi
random graphs are two opposite limit cases: the degree distri-
bution of the configuration model is by definition exactly the
same as the one of the original graph, since this is the param-
eter given as input to the model, and the degree distribution
of Erdös-Rényi graphs, which is by definition homogeneous, al-
ways completely misses the heavy tail of the real distribution.
For the almost-cograph model, the situation is different. The
very satisfying point is that it always succeeds in capturing the
heavy tail of the degree distributions, which is the main targeted
criteria. On the other hand, the shape of the beginning of the
distribution is sometimes very well reproduced, even for graphs
having about 50% of modifications, like e.g. amazon, and some-
times altered, even for graphs close from being cographs, like
e.g. reactome and ca-HepPh. As one could expect, for graphs
which are very far from being cographs, such as LiveJournal and
orkut, which obtained a score of more than 80% of modifications
in the edition algorithm, the degree distribution is strongly al-
tered. But even in this case, the heavy tail of the distribution is
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mainly conserved. Even more surprisingly, the almost-cograph
model sometimes quite satisfying reproduces the whole shape of
the distribution even for graphs not close from being cographs,
see e.g. the Internet topology of the skitter graph (64% of modi-
fications) and the citation networks cora (68% of modifications)
and Patents (76% of modifications).

Conclusion. The approach based on representing complex
networks as approximation of strongly structured graphs is very
appealing. The results of minimal cograph edition of real-world
networks presented here show that some of these networks are
indeed close from having a cograph structure. Exploiting this
proximity to cographs gives very interesting results for mod-
elling purposes, even in some cases for networks that are not so
close from being cographs. Moreover, it appears that the prop-
erty of being close to a cograph highly depends on the network
considered and on the context it comes from, therefore asking
for the development of methods of comparison to other strongly
structured classes of graphs that may suit better to some specific
contexts.

Concerning random generation, the very satisfying point is
that the almost-cograph model produces graphs that have both
a high local density and a heterogeneous degree distribution,
which is currently the main challenge of the domain of complex
network modelling. These results are then very promising. Nev-
ertheless, there is still one important goal to achieve in order to
make the almost-cograph model a complete model: it needs to
be enhanced with genericity. To this purpose, the cotrees given
as input to the generation process should be synthetic structures
generated by the model itself, exactly as generic power law can
be given as input to the configuration model. One of the key
interest of the almost-cograph model is that this goal is techni-
cally reachable: there exist methods to randomly generate trees
satisfying certain properties [2]. Therefore, the next step is to
systematically study the shape of cotrees resulting from edition
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Figure 3.4: Global clustering coefficient (plot (a), y-axis) and
number of triangles (plot (b), y-axis) as a function of the number
of modifications made in the minimal edition algorithm (x-axis),
for the almost-cograph model (ACG), the configuration model
(CM) and Erdös-Rényi random graphs (ER). Values on the y-
axis are normalised by the value in the graph given as input to
the model.
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Figure 3.5: Comparison between the degree distribution of the
almost-cograph model (ACG), the configuration model (CM)
and Erdös-Rényi random graphs (ER), for some selected real-
world networks of Table 3.1 given as input to the models. More
networks on Figure 3.6.
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Figure 3.6: Comparison between the degree distribution of the
almost-cograph model (ACG), the configuration model (CM)
and Erdös-Rényi random graphs (ER), for some selected real-
world networks of Table 3.1 given as input to the models. More
networks on Figure 3.5.
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of real-world networks, to determine their main properties and
to design processes to uniformly randomly generate trees with
these properties.

The work presented here also points out that there may be
room to improve further the use of minimal cograph edition al-
gorithms as heuristics for minimum edition. For example, the
results of cograph edition obtained here for some real-world net-
works are not as good as the one presented for quasi-threshold
edition, for the same networks, in [10]. Nevertheless, the min-
imum number of modifications for cograph edition must be no
more than the minimum number of modifications for quasi-
threshold edition, since the former class properly contains the
latter. One reason for this may be that the algorithm presented
here only considers each vertex once, while [10] continues the
algorithm by removing and inserting again each vertex until
no improvement is possible for any vertex of the graph. This
possibility, and others, should be explored in order to improve
the quality of results returned by heuristics. Another appealing
question is about the complexity of the minimal cograph edition
algorithm. Is it possible to prove that the average complexity
is better than the quadratic worst-case complexity, as suggested
by experiments? Or is it even possible to design an algorithm
having a sub-quadratic complexity in the worst-case? All these
questions are open for cographs ans should also be considered
for other classes of graphs.
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Chapter 4

Efficient encodings of
graphs

Because of their size, any treatment that is to be performed
on complex networks, either statistic, algorithmic or for explo-
ration, requires to use a computer to automatically perform all
or part of the necessary actions. When one wants to do so, there
are two kinds of limitation that immediately come up. The first
one is about the space necessary to store the graph into the ma-
chine, as its memory is finite, and the other one is about the
time necessary to perform the desired treatment, as beyond a
certain waiting time the results of most treatments become un-
useful. Because the objects to be manipulated are very large,
sometimes even huge, these two limitations are critical. Usu-
ally, the first one that comes in mind to theorists is the one
concerning time and the efficiency of algorithmic treatments.
But practitioners know that, even though execution time is an
important issue in most cases, for very large instances, space
can turns out to be the first limiting factor.

