

TD de Sémantique et Vérification V- Galois Connections Tuesday 11th February 2020

Christophe Lucas christophe.lucas@ens-lyon.fr

- A closure operator on a partial order (L, \leq) is a function $c: L \to L$ which is
 - 1. monotone: if $a \leq b$ then $c(a) \leq c(b)$,
 - 2. expansive: $a \leq c(a)$,
 - 3. idempotent: c(c(a)) = c(a).
- Consider (L, \leq) a partial order and c a closure operator. An element $a \in L$ is said closed if c(a) = a. We write L^c the set of closed elements of L.
- Given partial orders (A, \leq_A) and (B, \leq_B) , a *Galois connection* $g \dashv f : A \to B$ is given by a pair of functions $g : A \to B$ and $f : B \to A$ such that for all $a \in A$ and $b \in B$, we have

$$g(a) \leq_B b$$
 iff $a \leq_A f(b)$.

g (resp. f) is called the *lower adjoint* (resp. *upper adjoint*).

• Given a non-empty set A, we define

$$\begin{array}{rcl} \operatorname{Pref} & : & 2^{A^{\omega}} & \to & 2^{A^{\ast}} \\ & P & \mapsto & \bigcup \{\operatorname{Pref}(\sigma) \mid \sigma \in P\} \\ \\ \operatorname{cl} & : & 2^{A^{\ast}} & \to & 2^{A^{\omega}} \\ & W & \mapsto & \{\sigma \in A^{\omega} \mid \operatorname{Pref}(\sigma) \subseteq W\} \end{array}$$

Notice that the function cl defined in the second tutorial is actually cl(Pref(P)) here.

Galois connexion

Exercise 1.

Consider a Galois connection $g \dashv f : A \to B$.

- 1. Show that both f and g are monotone.
- 2. Show that $f \circ g$ is a closure operator.

Exercise 2.

Show that $\operatorname{Pref}\dashv\operatorname{cl}:2^{A^\omega}\to 2^{A^*}$ form a Galois connection.

Exercise 3.

Consider two complete lattices (A, \leq_A) and (B, \leq_B) .

- 1. Show that a function $f: B \to A$ preserves greatest lower bounds iff f has a lower adjoint $g: A \to B$.
- 2. Show that a function $g: A \to B$ preserves least upper bounds iff g has an upper adjoint $f: B \to A$.

Exercise 4.

Consider a closure operator $c: A \to A$. Since for all $a \in A$, c(a) is closed, c is a function from A to A^c .

Show that $c: A \to A^c$ is part of a Galois connection $c \dashv \iota$ for some function $\iota: A^c \to A$.

Metric Spaces

- A metric space is a pair (X, d), where X is a set and d is a map $d: X \times X \to \mathbb{R}_{\geq 0}$, such that for all $x, y, z \in X$
 - 1. d(x, y) = 0 iff x = y (positive definiteness);
 - 2. d(x, y) = d(y, x) (symmetry); and
 - 3. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

The map d is then called a *metric*.

• Given a metric space $(X, d), x \in X$ and $\varepsilon > 0$, we define the ε -ball $B_{\varepsilon}(x)$ around x by

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}.$$

Exercise 5.

Let (X, d) be a metric space and define $\mathcal{U} \subseteq \mathcal{P}(X)$ by

$$\mathcal{U} = \{ U \subseteq X \mid \forall x \in U. \exists \varepsilon > 0. B_{\varepsilon}(x) \subseteq U \}.$$

- 1. Show that the thus defined (X, \mathcal{U}) is a topological space.
- 2. Show that for any $S \subseteq X$ that we have $\overline{S} = \{x \in X \mid \forall \varepsilon > 0. B_{\varepsilon}(x) \cap S \neq \emptyset\}.$

Let AP be a finite set. The set of infinite sequences over (2^{AP}) is denoted by $(2^{AP})^{\omega}$ as before. Let $d: (2^{AP})^{\omega} \times (2^{AP})^{\omega} \to \mathbb{R}_{\geq 0}$ be given by

$$d(\sigma,\tau) = \begin{cases} 0, & \sigma = \tau \\ 2^{-\min\{k \in \mathbb{N} \mid \sigma(k) \neq \tau(k)\}}, & \sigma \neq \tau \end{cases}$$

Let us also denote by $\sigma|_n$ the prefix of length n of σ .

Exercise 6.

- 1. Show that $((2^{AP})^{\omega}, d)$ is a metric space.
- 2. Consider $P \subseteq A^{\omega}$. Show that $\overline{P} = \operatorname{cl}(\operatorname{Pref}(P))$.