

TD de Sémantique et Vérification X- Duality and Ultrafilter extension Monday 29th March 2021

Christophe Lucas christophe.lucas@ens-lyon.fr

Duality

Recall that:

- for two Boolean algebras B and B' and a function $f : B \to B'$, the dual of f is the function $f^{\delta} : B \to B'$ defined by $f^{\delta}(b) = \neg' f(\neg b)$.
- for a set Act and $\alpha \in Act$, the functions $[\alpha] : \mathfrak{L}(HML) \to \mathfrak{L}(HML)$ and $\langle \alpha \rangle : \mathfrak{L}(HML) \to \mathfrak{L}(HML)$ are defined by

$$- [\alpha](\phi) = [\alpha]\phi$$

$$- \langle \alpha \rangle(\phi) = \langle \alpha \rangle \phi$$

• for $TS = (S, \operatorname{Act}, \rightarrow, I, \operatorname{AP}, L)$, the functions $\llbracket [\alpha] \rrbracket$ and $\llbracket \langle \alpha \rangle \rrbracket$ are defined by

$$- \ \llbracket [\alpha] \rrbracket (A) = \{ s \in S \mid \forall s' \in \operatorname{Succ}^{\alpha}(s), s' \in A \}$$

 $- \llbracket \langle \alpha \rangle \rrbracket(A) = \{ s \in S \mid \exists s' \in \operatorname{Succ}^{\alpha}(s), s' \in A \}$

Exercise 1.

- 1. Consider a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ and $\alpha \in Act$. Show that:
 - $\llbracket [\alpha] \rrbracket = \llbracket \langle \alpha \rangle \rrbracket^{\delta}$

$$\bullet \ \llbracket \langle \alpha \rangle \rrbracket = \llbracket [\alpha] \rrbracket^\delta$$

- 2. Let $\alpha \in Act$. Show that:
 - $[\alpha] = \langle \alpha \rangle^{\delta}$
 - $\langle \alpha \rangle = [\alpha]^{\delta}$

Exercise 2.

Let B and B' be two Boolean algebras and $f: B \to B'$. Show that:

1.
$$f^{\delta^{\delta}} = f$$

- 2. If f is map of join (resp. meet) semilattices, then f^{δ} is map of meet (resp. join) semilattices.
- 3. If f is a map of lattices, then $f^{\delta} = f$.

Ultrafilter extension

Recall that:

- for a BAO $B^+ = (B, (f_\alpha)_{\alpha \in Act})$, the ultrafilter frame $\mathfrak{U}f(B^+)$ is defined as
 - the states are the ultrafilter over B, and
 - given \mathcal{F}, \mathcal{H} two ultrafilters, $\mathcal{F} \xrightarrow{\alpha} \mathcal{H}$ iff $\forall b \in B, b \in \mathcal{H} \Rightarrow f_{\alpha}(b) \in \mathcal{F}$.
- For a set X, we define the function $\pi : X \to \mathfrak{U}f(X)$ by $\pi(x) = \{A \in \mathcal{P}(X) \mid x \in A\}$. π is a bijection between X and $\mathfrak{U}f(X)$.
- for a $TS = (S, Act, \rightarrow, I, AP, L)$, the ultrafilter extension $\mathfrak{U}f(TS)$ is the transition system where
 - the states are the ultrafilters $\mathfrak{U}f(S)$ on S
 - $\mathcal{F} \xrightarrow{\alpha} \mathcal{H}$ iff $[\![\langle \alpha \rangle]\!](A) \in \mathcal{F}$ whenever $A \in \mathcal{H}$
 - $-a \in L(\mathcal{F})$ iff $\{s \in S \mid a \in L(s)\} \in \mathcal{F}$
 - the initial states are $\{\pi(s) \mid s \in I\}$

Exercise 3.

Consider a BAO $B^+ = (B, (f_\alpha)_{\alpha \in Act})$. Sho that in the ultrafilter frame $\mathfrak{U}f(B^+)$, we have

$$\mathcal{F} \xrightarrow{\alpha} \mathcal{H} \text{ iff } \forall b \in B, f^{\delta}_{\alpha}(b) \in \mathcal{F} \Rightarrow b \in \mathcal{H}$$

Exercise 4.

Consider a $TS = (S, \operatorname{Act}, \rightarrow, I, \operatorname{AP}, L).$ Show that:

- 1. Given $s \in S$ and $a \in AP$, $a \in L(s)$ in TS iff $a \in L(\pi(s))$ in $\mathfrak{U}f(TS)$.
- 2. Show that

$$\mathcal{F} \xrightarrow{\alpha} \mathcal{H} \text{ iff } \llbracket [\alpha] \rrbracket (A) \in \mathcal{F} \Rightarrow A \in \mathcal{H}$$

3. Given $s, s' \in S$ and $\alpha \in Act, s \xrightarrow{\alpha} s'$ in TS iff $\pi(s) \xrightarrow{\alpha} \pi(s')$ in $\mathfrak{U}f(TS)$.