
Solving structured linear systems

with large displacement rank

Alin Bostan a,1 Claude-Pierre Jeannerod b Éric Schost c,2

aAlgorithms Project, INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France
bArénaire Project, INRIA Rhônes-Alpes,

Laboratoire LIP (CNRS, ENSL, INRIA, UCBL), ENS Lyon, France
cComputer Science Department, The University of Western Ontario, London,

Ontario, Canada

Abstract

Linear systems with structures such as Toeplitz, Vandermonde or Cauchy-likeness
can be solved in O (̃α2n) operations, where n is the matrix size, α is its displacement
rank, and O˜ denotes the omission of logarithmic factors. We show that for such
matrices, this cost can be reduced to O (̃αω−1n), where ω is a feasible exponent for
matrix multiplication over the base field. The best known estimate for ω is ω < 2.38,
resulting in costs of order O (̃α1.38n). We present consequences for Hermite-Padé
approximation and bivariate interpolation.

1 Introduction

Structured linear algebra techniques are a versatile set of tools. They enable
one to deal at once with matrices with features such as Toeplitz, Vandermonde
or Cauchy-likeness, which arise in various problems, from interpolation to
reconstruction of rational or algebraic functions, etc.

Following [26], the usual way of measuring to what extent a matrix possesses
one such structure is through its displacement rank, that is, the rank of its

Email addresses: Alin.Bostan@inria.fr (Alin Bostan),
claude-pierre.jeannerod@ens-lyon.fr (Claude-Pierre Jeannerod),
eschost@uwo.ca (Éric Schost).
1 Supported by the French National Agency for Research (ANR Project “Gecko”)
and the Microsoft Research-INRIA Joint Centre
2 Supported by NSERC (Canada) and by the Canada Research Chair Program

Preprint submitted to Elsevier Science 14 May 2008

image through a suitable displacement operator. For P and Q in respectively
Kn×n and Km×m, where K is our base field, we will use the displacement
operator

∆[P,Q] : Kn×m → Kn×m

A 7→ A − P A Q.

Two matrices (Y, Z) in Kn×α×Km×α will be called a P,Q-generator of length
α for A if ∆[P,Q](A) = Y Zt. The main idea behind algorithms for structured
matrices is to use such generators as a compact data structure, in cases when
∆[P,Q](A) has low rank. Even though these definitions hold for rectangular
A, in most of this article, we have n = m.

Usual choices for P or Q are either diagonal matrices or cyclic down-shift
matrices of size n, defined for ϕ in K by

Zn,ϕ =

0 ϕ

1 0
. . .

. . .

1 0

∈ K
n×n.

The Toeplitz structure corresponds to P = Zn,0 and Q = Zt
m,0, so that

∆[Zn,0,Z
t
m,0](A) equals

A − (A shifted down and right by one unit).

The Vandermonde structure is obtained by taking P diagonal and Q a cyclic
right-shift matrix Zt

m,ϕ. For the Cauchy structure, both P and Q are diagonal.
In particular, in all these cases, storing P and Q requires no more than O(n)
elements.

In this paper, we consider the following task:

LinearSystem(P,Q, α): Given a P, Q-generator of length α for a matrix A ∈
Kn×n, with α ≤ n, and given v ∈ Kn, find a solution to the equation Au = v,
or determine that none exists.

This problem makes sense only when the operator ∆[P,Q] is invertible: this
will be the case in our three cases of focus, Toeplitz-like, Vandermonde-like
and Cauchy-like matrices (however, non-invertible operators can be dealt with
if some extra information about A is known, such as suitable columns, see [46]
and [45, Section 4.5]). Previous work then yielded the following kind of re-
sults: for these three structures, one can solve the problem LinearSystem using
O (̃α2n) operations in K, where the O˜ notation hides logarithmic factors.

2

When α is constant, such estimates are optimal up to logarithmic factors.
However, there are several situations where α is not bounded a priori (see
examples below). In the extreme case of very loosely structured matrices,
when α goes up to α ≃ n, the cost above becomes O (̃n3).

On the other side of the spectrum, we find dense linear algebra methods. Let
ω ≤ 3 be such that n×nmatrices over K can be multiplied in O(nω) operations
(the current record estimate is ω < 2.38 [13]). As in many other references,
we will assume that ω > 2 (in a potential situation with ω = 2, logarithmic
factors would appear in some estimates). Linear systems of size n can then be
solved in time O(nω), using for example LSP factorization [25]; with ω < 3,
this is better than the above O (̃n3) estimate.

Our contribution bridges a gap between the approaches of structured and
dense linear algebra by providing algorithms of cost O (̃αω−1n) in the case of
Toeplitz-like, Vandermonde-like and Cauchy-like matrices.

Model of computation. Our underlying computational model is the alge-
braic RAM over the field K; a complete definition is given by Kaltofen in [27].
Concretely, the cost estimates count two kinds of operations:

• Operations in K (sums, products, equality tests, inversions) have unit cost;
the generation of a random element in K has unit cost as well.

• We use integer arithmetic for handling indices in arrays. With a view to-
wards simplicity, we see all these operations at unit cost.

Regarding the last point, in all our algorithms, the indices we will work with
will be polynomial in n (when dealing with matrices of size n); hence, if de-
sired, the translation to actual binary cost estimates would only induce a
polylogarithmic overhead in n.

Our algorithms rely on polynomial multiplication; we will thus denote by M :
N>0 → R>0 a function such that polynomials in K[x] of degree less than d can
be multiplied using at most M(d) operations. Using Fast Fourier Transform
algorithms, M(d) can be taken in O(d log(d) log log(d)), see Section 2 for more
details.

Our algorithms are probabilistic. For simplicity, we say that an algorithm has
type P (s, d) if it chooses r ≤ s elements in K and, if these elements are chosen
uniformly at random in a finite subset S of K, the probability of success is
at least 1 − d/|S|. In particular, K should have cardinality more than d to
guarantee that this probability can be made positive.

Main results. The first result covers matrices having Toeplitz-like struc-
ture, with P = Zn,0 and Q = Zt

n,0. We obtain a complexity in O (̃αω−1n) ⊂
O (̃α1.38n), to be compared with an optimal cost of O(αn). For α constant,

3

our result is quasi-linear in n; when α ≃ n, we recover the O(nω) behaviour
of dense methods, up to logarithmic factors.

Theorem 1 The problem LinearSystem(Zn,0,Z
t
n,0, α) can be solved in time

O(αω−1M(n) log2(n)), by a probabilistic algorithm of type P (3n− 2, n2 + n).

A fundamental application is the solution of approximation problems: given
a master polynomial M and polynomials f1, . . . , fs, one seeks a combination
of the fi, with polynomial coefficients of prescribed degrees, which vanishes
modulo M . This includes in particular Padé and Hermite-Padé approximation
(taking M = xn), with applications to e.g. recovering the minimal polynomial
of an algebraic power series f (taking fi = f i−1).

Corollary 1 Let M ∈ K[x] be of degree n, let f1, . . . , fs ∈ K[x] be of degrees
less than n, and let ν1, . . . , νs ∈ N be such that

∑

i≤s νi = n+ 1. One can find
g1, . . . , gs ∈ K[x], not all zero, of respective degrees less than ν1, . . . , νs, such
that

g1f1 + · · ·+ gsfs = 0 mod M,

in time O(sω−1M(n) log2(n)). The algorithm is probabilistic of type P (3n −
2, n2 + n).