One reason for this is that, unlike the one concerning time,
the constraint on space is strict: it may be acceptable to wait for
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a result slightly longer, but it is simply impossible to extend the
memory of the machine. Therefore, if the graph does not fit en-
tirely into the memory, it is impossible to process it by standard
methods. Let me emphasise that we talk here about random-
access memory (RAM), which can be accessed very efficiently
during the execution of a program, but which is sharply limited,
say to some dozen (sometimes hundreds) of gigabytes. This is
not the case of the capacity of storage on hard disk drives (HDD)
which, nowadays, can store any huge graph data available very
easily. The problem is that using this capacity of storage as
a replacement of the memory is totally unpractical: accessing
the hard drive repeatedly during the execution of a program is
prohibitive for its execution time. To deal with this fact, one ap-
proach consists in developing ad-hoc algorithmic techniques that
allow to load partially the graph into memory and to process it
piece by piece. This is the purpose of online and streaming algo-
rithms. Of course, the possibility to proceed in this way highly
depends on the considered algorithmic problem and often allows
to obtain only approximated solutions.

Another approach to deal with the restricted space available
in memory, since it is not extensible, is to compress the graph,
i.e. encode it using less space, so that it fits in memory. This
motivates a rich trend of works on compression techniques spe-
cific to graphs (see [74] for example). As one can guess from the
discussion above, in order to be useful from a practical point of
view, these compression techniques must satisfy one additional
requirement: accessing the compressed data should not penalise
the running time of the algorithm. In particular, it must be
possible to access the data without decompressing it, or doing
so only partially and without significant extra-cost.

The way the data needs to be accessed depends on the task
to be performed. Nevertheless, there are two atomic operations
that constitute the base of most algorithmic treatments: listing
the set of neighbours of one given vertex x, which is called the
neighbourhood query, and deciding whether two given vertices x
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and y are adjacent, which is called the adjacency query. In this
chapter, we concentrate on the neighbourhood query, which is
probably the most widely used query in graph algorithms and
which is also useful for exploring and visualising data. Our
general goal is to design representations of graphs that are as
compact as possible and that allow to answer neighbourhood
queries on vertex x in optimal time, that is O(d) time, where d
is the degree of x. In this way, the graph can be stored using a
lesser amount of space in memory, in a way which is completely
transparent for all algorithms based on neighbourhood queries:
the list of neighbours of a vertex can be accessed in the same
complexity as if the graph was stored by adjacency lists.

Classes of graphs admitting special en-
codings [16, 17]

We start by studying some graph classes known to admit very
compact encodings, namely permutation graphs and interval
graphs, to check whether these encodings allow to efficiently
answer neighbourhood queries. Interval graphs are the intersec-
tion graphs of intervals of the real line and permutation graphs
are the intersection graphs of segments having their two ex-
tremities on two distinct parallel lines (see [11] for more formal
definitions). Interestingly, the intersection models of these two
classes provide an O(n)-space encoding of the graph that allows
to answer adjacency queries in O(1) time. Unfortunately, these
natural representations do not directly provide a way to answer
neighbourhood queries efficiently. The neighbourhood of one
vertex x may be scattered in the intersection model in such a
way that one needs to scan almost all the models in order to find
the neighbours of x, therefore using a time proportional to the
size of the model, that is O(n) time. This is rather surprising
as interval graphs and permutation graphs are known to have
usually all nice algorithmic properties that one can expect.
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This motivated our deeper attention to these classes and
in [16], we show that for both of them, it is possible to extend
their natural representation by an additional O(n)-space struc-
ture in order to answer neighbourhood queries in O(d) worst-
case time, where d is the degree of the considered vertex. This
extension relies on an advanced data structure to answer maxi-
mum range queries in constant time, i.e. to provide the maxi-
mum value of a function f(x) for x in an interval of a fixed linear
ordering. Using this to query the models of interval graphs or
permutation graphs, which are made of linear orderings of their
vertices, allows to find each neighbour of a given vertex x in
constant worst-case time without scanning the entire model.

In [17], we also show that the existence of a good encoding
for a class of graphs not only allows to store the graphs in an effi-
cient way but can also improve the complexity of some algorith-
mic problems, even for problems of very low complexity. This
happens in a quite surprising way for the Breadth First Search
(BFS for short, see [15] for a definition) of trapezoid graphs, for
which we designed an O(n)-time algorithm. Trapezoid graphs
are the intersection graphs of trapezoid whose bases lay on two
parallel lines (see [11]) and they properly contain both interval
graphs and permutation graphs.

The above statement may first sound strange or even incor-
rect as BFS is usually thought of as a traversal of all the edges of
the graph, which necessarily results in an Ω(m) complexity. The
ambiguity comes from the fact that in the case of BFS, we usu-
ally do not distinguish between the algorithm and the problem
it solves. This is misleading as algorithmic problems should not
be defined by what must be done by the algorithm but only by
the result expected from its execution. We therefore adopt the
following definition of the BFS problem, based on the classical
features expected from a BFS. Given a graph G and a vertex
x ∈ V (G), BFS returns:

1. a BFS tree T rooted at x
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2. the distance from each vertex y to the source x

3. for each vertex y, the list of neighbours of y that are one
level upper in T (i.e. closer to the root x)

Note that Feature 3 provides a way to retrieve efficiently all
the shortest paths from any vertex y to x, as the possible next
steps on such a path are precisely the neighbours of y that are
one level upper in T . For a graph G, there are many different
BFS trees, depending on the way ties are broken between the
unvisited neighbours of the current vertex along the execution
of the algorithm. An important characteristic of the O(n)-time
BFS algorithm we designed is that it takes as input any trape-
zoid model of the graph and can produce as output any BFS
tree, not only a particular tree depending on the model given as
input. To this purpose, the input must include, in addition to
G and x, an arbitrary linear ordering σ of the vertices of G ac-
cording to which ties are broken along the algorithm. Different
BFS trees can then be obtained using different linear orderings.

On the technical side, it is worth mentioning that in order
to achieve the O(n) time complexity, the lists of neighbours
associated to each vertex y are not stored independently. They
are actually interval sub-lists of a global list L containing all
the vertices at one given level of the tree. Therefore, they are
encoded by two pointers toward respectively their first element
and their last element in L, which requires only O(1) space per
vertex y.

