
Master d’Informatique Fondamentale – 2020
Semantics and Verification (M1)

�
�

�
�

TD de Sémantique et Vérification

I– Modelling Concurrent Systems
Monday 18th January 2021

Christophe Lucas
christophe.lucas@ens-lyon.fr

In this first set of exercises, we will discuss the modelling of concurrent systems as circuits, transition
systems and program graphs. In particular, we will discuss the interleaving of parallel systems.

Preliminaries: Interleaving Operators
In this preliminary section, we provide the definitions of the different interleaving operators from the
book.

Definition 1 (Interleaving of Transition Systems). Let TSi = (Si,Acti,→i, Ii,APi, Li) be transition
systems for i = 1, 2. The interleaved transition system is given by

TS1 9 TS2 = (S1 × S2,Act1 ∪Act2,→, I1 × I2,AP1 ∪AP2, L),

where L〈s1, s2〉 = L1(s1) ∪ L2(s2) and the transition relation → is defined by the following two rules.

s1
α−→1 s

′
1

〈s1, s2〉
α−→ 〈s′1, s2〉

s2
α−→2 s

′
2

〈s1, s2〉
α−→ 〈s1, s′2〉

Definition 2 (Interleaving of Program Graphs). Let PGi = (Loci,Acti,Effecti, ↪→i,Loc0,i, g0,i) be
program graphs for i = 1, 2. The interleaved program graph is given by

PG1 9 PG2 = (Loc1 × Loc2,Act1 ]Act2, ↪→,Loc0,1 × Loc0,2, g0,1 ∧ g0,2),

where Effect(α, η) = Effecti(α, η) for α ∈ Acti and the transition relation ↪→ is defined by the following
two rules.

`1
g:α
↪−−→1 `

′
1

〈`1, `2〉
g:α
↪−−→ 〈`′1, `2〉

`2
g:α
↪−−→2 `

′
2

〈`1, `2〉
g:α
↪−−→ 〈`1, `′2〉

Definition 3 (Handshaking). Let TSi = (Si,Acti,→i, Ii,APi, Li) be transition systems for i = 1, 2 and
let H be a set of actions with H ⊆ Act1 ∩Act2 and τ 6∈ H. The synchronised transition system is given
by

TS1 ‖H TS2 = (S1 × S2,Act1 ∪Act2,→, I1 × I2,AP1 ∪AP2, L),

where L〈s1, s2〉 = L1(s1) ∪ L2(s2) and the transition relation → is defined by the following three rules.

s1
α−→1 s

′
1

α 6∈ H
〈s1, s2〉

α−→ 〈s′1, s2〉

s2
α−→2 s

′
2

α 6∈ H
〈s1, s2〉

α−→ 〈s1, s′2〉

s1
α−→1 s

′
1 s2

α−→2 s
′
2
α ∈ H

〈s1, s2〉
α−→ 〈s′1, s′2〉

If H = Act1 ∩Act2, then we abbreviate TS1 ‖H TS2 by TS1 ‖ TS2.

Note: We have that 9 = ‖∅.

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2020 1/3

christophe.lucas@ens-lyon.fr


Program Graphs and Atomicity
The first part of the exercise is about different representations of programs as program graphs and the
effect of separating tests and assignments. Suppose we are given the following program Inc.

Inc: while true do if x < 200 then x := x+ 1

We may associate two different program graphs, the atomic AInc and the non-atomic NInc, to this
program:

Inc

x < 200 : x := x+ 1
x ≥ 200 : nop

and tInc aInc

x < 200 : nopx ≥ 200 : nop

true : x := x+ 1

The first program graph forces the atomic execution of the test and the assignment, while the second
program graph separates these two. Since tests and the body of a while-loop are typically more complex,
the second program graph is more realistic. These program graphs show by themselves the same beha-
viour. However, when combined with other processes that access the same variable, then the separation
of test and assignment into the two states tInc and aInc matters, as we will see in the following exercise.

Exercise 1.
Let the two programs Dec and Res be given as follows.

Dec: while true do if x > 0 then x := x− 1

Res: while true do if x = 200 then x := 0

1. Give the atomic and non-atomic program graphs associated to the programs Dec and Res.
2. Compute TS(AInc9ADec) and TS(AInc)9TS(ADec). Which one better modelize shared memory?
3. Show that 0 ≤ x ≤ 200 is an invariant in the interleaving AInc 9ADec 9ARes.
4. Show that there is an execution trace in the interleaving NInc9NDec9NRes in which x is initially

positive but becomes negative.

Mutual Exclusion

Exercise 2.
Consider the following mutual exclusion algorithm that was proposed 1966 as a simplification of
Dijkstra’s mutual exclusion algorithm in case there are just two processes:

boolean array b = [0; 1];
integer k = 1, i, j;
/* This is the program for computer i, which may be either 0 or 1, computer

j 6= i is the other one, 1 or 0 */
C0: b(i) := false;
C1: if k 6= i then
C2: if ¬b(j) then goto C2;

else k := i; goto C1;
else critical section;
b(i) := true;
remainder of program;
goto C0;

Here C0, C1, and C2 are program labels, and the word “computer” should be interpreted as process.

1. Give the program graph representations for a single process. (A pictorial representation suffices.)

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2020 2/3



2. Give the reachable part of the transition system of P1 9 P2 .

3. Check whether the algorithm indeed ensures mutual exclusion, that is, check whether that there
is no reachable state in which both processes are in their critical section.

Properties of Interleaving

Exercise 3.
Give an example of program graphs PG1 and PG2, such that TS(PG1) 9 TS(PG2) has evaluations
as states that are impossible in TS(PG1 9PG2) Hint: In the interleaving TS(PG1) 9 TS(PG2) the
variables of PG1 and PG2 are renamed and thus not shared.

Exercise 4.
Show that the handshaking operator ‖ is associative. That is, show for arbitrary transition systems
TS1, TS2, TS3 that (TS1 ‖ TS2) ‖ TS3 and TS1 ‖ (TS2 ‖ TS3) are essentially the same transition
system.

Sequential Hardware Circuits

Exercise 5.
Consider the following two sequential hardware circuits:

r1

AND

OR
NOT

x1 y1

r2

OR

AND
x2 y2

1. Assuming that the initial values of the registers are r1 = 0 and r2 = 1, give the transition
systems of both hardware circuits.

2. Determine the reachable part of the interleaving of these transition systems.

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2020 3/3