Our second result addresses the Vandermonde-like case, where P = D(x) is
the diagonal matrix defined by a vector x = [x1, . . . , xn]

t ∈ Kn and Q is Zt
n,ψ.

We assume that x has the form

x =

x1

...
xs

, with xi =

xi,1
...

xi,νi

∈ K
νi , (1)

and with the following conditions: for all j, all entries of xj are pairwise distinct;
for j < s, xj+1 is a prefix of xj, in the sense that 0 < νj+1 ≤ νj and xj+1,k = xj,k
for k = 1, . . . , νj+1. We will call s the multiplicity of x (see Section 2). Note
also that, given x as in Equation (1), we can deduce ν1, . . . , νs in time O(n).

Assuming that Equation (1) is satisfied is a mild assumption: any vector x

can be put into this form after permuting its entries. However, finding the
permutation has a cost: this is particularly easy if there is an order on K,
using sorting algorithms; without this assumption, though, the question seems
harder: we mention an algorithm of complexity O(M(n) log3(n)) in appendix.
Hence, we rather stick to the above assumption for simplicity.

We make a second assumption, which is necessary to ensure that our problem
is well-posed:

ψ xni 6= 1 for i ≤ n. (2)

4

Theorem 2 Given x and ψ as in Equations (1) and (2), one can solve the
problem LinearSystem(D(x),Zt

n,ψ, α) in time O(αω−1M(n) log2(n)) by a proba-
bilistic algorithm of type P (4n− 2, 4n2 + n).

An application of the latter theorem is polynomial interpolation. The approach
applies to any number of variables, but we discuss only the bivariate case for
simplicity. Consider n pairwise distinct interpolation points in K2; without
loss of generality, we assume that they are given through the following lists,
where the points with the same abscissas are grouped together:

P1 = [p1,1 = (x1, y1,1), . . . , p1,ν1 = (x1, y1,ν1)],
...

Ps = [ps,1 = (xs, ys,1), . . . , ps,νs
= (xs, ys,νs

)],

(3)

with ν1 ≥ · · · ≥ νs > 0 and n = ν1 + · · · + νs. The following figure illustrates
the case s = 3, n = 7 and (ν1, ν2, ν3) = (3, 2, 2).

ν1 = 3 ν2 = 2 ν3 = 2

In general, it is difficult to state a priori that a multivariate interpolation
problem is well-defined. Here, however, given values [vi,j] ∈ Kn, with 1 ≤ i ≤ s
and 1 ≤ j ≤ νi, Theorem 1 in [35] (see also [19]) implies that there exists a
unique F ∈ K[x, y] of the form

F =
∑

0≤i<s, 0≤j<νi+1

fi,jx
iyj

such that F (pi,j) = vi,j for all i, j (hence the monomial support of the poly-
nomial F corresponds to the index set of the sample points). In our previous
example, F thus has the form

F = f0,0 + f0,1y + f0,2y
2 + f1,0x+ f1,1xy + f2,0x

2 + f2,1x
2y.

Finding the coefficients fi,j of F is a linear problem with Vandermonde-like
structure; in Section 5.4 we will prove the following corollary of Theorem 2.

Corollary 2 Given the lists of points P1, . . . , Ps and the lists of values [F (p) :
p ∈ P1], . . . , [F (p) : p ∈ Ps], the coefficients fi,j of F can be computed in time
O(νω−1

1 M(n) log2(n)). The algorithm is probabilistic of type P (4n−2, 4n2 +n).

5

Suppose for instance that ν1 = s, ν2 = s − 1, . . . , νs = 1, so that we are
interpolating on the simplex of monomials of degree less than s; here, n =
s(s + 1)/2. Then, our algorithm has subquadratic complexity O (̃n(ω+1)/2) ⊂
O (̃n1.69).

Our third result deals with the Cauchy-like case, where P = D(x) and Q = D(y)
are diagonal matrices defined by some vectors x and y in Kn. We assume as
before that x satisfies (1) and, in addition, make a similar assumption on y:

y =

y1

...
yt

, with yi =

yi,1
...
yi,δi

∈ K
δi , (4)

and with the following conditions: for all k, all entries of yk are pairwise dis-
tinct; for k < t, yk+1 is a prefix of yk. Again, given x as in Equation (1) and y

as in Equation (4), one can deduce all the νj and δk in time O(n).

For our Cauchy-like problem to be well-posed, we now replace the assumption
in Equation (2) with the following one:

xiyj 6= 1 for 1 ≤ i, j ≤ n. (5)

The complexity result we obtain in this case is then essentially the same as
for the Toeplitz-like and Vandermonde-like cases:

Theorem 3 Given x and y as in Equations (1), (4) and (5), one can solve
the problem LinearSystem(D(x),D(y), α) in time O(αω−1M(n) log2(n)), by a
probabilistic algorithm of type P (5n− 2, 7n2 + n).

Previous work on structured systems. The notions of displacement rank
and displacement operator originate from the work of Kailath, Kung and
Morf [26]. Since then, the literature has vastly developed; see [45] for a list of
references.

The basis for Theorem 1 is the seminal algorithm of Bitmead and Ander-
son [7] and Morf [37,38], which nontrivially adapts Strassen’s divide-and-
conquer approach [53] to structured computations. This algorithm requires
several invertibility conditions to hold. Kaltofen [28,29] extended this idea to
arbitrary matrices (see also [6, p. 204] for some related ideas), obtaining a cost
of O(α2 M(n) log(n)); for small α, this is better than our result in Theorem 1
by a factor of log(n).

We follow these previous approaches; our main technical contribution is an
algorithm for the fast multiplication of a Toeplitz-like matrix (given by a
generator of length α) by α vectors: we replace the separate computation of

6

these products (which has cost quadratic in α) by simultaneous computations,
where using polynomial matrix multiplication yields a subquadratic cost in α.

To prove Theorem 2, we transform a Vandermonde-like system into a Toeplitz-
like one, following Pan’s idea [41,42]. We use a transformation from [24], gen-
eralizing it by taking into account the possibility of repetitions in the diagonal
component of the operator. Similarly, the proof of Theorem 3 uses a reduction
from Cauchy-like systems to Vandermonde-like ones.

In both the Vandermonde and Cauchy cases, a direct approach (not relying
on the reduction to Toeplitz systems) is possible, see [48,44,47,12] and [45,
Chapter 5]. As in the Toeplitz case, the bottleneck of these algorithms is the
multiplication of a structured matrix (given by a generator of length α) by α
vectors. However, following this approach, we are not able to obtain algorithms
whose costs would match in all cases those of Theorems 2 and 3.

Applications. An important example of Toeplitz-like system solving is the
approximation problem of Corollary 1. In the particular case of Hermite-Padé
approximation, with M = xn, a central reference is Beckermann-Labahn’s
algorithm [2], that has complexity O(sω M(n) log(n)) for computing a σ-basis
of order n of the input system (and thus a solution to the approximation
problem); see [23]. In generic cases, an unpublished result of Lecerf reduces
the cost to O(sω−1 M(n) logn) and Storjohann [52] subsequently obtained a
deterministic algorithm of similar complexity, applying in all cases. However,
to our knowledge, these results do not extend to an arbitrary choice of M .
Following notably [1,54], Beckermann and Labahn study that general case
in [3] under the angle of fraction-free algorithms, with however a complexity
more than linear in n.