This shows that even for problems that are solvable in very
low complexity, efficient encodings can be used to lower further
their complexity. This perspective is particularly interesting for
complex networks, for which even low-complexity algorithms can
be difficult to apply because of the size of the considered graphs.
This is a strong motivation for finding efficient encodings of
complex networks that have nice combinatorial properties and
that are able to boost classical algorithms.
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Two general encodings: contiguity and
linearity

In the rest of this chapter, we study two graph encodings that
are defined thanks to one or more linear orderings of the vertices
of the graph, with the purpose of making the neighbourhood of
each of the vertices of the graph appear as a union of a few in-
tervals. Similar ideas are known to be efficient in practice and
some compression techniques dedicated to the web graph or so-
cial networks [3, 12, 54] are based on linear orderings of the ver-
tices having nice properties with regard to the neighbourhoods
of the vertices. Some of these techniques indeed exploit the in-
tervals made by the consecutive neighbours of one vertex [4, 8]
for compression.

Assume that a graph G admits an order σ on its vertices such
that the neighbourhood of each vertex x of G is an interval in σ.
In this way, one can store the order σ on the vertices of G and
assign two pointers to each vertex: the first one toward its first
neighbour in σ and the second one toward its last neighbour in σ.
This provides an O(n)-space encoding of the graph that allows
to answer adjacency queries in O(d) time, by simply listing the
vertices appearing in σ between its first and second pointer.

Of course, such an order on the vertices of G does not exist
for all graphs G. Then, a natural way to relax the constraints
of the problem so that it admits a solution for a larger class
of graphs is to allow the neighbourhood of each vertex to be
split in at most k intervals in order σ. The minimum value of
k which makes it possible to encode the graph G in this way
is a parameter called contiguity [34] and denoted by cont(G).
Another natural way of generalisation is, instead of using k in-
tervals taken in the same order, to use k orders σ1, . . . , σk on
the vertices of G and to choose, for each vertex x, one interval
in each of the k orders, in such a way that the neighbourhood
of x is the union of these k intervals. This defines a parameter
called the linearity of G, which we introduced in [16] and which
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(a) graph G

(b) encoding by contiguity 3 (c) encoding by linearity 2
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a1 a2 a3 b1 b2 c1 c2 c3b3
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Figure 4.1: Example of a graph G (a), an encoding of G by con-
tiguity 3 (b) and an encoding of G by linearity 2 (c). The graph
G is such that ∀x, y ∈ {a, b, c},∀i, j ∈ {1, 2, 3}, xi is adjacent to
yj . In the encoding by contiguity, the neighbourhood of vertex
b3 is split into 3 intervals in order σ, and no other vertex has its
neighbourhood split in more than 3 intervals: this is an encoding
by contiguity 3. In the encoding by linearity, the neighbourhood
of vertex b3 is obtained as the union of one interval in order σ1

and one interval in order σ2, and the same holds for all other
vertices of G: this is an encoding by linearity 2.
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is denoted lin(G). An example of encodings of a graph using
contiguity and linearity is given in Figure 4.1. The additional
flexibility offered by linearity (using k orders instead of just 1)
results in a greater power of encoding, in the sense that if a
graph G admits an encoding by contiguity k, using one linear
order σ and at most k intervals for each vertex, it is straightfor-
ward to obtain an encoding of G by linearity k: take k copies of
σ and assign to each vertex one of its k intervals in each of the
k copies of σ.

For each of contiguity and linearity, there are actually two
variants, respectively named open and closed, depending on
whether one considers the open neighbourhood or the closed
neighbourhood of vertices (including the vertex itself). But
these two variants are equivalent up to a multiplicative con-
stant. Therefore, unless specified otherwise, we do not distin-
guish these two variants as all the results mentioned below hold
for both of them.

Only little is known about contiguity and linearity, except
that the problem of deciding whether a graph G has closed con-
tiguity at most k is NP -complete for any fixed k ≥ 2. Note that
despite the fact that it was not formally proven, there is a strong
presumption that the corresponding decision problem for lin-
earity is NP-complete as well. On the positive side, the class of
graphs having closed contiguity exactly 1 (or equivalently closed
linearity exactly 1) and the class of graphs having open conti-
guity exactly 1 (or equivalently open linearity exactly 1) have
been characterised as being respectively the class of proper in-
terval graphs, a subclass of interval graphs, and biconvex graphs,
a subclass of bipartite permutation graphs. Knowing this, and
since their intersection models can be defined thanks to linear
orderings of their vertices, one could expect that arbitrary inter-
val graphs and arbitrary permutation graphs also have bounded
contiguity and linearity. Rather surprisingly, in [16], we show
that on the contrary, for both classes, the linearity (and so the
contiguity) can be up to Ω(log n/ log log n).
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This apparently negative result is also encouraging. It does
not mean that contiguity and linearity are inefficient. It simply
shows that the hierarchy of difficulty of encoding captured by
these parameters is different from the classical hierarchy offered
by interval graphs, permutation graphs and their generalisations
such as k-trapezoid graphs and comparability graphs of dimen-
sion k (see [11] for definitions). This is interesting in itself as
they may provide a different point of view on the structure of
graphs with regard to difficulty of encoding, which may be more
appropriate for some cases. In addition, note that the lower
bound of Ω(log n/ log log n) on the worst case value of the two
parameters is not very high. If it was the actual worst possible
value, then the encoding provided by contiguity and linearity
would still be fairly efficient, suggesting that they may be pow-
erful parameters.

