

TD de Sémantique et Vérification VIII– Bisimulations and HML Monday 15th March 2021

Christophe Lucas christophe.lucas@ens-lyon.fr

Bisimulations

Recall that for two TS_0 and TS_1 such that $TS_i = (S_i, Act, \rightarrow_i, I_i, AP, L_i)$, the relation $\mathcal{R} \subseteq S_0 \times S_1$ is said to be a bisimulation iff for all $(s_0, s_1) \in \mathcal{R}$, we have:

•
$$L_0(s_0) = L_1(s_1)$$
, and

• for each $i \in \{0, 1\}$ and each $\alpha \in \text{Act if } s_i \xrightarrow{\alpha} s'_i$, then there is $s'_{1-i} \in S_{1-i}$ such that $s_{1-i} \xrightarrow{\alpha} s'_{1-i}$ and $(s'_0, s'_1) \in \mathcal{R}$.

We write $TS_0 \approx TS_1$ if there is bisimulation \mathcal{R} such that for all $s_i \in S_i$, there is $s_{1-i} \in S_{1-i}$ satisfying $(s_0, s_1) \in \mathcal{R}$.

The bisimilarity relation \sim is defined by $s_0 \sim s_1$ iff there is a bisimulation \mathcal{R} such that $(s_0, s_1) \in \mathcal{R}$.

Exercise 1.

Given two transition systems TS_0 and TS_1 , show that:

- 1. for all $s \in S_0$, $s \sim s$.
- 2. if \mathcal{R} is a bisimulation, then $\mathcal{R}^{-1} = \{(s_1, s_0) \in S_1 \times S_0 \mid (s_0, s_1) \in \mathcal{R}\}$ is also a bisimulation.
- 3. Given a third transition system TS_2 , if \mathcal{R} is a bisimulation between TS_0 and TS_1 and \mathcal{T} is a bisimulation between TS_1 and TS_2 then

$$\mathcal{T} \circ \mathcal{R} = \{ (s_0, s_2) \in S_0 \times S_2 \mid \exists s_1 \in S_1, (s_0, s_1) \in \mathcal{R} \text{ and } (s_1, s_2) \in \mathcal{T} \}$$

is also a bisimulation.

- 4. The bisimilarity relation between TS_0 and TS_1 is a bisimulation.
- 5. If \mathcal{R} is a bisimulation between TS_0 and TS_1 , then $\mathcal{R} \subseteq \sim$.
- 6. The bisimilarity between TS_0 and itself is an equivalence relation.

Exercise 2.

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$, we define $TS_{\sim} = (S_{\sim}, Act, \rightarrow_{\sim}, I_{\sim}, AP, L_{\sim})$ as follow:

- the states S_{\sim} of TS_{\sim} are the equivalence classes of \sim , i.e. $S_{\sim} = \{[s]_{\sim} \mid [s]_{\sim} = \{a \in S \mid s \sim a\}\}$
- $I_{\sim} = \{[i]_{\sim} \mid i \in I\}$
- $[s]_{\sim} \xrightarrow{\alpha}_{\sim} [s']_{\sim}$ if $s \xrightarrow{\alpha} s'$
- $L_{\sim}([s_{\sim}]) = L(s)$

Show that $TS \approx TS_{\sim}$.

HML

We recall that for two sets AP and Act,

• A Kripke frame over Act is given by a set of states S together with a relation $\rightarrow \subseteq S \times Act \times S$.

- A Kripke model over Act and AP is given by a Kripke frame (S, Act, \rightarrow) together with a state labelling $L: S \rightarrow 2^{AP}$.
- The formulae of HML are defined by $\varphi, \psi := \top \mid \perp \mid a \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid [\alpha]\varphi \mid \langle \alpha \rangle \varphi$ with $\alpha \in Act$ and $a \in AP$.

Moreoever, for a transition system $TS = (S, Act, \rightarrow, I, AP, L)$, we have

- $[\![a]\!] = \{s \in S \mid a \in L(s)\}$
- $\llbracket \top \rrbracket = S$
- $\llbracket \bot \rrbracket = \emptyset$
- $\llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$
- $\llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$
- $\llbracket \neg \varphi \rrbracket = S \backslash \llbracket \varphi \rrbracket$
- $\llbracket [\alpha] \varphi \rrbracket = \{ s \in S \mid \forall s', \text{ if } s \xrightarrow{\alpha} s' \text{ then } s' \in \llbracket \varphi \rrbracket \}$
- $\llbracket \langle \alpha \rangle \varphi \rrbracket = \{ s \in S \mid \exists s', s \xrightarrow{\alpha} s' \text{ and } s' \in \llbracket \varphi \rrbracket \}$

Finally we say that $\phi \equiv \psi$ if $\llbracket \phi \rrbracket = \llbracket \psi \rrbracket$ for every TS.

Exercise 3.

Let AP be a set. We fix Act = $\{\bullet\}$. We define the Kripke model $M((2^{AP})^{\omega}) = ((2^{AP})^{\omega}, Act, \rightarrow , AP, L)$ on streams where

- $\alpha \xrightarrow{\bullet} \beta$ iff $\beta = \alpha \upharpoonright 1$
- $L(\alpha) = \alpha(0)$
- 1. Show that $\llbracket \langle \bullet \rangle \varphi \rrbracket = \llbracket \llbracket \bullet] \varphi \rrbracket = \{ \sigma \mid \sigma \upharpoonright 1 \in \llbracket \varphi \rrbracket \}$
- 2. Show that for all $P \subseteq (2^{AP})^{\omega}$, the following are equivalent:
 - There is a HML-formula φ such that $P = \llbracket \varphi \rrbracket$
 - There is a LML–formula φ such that $P = \llbracket \varphi \rrbracket$
- 3. Show that for all $\alpha, \beta \in (2^{AP})^{\omega}$, $\alpha = \beta$ iff $\alpha \sim \beta$.

Exercise 4.

Show the following equivalences:

1.
$$\langle \alpha \rangle \varphi \equiv \neg[\alpha] \neg \varphi$$

- 2. $[\alpha]\varphi \equiv \neg \langle \alpha \rangle \neg \varphi$
- 3. $\langle \alpha \rangle (\varphi \lor \psi) \equiv (\langle \alpha \rangle \varphi) \lor (\langle \alpha \rangle \psi)$
- 4. $[\alpha](\varphi \land \psi) \equiv ([\alpha]\varphi) \land ([\alpha]\psi)$
- 5. $\langle \alpha \rangle \bot \equiv \bot$
- 6. $[\alpha] \top \equiv \top$