Another example of a Toeplitz-like system that occurs frequently is when the
matrix is block-Toeplitz, a block-size equal to α giving a displacement rank
in O(α). Although Theorem 1 applies to any such system, a deterministic
cost of O(αω−1 M(n) log(n)) can be obtained in the particular case where the
matrix is invertible. As described for example in [16,17], this cost follows from
combining an inversion formula of [33] with σ-basis computations as in [23].

Multivariate polynomial interpolation has been studied extensively (see [20] for
a survey and [4,10,56] for algorithms relevant to sparse techniques). However,
to our knowledge, previous references either do not cover the problems we deal
with, or have higher complexity (typically, quadratic). Regarding the converse
evaluation problem, let us mention the subquadratic complexity result of [40],
which however deals with more general situations than ours.

Practical issues. Few practical algorithms are currently known for matrix
multiplication with complexity better than cubic (see [53,34] and [32] for an
exponent 2.776). However, even when using algorithms of cubic complexity,

7

the re-introduction of dense matrix arithmetic in our algorithms means that
we can rely on extremely optimized implementations of matrix multiplication,
such as the ones relying on BLAS libraries for finite field arithmetic [15].

Hence, besides theoretical estimates, the re-introduction of dense matrix mul-
tiplication in algorithms for structured matrices may lead to practical im-
provements. However, extra work may be required: useful refinements would
for instance consist in removing the undesired logarithmic factors that appear
in Theorems 1, 2 and 3.

Organization of the paper. After introducing basic notation and results
in Section 2, we present in Section 3 the bases of our technical improvement,
which can be stated in terms of polynomial operations only. These results are
then applied, first to the Toeplitz case in Section 4, then to the Vandermonde
case in Section 5 and the Cauchy case in Section 6. The appendix presents
an algorithm for putting an arbitrary vector into the form of Equation (1),
without relying on sorting algorithms.

Acknowledgments and notes. We thank E. Kaltofen, G. Labahn, M. Morf,
V. Y. Pan, B. Salvy, A. Storjohann and G. Villard for useful discussions and
comments. An earlier version of this article (lacking in particular the discussion
of the Cauchy case) was published in [8].

2 Notation and preliminaries

We gather here all needed notation for vectors and matrices as well as some
basic identities and complexity results on structured and dense matrices.

Matrices, vectors and polynomials. In what follows, we consider matrices
and vectors over a field K; vectors in Kn are identified with column-matrices
in Kn×1.

Matrices (resp. vectors) are written in upper-case (resp. lower-case) sans-serif

font. If A (resp. B, C, . . .) is a matrix, ai (resp. bi, ci, . . .) is its ith column.
If x (resp. y, z, . . .) is a vector, its ith entry is written xi (resp. yi, zi, . . .).
Special matrices (diagonal, Vandermonde, Toeplitz, . . .) will be written with
blackboard bold letters (D, V, . . .).

For n a positive integer and i ≤ n, we let en,i be the ith unit vector in Kn,
so that en,i is zero, except at the ith entry, which is 1. The identity matrix in
Kn×n, whose ith column equals en,i, will be written In.

Regarding univariate polynomials, we use the following notation:

8

• The degree of F ∈ K[x] is written deg(F).

• For n ∈ N, we let K[x]n be the n-dimensional vector space of polynomials
of degree less than n.

• For n ∈ N and F = f0 + · · ·+ fn−1x
n−1 ∈ K[x]n, we will write Revn(F) for

the reversal fn−1 + · · · + f0x
n−1 of F .

• For F ∈ K[x] and G ∈ K[x] nonzero, F div G and F mod G are the quotient
and the remainder in the division of F by G.

Notation such as AB mod C or AB div C must be interpreted as (AB) mod
C or (AB) div C, respectively.

We say that a vector is repetition-free when its entries are pairwise distinct.
Besides, we use the following notation for vectors and polynomials derived
from a vector a = [a1, . . . , an]

t in Kn:

• Flip(a) is the vector [0, an, . . . , a2]
t ∈ Kn.

• Pol(a) is the polynomial
∑n−1
i=0 ai+1x

i ∈ K[x]n.

• If F is a function on K, then F (a) is the vector [F (a1), . . . , F (an)]
t ∈ Kn.

• Conversely, if a is repetition-free and y is in Kn, then Interp(a, y) is the
unique polynomial F in K[x]n such that yi = F (ai) for 1 ≤ i ≤ n.

Families of structured matrices. Several families of structured matrices
will be used along this paper. First, we associate matrices to a vector x =
[x1, . . . , xn]

t in Kn:

• D(x) ∈ Kn×n is the diagonal matrix whose ith diagonal entry equals xi.

• L(x) is the lower-triangular Toeplitz matrix with first column x:

L(x) =

x1

x2 x1

...
...

. . .

xn xn−1 · · · x1

∈ K
n×n.

• U(x) = L(x)t is the upper-triangular Toeplitz matrix with first row xt:

U(x) =

x1 x2 · · · xn

x1 · · · xn−1

. . .
...

x1

∈ K
n×n.

9

• For ϕ in K, we denote by T(x, ϕ) the ϕ-circulant matrix with first column
x; that is, T(x, ϕ) = L(x) + ϕU(Flip(x)):

T(x, ϕ) =

x1 ϕxn . . . ϕ x2

x2 x1
. . .

...
...

...
. . . ϕxn

xn xn−1 . . . x1

∈ K
n×n.

• For m ∈ N, the n×m Vandermonde matrix V(x, m) is given by:

V(x, m) =

1 x1 · · · xm−1
1

...
...

...

1 xn · · · xm−1
n

∈ K
n×m.

• Given y = [y1, . . . , ym]t in Km such that xiyj 6= 1 for all i, j, the n × m
Cauchy matrix C(x, y) is defined by

C(x, y) =

1
1−x1y1

· · · 1
1−x1ym

...
...

1
1−xny1

· · · 1
1−xnym

∈ K
n×m.

We also associate families of matrices to univariate polynomials:

• Given F = f0 + · · · + fn−1x
n−1 ∈ K[x]n and m ∈ N, we denote by M(F,m)

the matrix of the map K[x]m → K[x]n+m−1 of multiplication by F :

M(F,m) =

f0

...
. . .

...
. . . f0

fn−1
. . .

...
. . .

...

fn−1

∈ K
(n+m−1)×m.

• Given the monic polynomial F = f0 + · · · + fn−1x
n−1 + xn, we denote by

10

X(F) the matrix of multiplication by x in K[x]/〈F 〉:

X(F) =

−f0

1 −f1

. . .
...

1 −fn−1

∈ K
n×n.

Structured matrix identities. The families of structured matrices shown
above satisfy many identities. We present now the ones we will need below; we
start by showing how to rewrite products (diagonal matrix)×(Vandermonde
matrix) using polynomial multiplication matrices.

Lemma 1 Let x be repetition-free in Kn, let y be in Kn, and let P ∈ K[x]n be
defined by P = Interp(x, y). Then, for m in N, we have

D(y) V(x, m) = V(x, n+m− 1) M(P,m).