Worst-case contiguity of cographs [18,
19]

In our proof that the linearity (and so the contiguity) of interval
graphs and permutation graphs can be up to Ω(log n/ log log n),
one interesting and surprising fact is that the subfamily of graphs
we exhibit is the same for both classes. It belongs to the class
of quasi-threshold graphs (see [11] for a definition), which is
properly included in interval graphs and permutation graphs.
If simple classes like quasi-threshold graphs can have an un-
bounded contiguity and linearity, they can help to understand
what makes the value of these parameters high. To that pur-
pose, we studied the contiguity of a class more general than
quasi-threshold graphs and included in the class of permutation
graphs (but not in the class of interval graphs): the class of
cographs. Cographs admit a nice representation by a uniquely-
defined rooted tree, named the cotree, whose leaves are the ver-
tices of the graph and whose internal nodes carry the informa-
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tion that encodes adjacency relationships between the vertices
(see [11] for details).

The question we addressed is to know what is the worst-case
contiguity of a cograph on n vertices. In [19], we show that it
can be greater than Ω(log n/ log log n) by exhibiting a family of
cographs that have contiguity Ω(log n). We also show that this
lower bound is tight as we prove an upper bound of O(log n) on
the contiguity of any cograph. This bound is proven by using
a structural parameter on the cotree of G. This parameter,
called the rank, is the maximum height of a complete binary
tree included, as a minor1, in the cotree of G. Since a complete
binary tree of height h has 2h leaves, it follows that the rank of
T cannot exceed log n. In [19], we prove that for any cograph
G, cont(G) ≤ 2 rank(T ) + 1, which yields the O(log n) upper
bound on the contiguity of G.

Going further, we prove that the rank of the cotree T of G
does not provide only an upper bound on the contiguity of G
but is also equivalent to it up to a multiplicative constant. This
is very interesting as it provides a structural characterisation of
what makes the contiguity of a cograph high. Using this equiv-
alence between the rank of T and the contiguity of G, in [18],
we design a linear time (O(n) time) algorithm that, given the
cotree of a cograph, computes an approximation of its contiguity
within a constant factor of the optimal.

Since the linearity of a graph cannot exceed its contiguity, the
O(log n) upper bound we obtain for the contiguity of a cograph
on n vertices also holds for its linearity. However, the Ω(log n)
lower bound does not hold for the linearity. As a consequence,
for the worst-case linearity of cographs, there is a gap to be filled
between the Ω(log n/ log log n) lower bound and the O(log n)
upper bound.

1A tree T ′ is a minor of a tree T if and only if T ′ can be obtained from
T by a series of edge contractions, each of which consisting in deleting one
node u (distinct from the root) and giving its children to the parent of u.
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Relative power of encoding of contigu-
ity and linearity [22, 23]

As mentioned before, linearity offers a greater power of encoding
than contiguity, in the sense that the subset of graphs having
linearity at most k includes the subset of graphs having contigu-
ity at most k. Consequently, the size of an encoding by linearity
k, which uses k orders, is greater than the size of an encoding
by contiguity k, which uses only 1 order. Nevertheless, very in-
terestingly, the sizes of these two encodings are equivalent up to
a multiplicative constant. Indeed, storing an encoding by conti-
guity k requires to store a linear ordering of the n vertices of G,
i.e. a list of n integers, and the bounds of each of the k intervals
for each vertex, i.e. 2kn integers, the total size of the encod-
ing being (2k + 1)n integers. On the other hand, the linearity
encoding also requires to store 2kn integers for the bounds of
the k intervals of each vertex, but it needs k linear orderings of
the vertices instead of just one, that is kn integers. Thus, the
total size of an encoding by linearity k is 3kn integers instead of
(2k+ 1)n for contiguity k and therefore the two encodings have
equivalent sizes.

Then the question naturally arises to know whether there are
some graphs for which the linearity is significantly less than the
contiguity, which would result in a significantly more compact
encoding of the graph. More formally, does there exist some
graph family for which the linearity is asymptotically negligible
in front of the contiguity? Or are these two parameters equiva-
lent up to a multiplicative constant? Depending on the answer,
one parameter may be preferred for encoding, or not.

We answer this question in [22, 23] by exhibiting a family
of graphs for which the linearity is asymptotically negligible in
front of the contiguity. This is the family of cographs (Gk)k≥1

whose cotree is the complete binary tree of height k. From
what precedes, we know that cont(Gk) = Ω(k) = Ω(logn), with
n the number of vertices of Gk. To obtain the result we aim
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at, we show that every cograph on n vertices has linearity at
most O(log n/ log log n). For Gk, this gives lin(Gk)/cont(Gk) =
1/ log log n and the result follows.

As a by-product, this solves the question of the worst-
case linearity of cographs. Indeed, the O(log n/ log log n) up-
per bound matches the Ω(log n/ log log n) lower bound we show
in [16]. Moreover, as for contiguity, the proof of the upper bound
is based on a structural parameter dedicated to appreciate the
complexity of a cotree T . This parameter is called the facto-
rial rank, denoted factrank(T ), and is defined as the maximum
height of a double factorial tree (see [23] for a definition) included
as a minor in the cotree of G. Since the double factorial tree of
height h has more than h! leaves, then the factorial rank of T
is O(log n/ log log n). In [23], we prove that for any cograph G,
lin(G) ≤ 2 factrank(T ) + 3, which gives the O(log n/ log log n)
upper bound on the linearity of any cograph. This provides
some explanation on what makes the difficulty of encoding a
cograph by linearity, but the question to know whether the fac-
torial rank of the cotree of G is equivalent to the linearity of G,
up to a multiplicative constant, remains open.

