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Partial Orders and Lattices
• A partial order is a pair (A,≤) of a set A and binary relation ≤ which is

1. reflexive: a ≤ a for all a ∈ A,
2. transitive: if a ≤ b and b ≤ c then a ≤ c,
3. antisymmetric: if a ≤ b and b ≤ a then a = b.

• A join (or least upper bound) of S ⊆ A is an upper bound
∨
S such that

∨
S ≤ b for every upper

bound b of S.

• A meet (or greatest lower bound) of S ⊆ A is a lower bound
∧
S such that b ≤

∧
S for every lower

bound b of S.

• A complete lattice is a partial order (A,≤) such that every subset S ⊆ L has both a join and a
meet.

• Given a topological space (X,U), the interior of a set A is Å =
⋃
{U ∈ U | U ⊆ A}.

Exercise 1.
Show that the following are equivalent for a partial order (L,≤):

1. (L,≤) is a complete lattice,

2. every subset S ⊆ L has a least upper bound
∨
S ∈ L,

3. every subset S ⊆ L has a greatest lower bound
∧
S ∈ L.

Exercise 2.

1. Consider a topological space (X,U). Show that (U ,⊆) is a complete lattice.

2. Show that the interior of a set A ⊆ X is open.

3. Show that the greatest lower bound of a family of opens (Ui)i∈I is the interior of
⋂
i Ui.

Closure operators

A closure operator on a partial order (L,≤) is a function c : L→ L which is:

• monotone: c(a) ≤ c(b) if a ≤ b,
• expansive: a ≤ c(a),

• idempotent: c(c(a)) = c(a).

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2020 1/3

christophe.lucas@ens-lyon.fr


Exercise 3.
Consider a closure operator c on a complete lattice (L,≤). Show that Lc = {a ∈ L | c(a) = a} is a
complete lattice with greatest lower bounds

d
S =

∧
S and least upper bounds

⊔
S = c(

∨
S).

Exercise 4.
Consider a closure operator c on a complete lattice (L,≤). Show that for all a ∈ L, we have

c(a) =
∧
{c(b) | a ≤ c(b)}

Exercise 5.
A Kuratowski closure operator is a closure operator c : 2X → 2X such that c(∅) = ∅ and c(A∪B) =
c(A) ∪ c(B).

1. Consider a topological space (X,U). Show that (−) is a Kuratowski closure operator.

2. Given a Kuratowski closure operator c : 2X → 2X , show that there is topology U on X such
that the closed sets for U are exactly the closed sets for c, ie the sets such that A = c(A).

Metric Spaces

• A metric space is a pair (X, d), where X is a set and d is a map d : X ×X → R≥0, such that for all
x, y, z ∈ X
1. d(x, y) = 0 iff x = y (positive definiteness);
2. d(x, y) = d(y, x) (symmetry); and
3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The map d is then called a metric.

• Given a metric space (X, d), x ∈ X and ε > 0, we define the ε-ball Bε(x) around x by

Bε(x) = {y ∈ X | d(x, y) < ε}.

Exercise 6.
Let (X, d) be a metric space and define U ⊆ P(X) by

U = {U ⊆ X | ∀x ∈ U.∃ε > 0. Bε(x) ⊆ U}.

1. Show that the thus defined (X,U) is a topological space.

2. Show that for any S ⊆ X that we have S = {x ∈ X | ∀ε > 0. Bε(x) ∩ S 6= ∅}.

Let AP be a finite set. The set of infinite sequences over (2AP) is denoted by (2AP)ω as before. Let
d : (2AP)ω × (2AP)ω → R≥0 be given by

d(σ, τ) =

{
0, σ = τ

2−min{k∈N | σ(k)6=τ(k)}, σ 6= τ

Let us also denote by σ|n the prefix of length n of σ.

Exercise 7.

1. Show that ((2AP)ω, d) is a metric space.

2. Show that the closed sets of (2AP)ω are exactly the safety properties.

3. Show that the dense subsets of (2AP)ω are exactly the liveness properties.
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Limits and Cauchy Sequences

Given a metric space (X, d), we say that a sequence (xn)∞n=0 in X with xn ∈ X converges to x ∈ X, if

∀ε > 0.∃N ∈ N.∀n ≥ N. d(xn, x) < ε.

We say that x is the limit of (xn)∞n=0 and write x = limn→∞ xn. It is easily verified that limits are
unique, and that x = limn→∞ xn iff ∀N ∈ Nx.∃N ∈ N.∀n ≥ N. xn ∈ N .

A special type of sequences are Cauchy sequences. We call a sequence (xn)∞n=0 in X a Cauchy sequence,
if

∀ε > 0.∃N ∈ N.∀n,m ≥ N. d(xn, xm) < ε.

The metric space X is called complete, if every Cauchy sequence in X converges.

Exercise 8.

1. Let (X, d) be a metric space and S ⊆ X Show that S consists of all those points that are the
limit of a sequence in S.

2. Show that the space (Σω, d) is Cauchy complete.
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