Proof. Let f be in Km and let F = Pol(f) ∈ K[x]m. Then, both vectors
D(y) V(x, m) f and V(x, n+m− 1) M(P,m) f have entries yiF (xi). �

The above identity is used in Subsections 5.1 and 6.1 to solve multiplication
problems associated to, respectively, Vandermonde and Cauchy-like matrices.
In fact, for Cauchy-like matrices, we will use it in combination with another
identity, shown in Lemma 2 below: it factors n×m Cauchy matrices by means
of Vandermonde and transposed Vandermonde matrices; when n = m, this
is [18, Proposition 3.2] (see also [45, Exercise 3.10(b)]).

Lemma 2 Let x in Kn and y in Km be such that xiyj 6= 1 for all i, j. Let
F ∈ K[x]m+1 be given by F =

∏

j≤m(1 − xyj) and let f in Km be such that
Pol(f) = F mod xm. Then

C(x, y) = D(F (x))−1
V(x, m) L(f) V(y, m)t.

Proof. Since F (xi) 6= 0 for all i, we have (1− xiyj)
−1 = F (xi)

−1Gj(xi), with
Gj = F/(1 − xyj). Therefore, C(x, y) = D(F (x))−1 [G1(x) · · · Gm(x)]. Now,
Gj ∈ K[x]m and thus

Gj = (F mod xm)(1 + yjx+ · · ·+ ym−1
j xm−1) mod xm.

Writing gj for the vector in Km such that Pol(gj) = Gj , we obtain

Gj(x) = V(x, m) gj = V(x, m) L(f)
[

1 yj · · · ym−1
j

]t

11

for 1 ≤ j ≤ m, which concludes the proof. �

Our final expression, already seen e.g. in [24], shows that some companion
matrices and diagonal matrices are similar. We will use it in Subsection 5.2
for reducing Vandermonde-like systems to Toeplitz-like ones, and then again
in Subsection 6.2 for reducing Cauchy-like systems to Vandermonde-like ones.

Lemma 3 Let x be a repetition-free vector in Kn and let F be the monic
polynomial defined by F =

∏

i≤n(x− xi). Then we have the equality

D(x) = V(x, n) X(F) V(x, n)−1.

Proof. For y in Kn, we claim that the vectors D(x)y and V(x, n)X(F)V(x, n)−1y

have entries xiyi. This is readily seen for the former one. Defining P =
Interp(x, y) ∈ K[x]n, computing the latter vector amounts to evaluate the
polynomial (xP mod F) at x, yielding the values xiyi as well. �

Polynomial expressions. Multiplication by the various families of struc-
tured matrices seen before can be reinterpreted in terms of polynomial opera-
tions. This is foremost the case for multiplication by lower or upper-triangular
Toeplitz matrices, as seen in the following well-known lemma.

Lemma 4 Let y and z be in Kn and let u = L(y) z and v = U(y) z. We have

Pol(u) = Pol(y) Pol(z) mod xn,

Pol(v) = Revn(Pol(y)) Pol(z) div xn−1.

We gather here some further expressions of a similar spirit, that are needed
later. First, we show how to rewrite transposed polynomial multiplication in
terms of plain multiplication; the following result is from [9, Section 4.1].

Lemma 5 Let P be in K[x]m, f be in Kn+m−1 and let u = M(P, n)t f ∈ Kn.
Then we have

Pol(u) = (Revm(P) Pol(f) div xm−1) mod xn.

The next lemma describes a more complex operation, needed in Section 5.1
for handling Vandermonde-like matrices.

Lemma 6 Let z be in Kn, ϕ be in K, P be in K[x]m, f be in Kn+m−1, and
define g ∈ Kn by

g = T(z, ϕ) M(P, n)t f.

Define further

12

• z′ = Flip(z) in Kn,

• Z = Pol(z) and Z ′ = Pol(z′) in K[x]n,

• F = Pol(f) in K[x]n+m−1.

Then we have the equality

Pol(g) = Z
(

Revm(P)F div xm−1
)

mod xn

+ ϕ Revn
(

Z ′ (P Revn+m−1(F) div xm−1) mod xn
)

.

Proof. Since by definition T(z, ϕ) equals L(z) + ϕU(z′), we see that Pol(g)
equals Pol(g′)+ϕPol(g′′), where g′ = L(z) M(P, n)t f and g′′ = U(z′) M(P, n)t f.
Thus, by applying successively Lemma 4 and Lemma 5 to g′, we first obtain

Pol(g′) = Z
(

Revm(P)F div xm−1
)

mod xn.

To deal with g′′, notice that U(z′) = J L(z′) J, where the reversal matrix J is
zero, except on the anti-diagonal, whose entries are 1’s. Then, doing as before,

Pol(g′′) = Revn
(

Z ′ Revn
(

(Revm(P)F div xm−1) mod xn
)

mod xn
)

;

observe the presence of the two extra Revn operations, due to the conjugation
by the J matrix. To get rid of the second reversal, one checks that

Revn
(

(Revm(P)F div xm−1) mod xn
)

=
(

P Revn+m−1(F) div xm−1
)

mod xn,

which gives the required result. �

Algorithms for univariate polynomials. As mentioned before, M denotes
a function from N>0 to R>0 such that over any ring, polynomials of degree
less than d can be multiplied using at most M(d) ring operations.

Following [21, Chapter 8], we make the assumption that the function d 7→
M(d)/d is non-decreasing; this implies in particular that the super-linearity
condition M(d) + M(d′) ≤ M(d + d′) holds for all d, d′. Using the results of
[49,11], one can take M(d) ∈ O(d log(d) log log(d)).

Several fast algorithms are based on fast multiplication. Let thus x = [x1, . . . , xn]
t

be in Kn; we will use the following well-known results.

Construction from roots. The polynomials
∏

i≤n(x−xi) and
∏

i≤n(1−xix) can
be computed in O(M(n) log(n)) operations [21, Lemma 10.4].

Evaluation. Given f ∈ Kn, one can compute V(x, n) f (equivalently, evaluate
any polynomial F ∈ K[x]n at x) in O(M(n) log(n)) operations [21, Corollary
10.8].

13

Transposed evaluation. Given f ∈ Kn, one can compute the vector V(x, n)t f
in O(M(n) log(n)) operations [22, Theorem 10.4].

Interpolation. If x is repetition-free and f is in Kn, one can compute the vector
V(x, n)−1 f (equivalently, interpolate any polynomial F ∈ K[x]n at x) in
O(M(n) log(n)) operations [21, Corollary 10.12].

Transposed interpolation. If x is repetition-free and f is in Kn, one can compute
the vector V(x, n)−t f in O(M(n) log(n)) operations [30, Section 5] (a similar
result can be found in [41, Section 10]).

Algorithms for dense matrices. As said earlier, we let 2 < ω ≤ 3 be such
that n× n matrices over K can be multiplied in O(nω) operations in K.

Dense matrix operations will be used for several purposes. First, since we
require that our fast polynomial multiplication algorithms apply over any
ring, we deduce that polynomial matrices over K having degree less than d
and size n can be multiplied in O(nω M(d)) operations. In Section 3, we will
actually use the following two results, which deal more precisely with some
specific rectangular polynomial matrix products.