Conclusion

We showed that linearity provides a strictly more powerful en-
coding for graphs than contiguity does, meaning that the ra-
tio between the contiguity and the linearity of a graph is not
bounded by a constant. From a practical point of view, the
meaning of our result is that using several orders, instead of
just one, for grouping neighbourhoods of vertices can greatly
enhance compression rates in some cases. The first perspective
following these results is to effectively compute encodings by
linearity and contiguity that are as close as possible from the
optimal. This requires to develop techniques to deal with the
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difficulty of computation2, such as approximation algorithms,
parameterized complexity or heuristics for example. The com-
plexity of these algorithms should be very low in order to apply
them to large real-world graphs and see whether these encod-
ings can enhance the size of the graphs that can practically be
loaded into memory.

Beside this, there are several natural questions that remain
to be answered about the power of encoding of linearity and con-
tiguity. The first one is to determine the worst-case contiguity
and the worst-case linearity of arbitrary graphs. It is straight-
forward to see that both of these values are upper-bounded by
n/2. Conversely, since there are 2n(n−1)/2 graphs on n labelled
vertices and since contiguity and linearity do not depend on the
labels of the vertices, then both encodings must use at least
n(n − 1)/2 = Ω(n2) bits in the worst case for graphs on n ver-
tices. Moreover, when the value of contiguity or linearity is k,
the size of the corresponding encoding is O(k n) integers, that
is O(k n log n) bits. Consequently, both parameters must be at
least Ω(n/ log n) in the worst case. We actually proved that the
worst-case contiguity of arbitrary graphs can be up to Ω(n). Is
the worst-case linearity the same as the worst-case contiguity or
is it lower? This question is particularly interesting. Indeed, if
the linearity of a graph turned out to be always O(n/ log n) this
would imply that linearity is an optimal encoding with regard
to the worst-case size of encoding of graphs on n vertices, that is
Ω(n2) bits as explained above. Linearity would then equal the
compactness of the adjacency matrix in the worst case, which
is indeed n2 bits, and would outperform the compactness of ad-
jacency lists in the worst case, which is Ω(n2 log n) bits. What
would be remarkable then is that at the same time, linearity
defines a hierarchy of difficulty of encoding that is able to en-
code some families of graphs much more compactly than in the

2Computing the exact value of the contiguity of an arbitrary graph is
NP-hard. The complexity of doing so for linearity is still to be determined,
but it is likely to be NP-hard as well.

106



worst (and average) case, using only O(n log n) bits for exam-
ple for families having bounded linearity. This feature is very
interesting in practice and is not provided by encodings like the
adjacency matrix that achieve the optimal worst-case size but
always produce encodings of this size.

Another appealing question, which is closely related, is to
know what is the maximum gap between contiguity and linear-
ity for arbitrary graphs. In other words, let (Gn)n≥1 be a fam-
ily of graphs on n vertices and let f(n) = cont(Gn)/lin(Gn).
Can f(n) tends to infinity faster than Ω(log log n)? faster than
Ω(log n)? What is the maximum asymptotic growth possible for
f(n)?

Finally, it would be very interesting to bound the value of
both parameters, not only depending on the number of vertices
n but also on the number of edges m. How do these parameters
behave depending on the number of edges of the graph? Do they
work better when there are many edges or few edges? What is
the guarantee offered by these parameters for sparse graphs?
Are the encodings they provide as efficient as adjacency lists?
Can contiguity and linearity be very different for sparse graphs?
Answering these questions would be of great interest both from
a theoretical point of view and from a practical point of view
for the field of graph encoding.
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Perspectives

Along the manuscript, I already gave some conclusions derived
from the different pieces of work presented and I discussed some
of the immediate questions and perspectives they raise. As a
general conclusion, I would like to describe two broad open re-
search axes in which I particularly believe for the field of com-
plex networks and to which I will devote an important part of
my activity within the next years.

Link stream theory

Many dynamic networks are actually naturally link streams, i.e.
collections of triplets (u, v, t) with the meaning that there is a
link between nodes u and v at time t (cf. Figure 4.2). Examples
of link streams include networks of emails, SMS, phone calls,
proximity contacts between individuals, financial or commercial
transactions, and more generally any network of interactions lo-
calised in time. In some link streams, these interactions may
be instantaneous (e.g. emails, SMS), in some others, they may
have a duration (e.g. phone calls, contacts), which is then short
compared to the whole period of study of the network. Most
of the works on such link streams, including those presented
in Chapter 2 of this manuscript, transform them into series of
graphs prior to any further analysis. The rationale behind this is
to lean on familiar objects, graphs, and to benefit from the rich
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Figure 4.2: Graphical representation of a link stream involving
5 nodes a, b, c, d, e between time 0 and time 45. For example,
the red bold line means that there exists a link between nodes
b and c at time 10.

concepts of graph theory for their study. The process commonly
used to transform link streams into graph series is aggregation,
which is specifically studied in the last section of Chapter 2.
It consists in forming the graph of all links occurring during a
given time window, for a family of time windows that covers
the whole period of study. Aggregation comes with two major
limitations. The first one is that it denatures the original object
and induces a loss of information (cf. Chapter 2). The second
one is that, anyway, graph theory does not provide adequate
tools for studying graph series and adapting the concepts avail-
able for graphs to series of graphs turns out to be difficult and
non-intuitive. These difficulties do not come from link streams
themselves or from the questions that are asked on these ob-
jects, but they rather come from the approach chosen to answer
them. In order to go beyond these obstacles, it is necessary to
abandon the misleading way of describing dynamic networks by
graphs and to develop a theory for a mathematical object of
a different nature, called link streams, which is a collection of
triplets (u, v, t), where u and v are nodes and t is a time.

