

TD de Sémantique et Vérification V- Observable properties and LML Monday 22nd February 2021

Christophe Lucas christophe.lucas@ens-lyon.fr

We recall that

- Given sets X and Y and a function $f: X \to Y$, we define $f^{-1}(B) = \{x \mid f(x) \in B\}$ for $B \subseteq Y$.
- Given topological spaces X and Y, a function $X \to Y$ is continuous iff $f^{-1}(B)$ is open whenever B is open.
- A clopen is a set that is both open and closed.
- For a set A, a property $P \subseteq (2^A)^{\omega}$ is said obversable if P is a clopen.
- For a topolocial space (X, \mathcal{U}) , a set $A \subseteq X$ is compact if every open cover of A contains a finite cover of A. If X is compact, (X, \mathcal{U}) is called a compact space.
- A topological space (X, \mathcal{U}) is Hausdorff if for any distinct points $x, y \in X$, there are disjoint opens U, V such that $x \in U$ and $y \in V$.

Exercise 1.

Show that $f: A^{\omega} \to B^{\omega}$ is continuous iff

$$\forall n \in \mathbb{N}, \ \forall \alpha \in A^{\omega}, \ \exists k \in \mathbb{N}, \ \forall \beta \in A^{\omega} \Big(\beta(0) \cdots \beta(k) = \alpha(0) \cdots \alpha(k) \Rightarrow f(\beta)(0) \cdots f(\beta)(n) = f(\alpha)(0) \cdots f(\alpha)(n) \Big)$$

Exercise 2.

Let A be a set.

- 1. Show that ext(u) is a clopen for every $u \in A^*$.
- 2. Show that for every finite subset $U \subseteq A^*, ext(U)$ is a clopen.
- 3. Let $A = \mathbb{N}$. Show that there is no finite $U \subseteq \mathbb{N}^*$ such that $ext(U) = ext(\mathbb{N}_{>0})$.

Exercise 3.

Show that a closed subset of a compact space is compact.

Exercise 4.

Show that if A is infinite, then A^{ω} is not compact.

Exercise 5.

Let AP be a finite set. Show that $P \subseteq (2^{AP})^{\omega}$ is observable iff there is a finite $W \subseteq (2^{AP})^*$ such that P = ext(W).

Exercise 6.

Let A be a set. Show that A^{ω} is Hausdorff.

Exercise 7.

Let AP be a set.

1. Let ϕ be a closed LML-formula. Show that $\llbracket \phi \rrbracket$ is a clopen subset of $(2^{AP})^{\omega}$.

- 2. Show that if AP is finite, then for every clopen $P \subseteq (2^{AP})^{\omega}$, there exists a closed LML-formula ϕ such that $\llbracket \phi \rrbracket = P$.
- 3. Let $AP = \mathbb{N}$ and $2\mathbb{N} \subseteq AP$ be the set of even numbers. Show that there is no closed LML-formula ϕ such that $\llbracket \phi \rrbracket = ext(2\mathbb{N})$.