Lemma 7 Let A,B,C be matrices of respective sizes (n × p), (p × n) and
(n× p), with entries in K[x]d. Then one can compute the product A B C using
O(pω−1 nM(d)) operations.

Proof. Suppose first that p ≤ n. Up to bordering the matrices by less than
p zero rows or columns, we can suppose that p divides n. Let then ℓ = n/p.
We can rewrite the product A B C as a product of matrices of size (ℓ × 1) ×
(1× ℓ)× (ℓ× 1), having blocks of size p× p as entries. We then compute this
product as A (B C); the cost is O(pω ℓM(d)), which is O(pω−1 nM(d)).

Suppose now that n ≤ p; as above, we suppose that n divides p and let
ℓ = p/n. Then, the product A B C is rewritten as a product of matrices of
size (1 × ℓ) × (ℓ × 1) × (1 × ℓ), having blocks of size n × n as entries. We
then compute this product as (A B) C; the cost is O(nω ℓM(d)), that is, in
O(nω−1 pM(d)). This is also in O(pω−1 nM(d)), since 0 ≤ n ≤ p and ω ≥ 2
imply nω−1p ≤ pω−1n. �

Lemma 8 Let A and B be matrices of respective sizes (n × p) and (p ×m),
with entries in K[x]d. If n ≤ p, then one can compute the product A B using
O(pω−1 max{n,m}M(d)) operations.

Proof. Suppose first that n ≤ m. As in the previous lemma, up to bordering
A by less than n zero columns and B by less than n zero columns and rows,
we can suppose that n divides p and m. Let k = p/n and ℓ = m/n. Then,
the product A B is rewritten as a product of matrices of size (1× k)× (k× ℓ),

14

having blocks of size n× n as entries. The cost for computing this product is
thus O(nω k ℓM(d)) operations, which is O(nω−2 pmM(d)). Since 0 ≤ n ≤ p
and ω − 2 ≥ 0, this is in O(pω−1mM(d)), as required.

Assuming m ≤ n, we obtain a similar estimate of O(mω−2 p nM(d)). Since
then 0 ≤ m ≤ p and ω − 2 ≥ 0, this is in O(pω−1 nM(d)), as required. �

Besides fast (polynomial) matrix multiplication in the above two particular
cases, we shall also use fast elimination on dense matrices. We thus give the
following result on isolating a basis of the row-span of a matrix. This is a
simple consequence of Proposition 2.15 in [51].

Lemma 9 Let A be in Kn×p. One can compute in time O(rω−2np) a quadruple
(r, J,G,P) such that r is the rank of A, J is a subset of {1, . . . , n} of length r,
G is a matrix in K(n−r)×r, P is a permutation matrix of order n, and

E A =

A′

0

 , where E =

Ir 0

G In−r

P,

and where A′ ∈ Kr×p consists of the rows of A indexed by J .

Proof. Using Algorithm 2.14 in [51], one can compute in time O(rω−2np) the
rank r of A along with a permutation matrix P, and a matrix U of the form

U =

F 0

G In−r

 , with F ∈ K
r×r,

such that the last n − r rows of the product U P A are zero. Then let J =
{i1, . . . , ir}, where ij is the index of the non-zero entry of the jth row of P.
Define E as above, replacing F by the identity Ir in U; then, the first r rows
of P A, and thus of E A, are the rows of A indexed by J . �

The above lemma will be used in Subsections 5.3 and 6.3 for introducing ze-
ros in some generators of Vandermonde and Cauchy-like matrices, and thus
handling the high multiplicities that may arise in those cases. Another applica-
tion of this lemma is the fast computation of generators of minimal length (or,
equivalently, of maximal rank), an operation already needed for the Toeplitz
case. The proof of the result below, which is Remark 4.6.7 in [45], shows this.

Lemma 10 Let P,Q ∈ Kn×n. Given a P,Q-generator of length α ≤ n for
A ∈ Kn×n, one can compute a P,Q-generator for A of minimal length in time
O(αω−1n).

Proof. Denoting by (Y,Z) the given generator, we have A − P A Q = Y Zt.
Let V be an invertible matrix in Kα×α such that Y V = [Y′ 0], with Y′ ∈ Kn×r

15

and r = rank(Y). Let also Z′ ∈ Kn×r consist of the first r columns of Z V−t.
We have Y Zt = Y′ Z′t and thus (Y′,Z′) is a P,Q-generator for A of length r.

Although Y′ has full rank, Z′ may have rank less than r. Therefore, let further
V′ be an invertible matrix in Kr×r such that Z′ V′ = [H 0], with H ∈ Kn×r′

and r′ = rank(Z′). Defining G as the matrix in Kn×r′ that consists of the first
r′ columns of Y′ V′−t, we obtain the equality Y′ Z′t = G Ht. Since now both G

and H have full rank, they form a P,Q-generator for A of minimal length.

By Lemma 9, the cost of computing r and V is in O(αω−1n). One then obtains
Y′ in time O(αω−1n) by multiplication with V. To get Z′, one can first com-
pute V−t in time O(αω) and then deduce Z V−t in time O(αω−1n). Similarly,
deducing (G,H) from (Y′,Z′) can be done in time O(αω−1n), as required. �

Partitions and multiplicities. Our algorithms for Vandermonde and Cauchy-
like systems may require to perform rearrangements of the diagonal matrices
appearing in the corresponding displacement operators. We detail this process
here, pointing out in particular that performing the required permutations is
inexpensive.

We start by integer partitions. A partition ν of n ∈ N>0 is a sequence of
positive integers ν1 ≥ · · · ≥ νs such that ν1 + · · ·+ νs = n. It will be useful to
associate to ν the sequence ν∗0 = 0, ν∗1 = ν1, . . . , ν

∗
i = ν1 + · · ·+ νi,

The conjugate of ν is another partition µ = µ1 ≥ · · · ≥ µt of n, where µj
is the number of elements i in {1, . . . , s} such that νi ≥ j; in particular, the
conjugate of µ is ν and we have t = ν1 and s = µ1. Remark that given ν, one
deduces µ in n integer additions: after initializing µ at 0, . . . , 0 (ν1 repetitions),
we obtain µ by incrementing µj , for i = 1, . . . , s and j = 1, . . . , νi,

Next, we discuss partitions of vectors. Let thus x be in Kn. We suppose that
x has the form of Equation (1):

x =

x1

...
xs

, with xi =

xi,1
...

xi,νi

∈ K
νi ,

where each xj is a repetition-free vector of size νj and where for j < s, xj+1 is a
prefix of xj. Since ν = ν1 ≥ · · · ≥ νs is a partition of n, we let µ = µ1 ≥ · · · ≥ µt
be the conjugate partition. The number of occurrences of x1,j in x is thus µj ;
we call it its multiplicity, and call µ1 = s the multiplicity of x.