In order to build such a theory, the first step is to develop a
set of basic notions and a vocabulary to describe link streams,
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exactly as graph theory does for graphs. This will start by
translating and adapting basic graph concepts (such as degree,
density, path, distance, connectivity, clique and clustering coeffi-
cient for example) to the framework of link streams and this will
continue by developing notions that are specific to link streams
and that make sense only in this context. The main challenge
for adapting graph concepts is to incorporate time into their def-
initions. To this purpose, one can exploit a fundamental char-
acteristics of link streams, which they share with graphs and
which is very useful to build definitions: they naturally admit
notions of sub-streams, induced by a subset of nodes, a subset
of links or by a time period. A good example of the way graph
concepts can be adapted to link streams and of the interest of
doing so is provided by the notion of minimal trip developed
in Chapter 2, which is a dynamic equivalent to shortest path.
Depending on the notion considered, incorporating time can be
straightforward or very difficult. In the latter case, such diffi-
culties should not always be addressed technically. It may also
simply indicate that the considered notion is not meaningful for
link streams and that a different one should be defined and used
instead. Finally, in the efforts for building the basis of a link
stream theory, one should pay attention to extend, as often as
possible, the notions developed in a particular context to both
directed and undirected links and to both instantaneous links
and links with a duration, so that these notions are able to deal
with all the practical contexts where link streams are encoun-
tered.

Developing a theory of link streams will open new exciting
perspectives for the field of complex networks. It will allow to
tackle some new questions that are currently out of reach and
to revisit some others that are blocked by the lack of an ade-
quate formalism. One of the questions for which the approach
based on link streams is particularly interesting is community
detection. In static networks, community detection generally
consists in partitioning the set of nodes into dense subgroups,
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much denser than the relationships between these groups. In
the dynamic case, the current approach, driven by the vision
based on snapshots, is to find partitions of nodes at different
moments of the life of the network, i.e. different snapshots, and
to follow the evolution of these communities along time: birth,
death, split and merge of some of them. Though it has brought
some interesting insight, nevertheless, this approach bumps on
an intrinsic technical difficulty due to the instability of the al-
gorithms for partitioning one single snapshot into communities.
The deep reason for this is that, in this approach, time is not
part of the definition of dense groups, which are defined on a
snapshot of the network. With a link stream vision, the situa-
tion is quite different. It becomes natural to incorporate time
in the definition of a dense sub-stream: the interactions in such
a sub-stream should be dense for the topology induced between
the nodes involved and should happen at a high frequency dur-
ing the period of the sub-stream. This also points out that
the natural notion of community in a link stream may differ
from the one in a static network. With the definition proposed
above, a community in a link stream corresponds more to a
conversation rather than a group defined by common character-
istics of its members. Efficient algorithms to detect such dense
sub-streams, with a definition of density that directly incorpo-
rates time, are still to be designed. I am convinced that this
approach will avoid the obstructions currently encountered in
dynamic community detection and will give a much more mean-
ingful view of the structure of a link stream, by decomposing it
into conversations.

Another topic that will be fruitfully refreshed by the link
stream vision is the detection of singularities, such as events
and anomalies, in the dynamics of the network. Until now, there
are mainly two approaches to these problems. The first one is
based on graphs and tries to define topological configurations
that reveal the singularities of the dynamics. This is in general
difficult as such configurations actually also strongly depend on
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the temporal dimension. On the opposite, the signal processing
based approach defines fine metrics to capture the singularities
in the temporal variations of the network. The main limitation
of this approach is that, in order to get quantities that can be
treated by signal processing tools, either the signal of each pair
of nodes is considered independently or the whole topology of
the network is summarised in one unique numerical quantity. In
both cases, this does not allow to track singularities that involve
several links but only a restricted part of the topology of the
network. Using link streams instead of graph series will largely
remove these difficulties, as the notions referring to link streams
naturally encompass both topological and temporal dimensions.
In particular, a great advantage is that since time is already
contained in the metrics used to reveal singularities, even simple
statistics on these metrics will be able to do so.

Approximation of complex networks by strongly
structured graphs

One major difficulty in the study of complex networks is that
they seem not to satisfy strictly any mathematical property one
can have in mind. Instead, they rather appear anarchically or-
ganised. On the methodological side, graph theory proposes two
families of methods to algorithmically treat graphs. The first
one deals with arbitrary graphs and the second one with classes
of graphs defined by a mathematical property. These two sets of
methods are very wide and rich. Unfortunately, none of them is
able to treat real-world complex networks. Indeed, most of the
methods for arbitrary graphs, including those reputed efficient
in theory, such as polynomial time algorithms, suffer from a too
high complexity to be applied to real-world instances, because
of their huge size. As a consequence, even for simple problems,
methods dedicated to arbitrary graphs are often impossible to
use in practice. On the other hand, methods for strongly struc-
tured classes of graphs usually achieve very low complexity, even
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for problems that are difficult in general settings. To this regard,
these methods would be able to deal with the huge size of real-
world instances. But they cannot accommodate with graphs
that do not strictly satisfy the property defining the class for
which they are designed: if the input graph deviates even very
slightly from this property, the computational method is not
valid. As a result, the set of computational methods available
to analyse complex networks is still very restricted and the do-
main has developed its own methods in order to describe and
manipulate complex networks. These methods essentially rely
on the statistical study of some of their numerical properties,
such as degree distribution and clustering coefficient for exam-
ple. Though this approach has given interesting insight into the
structure of complex networks, it also shows clear limitations.
The reason for this is that these numerical properties cannot
fully capture the combinatorial properties of these objects. As
a consequence, our understanding of the functioning of these
systems and our ability to exploit them remain sharply limited.

