

TD de Sémantique et Vérification III- Topology Tuesday 28th January 2020

Christophe Lucas christophe.lucas@ens-lyon.fr

In this set of exercises, we will discuss topological characterisations of safety and liveness properties.

Topological Spaces

- A topological space is a pair (X, \mathcal{U}) of a set X and a subset \mathcal{U} of $\mathcal{P}(X)$, called the open sets of X, such that
 - 1. $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$;
 - 2. for any set I and family $\{U_i \in \mathcal{U}\}_{i \in I}$, also $\bigcup_{i \in I} U_i \in \mathcal{U}$; and
 - 3. for all $U, V \in \mathcal{U}$, also $U \cap V \in \mathcal{U}$.

A set $U \in \mathcal{U}$ is called *open* and elements $x \in X$ are called points. If \mathcal{U} is clear from the context, we often refer to X is the topological space.

- Given a point $x \in X$, we say that N is a *neighbourhood* of x if there is an open set U, such that $x \in U$ and $U \subseteq N$. The collection of all neighbourhoods of x is denoted by \mathcal{N}_x .
- Given a topological X, we say that $F \in X$ is *closed*, if F^C is open.
- Give a topological space (X, \mathcal{U}) , a set D is said dense if $D \cap U \neq \emptyset$ for all non-empty $U \in \mathcal{U}$.

Exercise 1.

Show that

- 1. \emptyset and X are closed
- 2. for any set I and family $\{F_i \text{ closed}\}_{i \in I}$, also $\bigcap_{i \in I} F_i$ closed; and
- 3. for all closed F and G, also $F \cup G$ is closed.

For any set $A \subset X$, we define the *closure* \overline{A} of A by

$$\overline{A} = \bigcap \{ F \subseteq X \mid F \text{ closed and } A \subseteq F \},\$$

which makes sense by the previous exercise.

Exercise 2.

- Let (X, \mathcal{U}) be a topological space and $A \subseteq X$.
 - 1. Show that $\overline{A} = \{x \in X \mid \forall N \in \mathcal{N}_x . N \cap A \neq \emptyset\}.$
 - 2. Show that A is closed iff $\overline{A} = A$.
 - 3. Show A is dense iff $\overline{A} = X$.

Metric Spaces

- A metric space is a pair (X, d), where X is a set and d is a map $d: X \times X \to \mathbb{R}_{\geq 0}$, such that for all $x, y, z \in X$
 - 1. d(x, y) = 0 iff x = y (positive definiteness);
 - 2. d(x, y) = d(y, x) (symmetry); and
 - 3. $d(x,z) \leq d(x,y) + d(y,z)$ (triangle inequality).

The map d is then called a *metric*.

• Given a metric space $(X, d), x \in X$ and $\varepsilon > 0$, we define the ε -ball $B_{\varepsilon}(x)$ around x by

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}.$$

Exercise 3.

Let (X, d) be a metric space and define $\mathcal{U} \subseteq \mathcal{P}(X)$ by

$$\mathcal{U} = \{ U \subseteq X \mid \forall x \in U. \exists \varepsilon > 0. B_{\varepsilon}(x) \subseteq U \}.$$

- 1. Show that the thus defined (X, \mathcal{U}) is a topological space.
- 2. Show that for any $S \subseteq X$ that we have $\overline{S} = \{x \in X \mid \forall \varepsilon > 0. B_{\varepsilon}(x) \cap S \neq \emptyset\}.$

Let AP be a finite set. The set of infinite sequences over (2^{AP}) is denoted by $(2^{AP})^{\omega}$ as before. Let $d: (2^{AP})^{\omega} \times (2^{AP})^{\omega} \to \mathbb{R}_{\geq 0}$ be given by

$$d(\sigma,\tau) = \begin{cases} 0, & \sigma = \tau \\ 2^{-\min\{k \in \mathbb{N} \mid \sigma(k) \neq \tau(k)\}}, & \sigma \neq \tau \end{cases}$$

Let us also denote by $\sigma|_n$ the prefix of length n of σ .

Exercise 4.

- 1. Show that $((2^{AP})^{\omega}, d)$ is a metric space.
- 2. Show that the closed sets of $(2^{AP})^{\omega}$ are exactly the safety properties.
- 3. Show that the dense subsets of $(2^{AP})^{\omega}$ are exactly the liveness properties.

Decomposition Theorem

Exercise 5.

- 1. Let (X, \mathcal{U}) be a topological space. Show that for all $A \subseteq X$, there is a closed set C and a dense set D such that $A = C \cap D$.
- 2. Show that for every LT property $P \subseteq (2^{AP})^{\omega}$, there is a safety property P_{safe} and a liveness property P_{live} such that $P = P_{safe} \cap P_{live}$.