16

It follows that, after permuting its entries, x can be rewritten as

x′ =

xσ(1)
...

xσ(n)

=

x′1
...
x′t

, (6)

where x′j is a vector consisting of µj repetitions of x1,j . For example, if x =
[1, 2, 4, 1, 2, 1, 2]t, we have

x1 =

1
2
4

, x2 =

1
2

 , x3 =

1
2

 and x′1 =

1
1
1

, x′2 =

2
2
2

, x′3 =
[

4

]

,

with s = t = 3, (ν1, ν2, ν3) = (3, 2, 2), (µ1, µ2, µ3) = (3, 3, 1), σ = [1, 4, 6, 2, 5, 7, 3]
and σ−1 = [1, 4, 7, 2, 5, 3, 6].

Lemma 11 Given x as in Equation (1), one can deduce a permutation σ as
in Equation (6) in time O(n); the converse operation can be done within the
same complexity.

Proof. The partition ν is obtained by scanning x for occurrences of x1,1,
in time O(n). One obtains µ as the conjugate of ν for a similar cost; the
permutation σ can then be made explicit as

σ(1), . . . , σ(n) = 1, 1 + ν∗1 , . . . , 1 + ν∗µ1−1, . . . , ν1, ν1 + ν∗1 , . . . , ν1 + ν∗µt−1,

the first block giving the indices of x1,1 = x2,1 = · · · = xs,1 in x and so
on. Conversely, given x′, µ is obtained by scanning x′ for indices where two
consecutive entries differ. Then, one recovers ν and σ−1 in the same way as
before, changing the roles of ν and µ. In any case, the cost fits into the required
bound. �

By analogy with the squarefree decomposition of polynomials, we call the
representation in Equation (6) a repetition-free decomposition of x.

3 Polynomial operations

We discuss now two problems involving polynomials. Both boil down to suit-
ably using polynomial matrix multiplication to speed up the simultaneous
computation of several bilinear or trilinear expressions; as it turns out, these
questions are the main ingredients of the algorithms in the following sections.

17

3.1 First problem

In the following, some integers n and α ≤ n are fixed. Let

(Yi)i≤α, (Zi)i≤α and (Fj)j≤α

be in K[x]n. The next proposition will be used in Section 4, as the key to
the proof of Theorem 1 for Toeplitz-like systems. The cost reported in this
proposition is actually the bottleneck of the main algorithm: any reduction on
the following estimate would entail a reduction of the overall cost.

Proposition 1 One can compute the polynomials

Gj =
α
∑

i=1

Yi (Zi Fj mod xn), j = 1, . . . , α

in time O(αω−1M(n) log(n)).

The direct approach, used in previous work, consists in computing all polyno-
mials Gj independently, for a cost of O(α2 M(n)) operations. Our contribution
shows how to compute the polynomials Gj simultaneously using polynomial
matrix multiplication.

Proof. Up to replacing n with n̄ = 2⌈log(n)⌉ and Fj with xn̄−nFj , we can (and
will) suppose that n is a power of 2.

We first show how to rewrite truncated products using non-truncated ones,
using ideas reminiscent of short products [39]. Let k ≥ 1 be a power of 2 and
let ℓ be in N. For P = p0 + p1x+ · · · , we define P (ℓ,k) ∈ K[x] as follows:

P (ℓ,1) = pℓ and P (ℓ,k) =
ℓk+k/2−1
∑

i=ℓk

pix
i−ℓk for k ≥ 2.

In all cases, P (ℓ,k) is a polynomial of degree less than k/2. Using this sub-
division enables us to rewrite a truncated product PQ mod xn as a sum of
non-truncated ones.

Lemma 12 For P and Q in K[x] and m a power of 2,

PQ mod xm =
∑

k=1,2,4,...,m

xm−k
m/k−1
∑

ℓ=0

P (ℓ,k)Q(m/k−1−ℓ,k),

where the sum is taken on all k ≤ m that are powers of 2.

Proof. We proceed by induction on m ≥ 1, for m a power of 2. If m = 1 the
result is clear, so, assuming that the property holds at index m/2, we prove it

18

at index m. Let us write

P mod xm = P0 + xm/2P1 and Q mod xm = Q0 + xm/2Q1,

with P0, P1, Q0, Q1 of degree less than m/2. Then we have

P
(ℓ,k)
0 = P (ℓ,k) and P

(ℓ,k)
1 = P (ℓ+m/2k,k)

for any k ≥ 1 and ℓ ≥ 0 such that ℓk+ k/2 ≤ m/2. Analogous equalities hold
for Q, Q0 and Q1. Now, by definition, the following equality holds:

PQ mod xm = P0Q0 + xm/2(P0Q1 + P1Q0 mod xm/2). (7)

Observe first that P0Q0 equals P (0,m)Q(0,m), which corresponds to the term
k = m in the right-hand side of the formula we wish to establish. Next, the
induction assumption shows that P0Q1 mod xm/2 is given by

∑

k=1,2,...,m/2

xm/2−k
m/2k−1
∑

ℓ=0

P
(ℓ,k)
0 Q

(m/2k−1−ℓ,k)
1 ,

which we rewrite as

∑

k=1,2,...,m/2

xm/2−k
m/2k−1
∑

ℓ=0

P (ℓ,k)Q(m/k−1−ℓ,k).

Similarly, P1Q0 mod xm/2 equals

∑

k=1,2,...,m/2

xm/2−k
m/k−1
∑

ℓ=m/2k

P (ℓ,k)Q(m/k−1−ℓ,k).

Putting these equalities in Equation (7) ends the proof. �

We can now prove the proposition. By Lemma 12, we have for all i and j

Yi(ZiFj mod xn) =
∑

k=1,2,4,...,n

xn−k
n/k−1
∑

ℓ=0

Yi Z
(ℓ,k)
i F

(n/k−1−ℓ,k)
j .

Thus for j ≤ α, we have Gj =
∑

k=1,2,4,...,n xn−k Gj,k, with

Gj,k =
α
∑

i=1

n/k−1
∑

ℓ=0

Yi Z
(ℓ,k)
i F

(n/k−1−ℓ,k)
j .

We next show how to compute all polynomials G1,k, . . . , Gα,k, for a fixed k.

Lemma 13 Let k ≤ n be a power of 2. Then one can compute G1,k, . . . , Gα,k

in time O(αω−1M(n)).

19

Proof. Let k′ = n/k, and let Z and F be the (α×k′) and (k′×α) polynomial
matrices

Z =

Z
(0,k)
1 · · · Z

(k′−1,k)
1

...
...

Z(0,k)
α · · · Z(k′−1,k)

α

, F =

F
(k′−1,k)
1 · · · F (k′−1,k)

α

...
...

F
(0,k)
1 · · · F (0,k)

α

.

Then we have the equality
[

G1,k · · · Gα,k

]

=
[

Y1 · · · Yα

]

Z F.

All entries of Z and F have degree less than k/2, whereas the polynomials
Yi have degree less than n. To balance the degrees, for i ≤ α, we write Yi =
∑k′−1
ℓ=0 Yi,ℓx

kℓ, with Yi,ℓ of degree less than k. We then define the (k′×α) matrix

Y =

Y1,0 · · · Yα,0
...

...