This state of fact is particularly regrettable as we know that
real-world networks actually have a strong structure, which we
are unfortunately unable to fully exploit. This structure, which
is conferred by the constraints of the concrete contexts they
come from, makes them very different from average random
graphs and points out that they should not be treated as arbi-
trary graphs. The alternative way I propose in this manuscript
is to treat them as approximations of strongly structured graphs,
by using graph editing problems in order to unveil their hidden
combinatorial structures. Editing a graph consists in changing
some of its adjacencies, i.e. adding and removing edges, in or-
der to make it satisfy a target property fixed in advance, such
as being chordal or being a cograph for example. The aim is
to perform the minimum possible number of modifications, and
this number is then a measure of how far is the input graph to
satisfy the target property. Going further, using the result of
the edition algorithm, the input graph can be represented as an
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(b) strongly structured (c) difference graph(a) original graph
graph

Figure 4.3: Representation of a graph as an almost structured
graph. (a) original graph; (b) strongly structured graph ob-
tained by edition; (c) graph of the differences between the two
preceding graphs. The representation of graph (a) is formed by
graphs (b) and (c). Indeed, graph (a) is obtained from graph
(b) by removing edges of (c) that are also in (b) and by adding
edges of (c) that are not in (b).

approximation of a strongly structured graph, called an almost
structured graph. This representation is made of two graphs:
the strongly structured graph obtained as output of the edition
algorithm, and the graph of the differences between this output
graph and the input original graph (see Figure 4.3). Remark-
ably, Chapter 3 shows, using cographs as target class, that some
real-world networks are not far from having a perfect combina-
torial structure, meaning that only a relatively small number of
modifications, compared to their number of edges, is enough to
confer them such a perfect structure. More surprisingly, even in
cases where the real-world network is not so close from the target
property, the representation scheme described above sometimes
gives very useful results. This shows the great benefit of taking
into account the underlying combinatorial structure of complex
networks, even if they partially deviate from it.

The approximation of complex networks by strongly struc-
tured graphs opens exciting possibilities for almost all research
topics of the domain. For modelling purposes, Chapter 3 demon-
strates the interest of representing a real-world graph by a
strongly structured graph plus the set of edges they differ from
each other. In this way, the strongly structured part of the
topology can control simultaneously various numerical proper-
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ties, such as the degree distribution and the clustering coeffi-
cient, that we are otherwise unable to reproduce conjointly in
random generation processes. Therefore the almost structured
graph approach offers a very promising way to overcome the dif-
ficulties currently encountered in generating realistic synthetic
topologies of complex networks.

There are a number of other topics in complex network the-
ory that will benefit from this approach, such as analysis and
encoding for example. As explained in Chapter 4, because of the
huge size of many real-world networks, it is necessary to encode
them and store them efficiently in the memory of the machine
used for their manipulation. There is a double exigence on the
encoding schemes used. First, they should provide structures
that are very compact in space, so that the graph fits in the
memory. Second, the encoding must allow to answer quickly
the queries made on the graph by algorithms that process it.
To this regard, the approximation of complex networks by al-
most structured graphs is a very appealing approach. Indeed,
strongly structured classes of graphs, such as cographs, often
admit encodings that satisfy both exigences mentioned above:
very compact (e.g. O(n) space for cographs) and allowing to an-
swer queries in optimal time. Thus, when storing a real-world
graph as an almost structured graph, like in Figure 4.3, the lim-
iting factor is the encoding of the difference graph. But when
the original graph and its strongly structured approximation are
close enough to each other, the difference graph is much smaller
than the original one, therefore improving the efficiency of the
encoding both with regard to space and with regard to time of
treatment of queries.

One fundamental goal of complex network analysis is to un-
derstand the global organisation of these systems and the par-
ticular roles played by their constituting elements. For this pur-
pose as well, finding strongly structured graphs that are close
to real-world graphs will provide a key information. Indeed,
such graph classes are perfectly structured with regard to one
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mathematically defined kind of organisation. Therefore, finding
such structures underlying those of complex networks will shed
a new light on their own organisations. Using edition problems
into different target classes of graphs, one can test and retrieve
different elements of organisation of real-world networks. For ex-
ample, classes related to planar graphs could be used to retrieve
the spatially constrained part of the structure of some networks,
cographs are prone to reveal nodes having similar roles, distance
hereditary graphs could point out nodes acting as interfaces be-
tween disconnected parts of the network, chordal graphs could
reveal a tree-like hierarchical organisation of the network, and
so on. Approximation by these classes of graphs will then al-
low to retrieve such organisations even if they are not perfect
and partially hidden by the part of randomness contained in the
real-world data.

In order to use the proposed approximation approach for
the different purposes listed above, one first needs to design
algorithms and heuristics that can solve edition problems into
various graph classes and that are efficient enough to handle
real-world networks of very large size, like the cograph edition
algorithm presented in Chapter 3. Among the classes of graphs
for which it would be particularly interesting to design minimal
edition algorithms, one can cite distance hereditary graphs, cir-
cle graphs, which are generalisations of cographs, chordal graphs
and classes related to planar graphs. For some of these classes,
there already exist minimal completion algorithms. Experimen-
tal results show that the number of modifications to be made in
completion problems is usually much larger than the number of
modifications in the corresponding edition problem. For sake of
the performances of the approximation approach, it is therefore
essential to develop edition algorithms that use both additions
and deletions of edges.

Another set of questions that needs to be addressed is re-
lated to the use of minimal edition algorithms as heuristics for
minimum edition. What can be expected from the quality of
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the solutions obtained in this way compared to the optimal?
For incremental algorithms, can we quantify the improvement
provided by the computation of a minimum cardinality edition
of the neighbourhood of the incoming vertex at each incremen-
tal step, compared to the computation of any arbitrary minimal
edition? What is the gain of not restraining the algorithm to
one single round on the vertices but instead considering vertices
several times until no further improvement is possible? Another
exciting research direction is to compute exact solutions, for ex-
ample by developing pre-processing techniques that are able to
take benefit of the specific structure of complex networks, or to
design heuristics providing nearly tight upper and lower bounds
on the optimal solution. All these questions are interesting in
themselves from a purely algorithmic point of view. On the
practical side, they must be addressed in order to provide the
proposed approximation approach with computational methods
that i) can solve various edition problems, ii) are able to treat
large instances of graphs and iii) provide solutions as close as
possible from the optimal.

