

TD de Sémantique et Vérification IV- Partial Orders and Lattices Monday 8th February 2021

Christophe Lucas christophe.lucas@ens-lyon.fr

Partial Orders and Lattices

- A partial order is a pair (A, \leq) of a set A and binary relation \leq which is
 - 1. reflexive: $a \leq a$ for all $a \in A$,
 - 2. transitive: if $a \leq b$ and $b \leq c$ then $a \leq c$,
 - 3. antisymmetric: if $a \leq b$ and $b \leq a$ then a = b.
- A join (or least upper bound) of $S \subseteq A$ is an upper bound $\bigvee S$ such that $\bigvee S \leq b$ for every upper bound b of S.
- A meet (or greatest lower bound) of $S \subseteq A$ is a lower bound $\bigwedge S$ such that $b \leq \bigwedge S$ for every lower bound b of S.
- A complete lattice is a partial order (A, \leq) such that every subset $S \subseteq L$ has both a join and a meet.
- Given a topological space (X, \mathcal{U}) , the *interior* of a set A is $\mathring{A} = \bigcup \{ U \in \mathcal{U} \mid U \subseteq A \}$.

Exercise 1.

Show that the following are equivalent for a partial order (L, \leq) :

- 1. (L, \leq) is a complete lattice,
- 2. every subset $S \subseteq L$ has a least upper bound $\bigvee S \in L$,
- 3. every subset $S \subseteq L$ has a greatest lower bound $\bigwedge S \in L$.

Exercise 2.

Consider the space A^{ω} with $A = \{a, b\}$. Show that $\bigcap_{n \in \mathbb{N}} \operatorname{ext}(a^n)$ is not open.

Closure operators

A closure operator on a partial order (L, \leq) is a function $c: L \to L$ which is:

- monotone: $c(a) \leq c(b)$ if $a \leq b$,
- expansive: $a \leq c(a)$,
- idempotent: c(c(a)) = c(a).

Exercise 3.

Consider a closure operator c on a complete lattice (L, \leq) . Show that $L^c = \{a \in L \mid c(a) = a\}$ is a complete lattice with greatest lower bounds $\prod S = \bigwedge S$ and least upper bounds $\coprod S = c(\bigvee S)$.

Exercise 4.

A Kuratowski closure operator is a closure operator $c: 2^X \to 2^X$ such that $c(\emptyset) = \emptyset$ and $c(A \cup B) = c(A) \cup c(B)$.

- 1. Consider a topological space (X, \mathcal{U}) . Show that $\overline{(-)}$ is a Kuratowski closure operator.
- 2. Given a Kuratowski closure operator $c: 2^X \to 2^X$, show that there is topology \mathcal{U} on X such that the closed sets for \mathcal{U} are exactly the closed sets for c, is the sets such that A = c(A).

Galois connexion

• Given partial orders (A, \leq_A) and (B, \leq_B) , a *Galois connection* $g \dashv f : A \to B$ is given by a pair of functions $g : A \to B$ and $f : B \to A$ such that for all $a \in A$ and $b \in B$, we have

$$g(a) \leq_B b$$
 iff $a \leq_A f(b)$

g (resp. f) is called the *lower adjoint* (resp. *upper adjoint*).

• Given a non-empty set A, we define

$$\begin{array}{rcl} \operatorname{pref} & : & 2^{A^{\omega}} & \to & 2^{A^{*}} \\ & P & \mapsto & \bigcup \{\operatorname{pref}(\sigma) \mid \sigma \in P\} \\ \\ \operatorname{cl} & : & 2^{A^{*}} & \to & 2^{A^{\omega}} \\ & W & \mapsto & \{\sigma \in A^{\omega} \mid \operatorname{pref}(\sigma) \subseteq W\} \end{array}$$

Notice that the function cl defined in the second tutorial is actually cl(Pref(P)) here.

Exercise 5.

- Consider a Galois connection $g \dashv f : A \to B$.
 - 1. Show that both f and g are monotone.
 - 2. Show that $f \circ g$ is a closure operator.

Exercise 6.

Consider two complete lattices (A, \leq_A) and (B, \leq_B) .

- 1. Show that a function $f: B \to A$ preserves greatest lower bounds iff f has a lower adjoint $g: A \to B$.
- 2. Show that a function $g: A \to B$ preserves least upper bounds iff g has an upper adjoint $f: B \to A$.

Exercise 7.

Show that $\operatorname{Pref} \dashv \operatorname{cl} : 2^{A^{\omega}} \to 2^{A^*}$ form a Galois connection.

Exercise 8.

Given $P \subseteq A^{\omega}$, show that $\overline{P} = \operatorname{cl}(\operatorname{pref}(P))$.

Continuus Functions

Consider topological spaces (X, \mathcal{U}_X) and (Y, \mathcal{U}_Y) . A function $f : X \to Y$ is continuous if $f^{-1}(V)$ is open in X whenever V is open in Y.

Exercise 9.

Show that $f: A^{\omega} \to B^{\omega}$ is continuous iff

$$\forall n \in \mathbb{N}, \ \forall \alpha \in A^{\omega}, \ \exists k \in \mathbb{N}, \ \forall \beta \in A^{\omega} \Big(\beta(0) \cdots \beta(k) = \alpha(0) \cdots \alpha(k) \Rightarrow f(\beta)(0) \cdots f(\beta)(n) = f(\alpha)(0) \cdots f(\alpha)(n) \Big)$$