Y1,k′−1 · · · Yα,k′−1

with polynomial entries of degree less than k, such that
[

Y1 · · · Yα

]

=
[

1 xk x2k · · · x(k′−1)k

]

Y. (8)

Using Lemma 7, we can compute the product Y Z F in O(αω−1 k′ M(k)) oper-
ations. Since k′ M(k) ≤ M(n), this cost is in O(αω−1M(n)). Finally, by Equa-
tion (8), we deduce G1,k, . . . , Gα,k from the product Y Z F in time O(α k′ k),
which is in O(αn). �

To conclude the proof of Proposition 1, we apply Lemma 13 to k = 1, 2, 4, . . . , n,
for a total cost of O(αω−1M(n) log(n)). The cost of deducing G1, . . . , Gα is a
negligible O(αn log(n)). �

3.2 Second problem

As above, some integers n ∈ N and α ≤ n are fixed. Let also s and t be
positive integers bounded by α and let ν1, . . . , νs and δ1, . . . , δt be positive
integers such that

n = ν1 + · · · + νs and n = δ1 + · · · + δt.

Let then
(Qi,j)i≤α, j≤s and (Ri,k)i≤α, k≤t

20

be in K[x], with deg(Qi,j) < νj and deg(Ri,k) < δk. The following result is
used in Section 6 to reduce the solution of Cauchy-like systems to that of
Vandermonde-like systems.

Proposition 2 One can compute the polynomials

Pj,k =
α
∑

i=1

Qi,jRi,k, j = 1, . . . , s, k = 1, . . . , t

in time O(αω−1M(n) log(n)).

Remark that computing all polynomials Pj,k independently leads to a cost in
O(α2 M(n)), which is quadratic in α. As we did in the previous subsection, we
are going to use polynomial matrix multiplication to compute the polynomials
Pj,k simultaneously and obtain a cost subquadratic in α.

Proof. Let L = {0, 1, . . . , ⌊log(n)⌋}. For β, γ ∈ L, define

Sβ = {j : 2β ≤ νj < 2β+1} and Tγ = {k : 2γ ≤ δk < 2γ+1};

we then let qβ = |Sβ| and rγ = |Tγ|. Rewrite the equality n =
∑s
j=1 νj as

n =
∑

β∈L

∑

j∈Sβ

νj .

Since for j ∈ Sβ, all νj are at least 2β, we deduce the following inequality,
together with its analogue for the subsets Tγ :

∑

β∈L

2βqβ ≤ n and
∑

γ∈L

2γrγ ≤ n. (9)

Given the integers ν1, . . . , νs and δ1, . . . , δt, all subsets Sβ and Tγ can be ob-
tained in time O(n). Then, for a given pair (β, γ), the polynomials {Pj,k : j ∈
Sβ, k ∈ Tγ } are the entries of the matrix product Q R, with

Q =

...
...

Q1,j · · · Qα,j

...
...

j∈Sβ

, R =

· · · R1,k · · ·
...

· · · Rα,k · · ·

k∈Tγ

.

The polynomial matrix Q has dimensions (qβ × α) and degree less than 2β+1;
R has dimensions (α× rγ) and degree less than 2γ+1.

Let us first deal with the case where β ≤ γ. Then, the polynomials in R have
potentially larger degrees than the ones in Q. To balance these degrees, we
write R =

∑2γ−β−1
ℓ=0 Rℓ x

2β+1ℓ, where Rℓ is an (α × rγ) polynomial matrix with
entries of degree less than 2β+1.

21

From the knowledge of the products {Q Rℓ : 0 ≤ ℓ < 2γ−β}, one can deduce
Q R using O(α 2γ rγ) extra additions; summing over all β, γ with β ≤ γ, and
using Equation (9), this amounts to O(αn log(n)) additions. Hence, we focus
on computing the former products. Concatenating all matrices Rℓ, let us define

R′ =
[

R0 · · · R2γ−β−1

]

;

it is then enough to compute Q R′, since the Q Rℓ can be read off this product.

The matrix R′ has dimensions (α×r′γ), with r′γ = 2γ−βrγ, and entries of degree
less than 2β+1. Since qβ ≤ α, Lemma 8 shows that the cost of computing the
product Q R′ is in

O(αω−1 max{qβ, r
′
γ}M(2β+1)).

Recall that by assumption on the function M, we have M(2β+1) ≤ 2β+1M(n)/n.
Bounding the max by a sum and substituting r′γ by its value, we deduce the
upper bound

O

(

αω−1 2β qβ
M(n)

n
+ αω−1 2γrγ

M(n)

n

)

.

Summing over all β, γ with β ≤ γ, and using Equation (9), we obtain an upper
bound in O(αω−1M(n) log(n)). The case where β > γ is handled similarly. �

We will need in Section 5 the following corollary of the previous proposition,
to reduce the solution of Vandermonde-like systems to that of Toeplitz-like
systems. Let s ≤ α and ν1, . . . , νs be as above and let

(Zi)i≤α, (Yi,j)i≤α, j≤s, and (Fj)j≤s

be in K[x], with deg(Zi) < n, deg(Yi,j) < νj and deg(Fj) < n+ νj .

Proposition 3 One can compute the polynomials

Pj =
α
∑

i=1

Zi
(

Yi,jFj div xνj−1
)

, j = 1, . . . , s

in time O(αω−1M(n) log(n)).

The remarks we did before still apply: a direct approach consists in computing
all polynomials Pj independently, for a cost in O(α2 M(n)). Using polynomial
matrix multiplication to share computations, we get a cost subquadratic in α.

Proof. For i ≤ α and j ≤ s, let Gi,j = Yi,jFj mod xνj−1. Then, for j ≤ s, we
can define

Qj =
α
∑

i=1

ZiGi,j and Rj =
α
∑

i=1

ZiYi,j.

It follows that Pj is given by (RjFj −Qj) div xνj−1.

22

For given i and j, the polynomial Gi,j can be computed in M(νj) operations;
hence, the whole time for computing all these polynomials is at most αM(n).
Applying Proposition 2 with t = 1 and δ1 = n, we deduce that we can compute
all polynomials Qj and Rj using O(αω−1M(n) log(n)) operations. Finally, we
recover the polynomials Pj in time O(sM(n)) ⊂ O(αM(n)). �

4 The Toeplitz case

The operator associated with the Toeplitz structure is

∆[Zn,0,Z
t
n,0](A) = A − Zn,0 A Z

t
n,0, A ∈ K

n×n. (10)

This operator is invertible: given (Y,Z) in Kn×α×Kn×α, there exists a unique
A such that ∆[Zn,0,Z

t
n,0](A) = YZt; it is given by the representation

A =
α
∑

i=1

L(yi)U(zi),

called in [28,29] a ΣLU representation of length α for A. Using Lemma 4, this
representation allows one to compute a matrix-vector product Au in O(αM(n))
operations. Our problem in this section is the converse one: given v in Kn, find
u such that Au = v (or conclude that no such vector exists).

For large α, we improve previous algorithms, reducing their complexity from
O(α2 M(n) log(n)) to O(αω−1 M(n) log2(n)). The structure of our algorithm is
similar to those initiated by Bitmead and Anderson [7] and Morf [37,38]; the
key difference consists in using the results of the previous section to perform
efficiently the following operation: given Y,Z as above and u1, . . . , uα in Kn,
compute the α products vj = Auj .

4.1 Preliminaries

In addition to the operator in Equation (10) we will use the operator

∆[Zt
n,0,Zm,0](A) = A − Z

t
n,0 A Zm,0, A ∈ K

n×m.