Finally, what is probably the most exciting and most promis-
ing way opened by the approximation of complex networks by
strongly structured graphs is to use it to speed-up and enlarge
the set of algorithmic treatments available for real-world net-
works. The idea to do so is to exploit the proximity of the real-
world network considered with some strongly structured graph
(e.g. a cograph), for which most of algorithmic problems (even
difficult ones) can be solved very efficiently. As a first step, one
can take the result obtained for the strongly structured graph
as an approximation of the result for the original graph, which
is expected to be better when the two graphs are closer in terms
of the number of differences between them. Then, the quality
of the approximate result should be studied, formally or empir-
ically, depending on the proximity between the real-world net-
work and its strongly structured approximation. Even with a
poor guarantee, the possibility to obtain an approximate result
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for real-world instances of graphs, for which often no result is
reachable with current approaches, is very valuable in practice.

Though, the most interesting perspective, both from a the-
oretic point of view and from a practical point of view, is to
use the set of differences between the original graph and its
approximation in order to obtain an exact result or a better
guarantee on the approximate result. This is a major challenge
for algorithmic graph theory in the next decades: develop an al-
gorithmic theory of almost structured graphs. This can be seen
as an extension of dynamic graph algorithms. In dynamic graph
algorithms the difference between the two graphs is elementary
(typically, the addition or the deletion of one single edge or ver-
tex) and one considers a sequence of such modifications occur-
ring independently and without knowledge of the modifications
to come. Here, the difference between the original graph and its
approximation is not elementary but can be arbitrary. This is
actually a more favourable framework since it is equivalent to
considering all dynamic modifications at once, which removes
uncertainty on the future, helps to avoid redundant computa-
tions, and can therefore allow to achieve a better overall com-
plexity. Another major difference with dynamic algorithms is
that they traditionally consider only two cases: either both the
starting graph and the modifications performed are arbitrary or
the starting graph belongs to a restricted class of graphs and the
algorithm considers only elementary modifications that result in
a modified graph belonging to this class (otherwise the dynamic
algorithm stops). In the framework proposed here, the idea is to
consider arbitrary modifications while taking advantage of the
fact that the starting graph is not arbitrary but belongs to a
strongly structured class of graphs. The aim is to express the
complexity of algorithms as a function of the number of differ-
ences with the original graph, plus eventually the size of the
representation of the strongly structured graph (which usually
admits a very compact representation). Developing such algo-
rithms would open a new way in algorithmic graph theory and
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would allow to obtain results for real-world networks that are
out of reach with current approaches.
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random networks with arbitrary degree distributions. Phys.
Rev. E, 72(3):036133, 2005.

[70] Tom A.B. Snijders, Gerhard G. van de Bunt, and Chris-
tian E.G. Steglich. Introduction to stochastic actor-based
models for network dynamics. Social Networks, 32(1):44–
60, 2010.

[71] Karol Suchan and Ioan Todinca. Minimal interval com-
pletion through graph exploration. Theoretical Computer
Science, 410(1):35–43, 2009.

[72] Rajmonda Sulo, Tanya Berger-Wolf, and Robert Grossman.
Meaningful selection of temporal resolution for dynamic
networks. In 8th Workshop on Mining and Learning with
Graphs (MLG 2010), pages 127–136. ACM, 2010.

[73] Jeffrey Travers and Stanley Milgram. An experimental
study of the small world problem. Sociometry, 32(4):425–
443, 1969.

[74] György Turan. On the succinct representation of graphs.
Discr. Appl. Math., 8:289–294, 1984.

[75] Erik Volz. Random networks with tunable degree distribu-
tion and clustering. Phys. Rev. E, 70(5):056115, 2004.

[76] Duncan J. Watts and Steven H. Strogatz. Collective dy-
namics of small-world networks. Nature, 393:440–442, 1998.

[77] Carsten Witt. Greedy local search and vertex cover in
sparse random graphs. In 6th Annual Conference on Theory
and Applications of Models of Computation (TAMC 2009),
volume 5532 of LNCS, pages 410–419. Springer, 2009.

[78] Xiao Zhang, Cristopher Moore, and Mark Newman. Ran-
dom graph models for dynamic networks. European Physi-
cal Journal B, 90(10):200, 2017.

129



Outline of the thesis

This manuscript is a synthesis of my research work in the
field of complex networks, after my PhD in computer science.
It contains four chapters. The first one deals with the measure-
ment of the degree distribution of the Internet topology. Our
approach is based on a new principle called property oriented
measurement, which provides more faithful information by fo-
cusing only on one target property, without collecting a map of
the network. Two methods are presented, one for measuring the
degree distribution of the logical topology and one for measuring
the degree distribution of the physical topology.

Chapter 2 presents three works on the dynamics of com-
plex networks. The first one is a case study on the dynamic
network of contacts within a hospital and the other two are
methodological developments dedicated to dynamic networks in
general. One is about characterising the structure of changes of
the topology of a dynamic network, the other one addresses the
problem of finding appropriate time scales in order to aggregate
a dynamic network into a series of graphs.

Chapter 3 deals with complex network modelling. The aim
is to design random generation processes that output synthetic
networks having properties as close as possible from those ob-
served for real-world networks. We describe two different ap-
proaches toward this goal. One is based on the entanglement
structure of maximal cliques, while the other one is based on
the approximation of complex networks by strongly structured
graphs.

Finally, the last chapter considers the problem of design-
ing very compact encodings of graphs that do not penalise the
queries made during algorithmic treatments, such as listing the
neighbours of one given vertex. We investigate the efficiency
of two related encodings, named contiguity and linearity, which
use linear orderings of the vertices of the graph.