Regardless of dimensions, the operators ∆[Zt
n,0,Zm,0] and ∆[Zn,0,Z

t
m,0] are

called respectively φ− and φ+ in [43,28,29]; their generators are called φ−-
generators and φ+-generators. From now on, we use this simplifying notation.

We give in this subsection some useful results on generators for submatrices,
sums, products, Our contribution is Proposition 4 below, which is a faster

23

version of [43, Proposition A.3] for generating matrix products; as in [28,29]
we extend the result to rectangular matrices. Proofs not given here can be
found in e.g. [7,38,43,28,45].

A first key feature of the operators φ+ and φ− is that when A is invertible, the
ranks of φ+(A) and φ−(A−1) coincide. Secondly, when A is square, the ranks
of φ+(A) and φ−(A) differ by at most 2.

The next lemma gives the complexity of converting from φ−- to φ+-generators;
the same holds for converting back.

Lemma 14 Given a φ−-generator of length α for the matrix A ∈ Kn×n, one
can compute a φ+-generator of length α+ 2 for A in time O(αM(n)).

Assuming that n = m, partition A into blocks as

A =

A1,1 A1,2

A2,1 A2,2

, (11)

with Ai,j ∈ Kni×nj , and n1 + n2 = n. Then the rank of φ+(A1,1) is at most
that of φ+(A); if A1,1 is invertible and has its upper-left entry non-zero then
the same bound holds for the Schur complement A2,2 − A2,1A

−1
1,1A1,2.

Next, we consider the cost of deducing generators for the blocks Ai,j from
generators for A, and conversely.

Lemma 15 Given a φ+-generator of length α for A, one can find φ+-generators
of length O(α) for all Ai,j in time O(αM(n)). Conversely, given φ+-generators
of length at most α for all Ai,j, one can find a φ+-generator of length O(α)
for A in time O(αM(n)).

Adding matrices given by their generators is straightforward (even though the
generators thus obtained may not be minimal).

Lemma 16 If (T,U) and (Y,Z) are φ+-generators for some matrices A and
B of the same dimensions, then ([T Y], [U Z]) is a φ+-generator for A + B.

We conclude with the key novelty of this subsection, which concerns the com-
plexity of computing a generator for the product of two matrices.

Proposition 4 Let (T,U) and (Y,Z) be φ+-generators of lengths α and β for
some matrices A ∈ Kn×m and B ∈ Km×p. Then one can find a φ+-generator
of length α + β + 1 for the product AB in time O(γω−1M(q) log(q)), with γ =
max{α, β} and q = max{n,m, p}.

Proof. Let V = BtU and W = Zn,0 A Zt
m,0Y; let also a (resp. b) be the lower

24

shift of the last column of A (resp. Bt). Then, following [43, Proposition A.3],
the proof of [28, Proposition 2] shows that [T W a] and [V Z −b] form a φ+-
generator of length α + β + 1 for AB. Hence, it suffices to bound the cost of
computing V, W, a and b.

Let us detail the computation of V = BtU when m ≥ p. We reduce to the
square case by defining B′ = [0 B] ∈ Km×m and V′ = B′tU ∈ Km×α. Since V

can be read off V′, we focus on computing the latter matrix.

Remark that φ+(B′) = YZ′t with Z′t = [0 Zt] ∈ Kβ×m. Since B′ is square, the
Gohberg-Semencul formula then shows that

B′ =
β
∑

i=1

L(yi)U(z′i),

where yi is the ith column of Y and z′i the ith column of Z′. Thus, recalling
that J denotes the reversal matrix of order m, the transpose of B′ is given by

B′ t =
β
∑

i=1

L(z′i)U(yi) =
β
∑

i=1

J U(z′i) L(yi) J.

Now, let uj (resp. v′j) be the jth column of U (resp. V′). The previous formula

for B′t and the equation V′ = B′tU thus give

J v′j =
β
∑

i=1

U(z′i)L(yi) J uj.

In polynomial terms, in view of Lemma 4, this reads

Revm(Pol(v′j)) =

β
∑

i=1

Z ′
i (YiUj mod xm)

 div xm−1,

with Z ′
i = Revm(Pol(z′i)), Yi = Pol(yi) and Uj = Revm(Pol(uj)). By Proposi-

tion 1, we can compute the polynomials

β
∑

i=1

Z ′
i (YiUj mod xm), j = 1, . . . , α

in time O(max{α, β}ω−1 M(m) log(m)); the vectors v′j are then deduced by
coefficient extraction. The case p > m is treated similarly, padding B with
p−m zero rows, and giving a cost of O(max{α, β}ω−1 M(p) log(p)). Hence, in
any case, V can be obtained in time O(γω−1 M(q) log(q)), as claimed.

The computation of W is done similarly too, by multiplying A on the right by
Zt
m,0Y, and has a similar cost estimate. Computing a and b is faster: it suffices

to multiply A and Bt by a single vector, so the cost is merely O(γM(q)). �

25

4.2 Solving Toeplitz-like linear systems

We now prove Theorem 1. Let (T,U,w) ∈ Kn×α × Kn×α × Kn be the input of
problem LinearSystem(Zn,0,Z

t
n,0, α). As in [28,29] we will reduce by random-

ization to a similar problem but with a regularized input (Y,Z, v).

Let B be (implicitly) defined by φ+(B) = TUt, so that the system we want to
solve is Bt = w. Define A = U(y) B L(z) and v = U(y) w, where y, z are random
vectors in Kn with first entry equal to 1. Then, a vector t satisfies Bt = w if
and only if the vector u = L(z)−1t satisfies Au = v.

Using the proof of Proposition 4 and the simple structure of the matrices U(y)
and L(z), one may check that a φ+-generator (Y,Z) of length α +O(1) for A

can be computed in time O(αM(n)). Besides, the vector t can be recovered
from u in time M(n). Hence, we can focus on solving the latter problem Au = v.

By Theorem 2 in [31], there exists a non-zero polynomial Γ of 2n−2 variables
and degree n2 + n, such that if Γ(y2, . . . , yn, z2, . . . , zn) 6= 0, the matrix A has
generic rank profile.

Supposing that this condition is satisfied, let r be the rank of A and let Ar ∈
Kr×r be the largest non-singular leading principal submatrix of A. The next
proposition bounds the cost of finding a φ−-generator of length α for A−1

r .
Then, using a third random vector of size n, Theorem 4 in [31] (see also [28,
Proposition 3]) shows how to find a random solution to the system Au = v,
if one exists, in O(αM(n)) operations. This concludes the cost analysis of
Theorem 1.

The probability analysis follows from the previous discussion: the Zippel-
Schwartz lemma [14,55,50] shows that this algorithm has type P (3n−2, n2+n).

Proposition 5 Assume that A has generic rank profile. Given a φ+-generator
of length α for A ∈ Kn×n, one can compute its rank r as well as a φ−-generator
of length at most α for A−1

r in time O(αω−1M(n) log2(n)).

Proof. We use Kaltofen’s Leading Principal Inverse algorithm [28,29], which
follows the ideas of Morf [37,38] and Bitmead-Anderson [7]; with Lemma 10,
this algorithm becomes deterministic, as noted in [47, §7]. The proof of The-
orem 3 in [28] shows that its cost is T (α, n) = O(αω) if n ≤ α and otherwise

T (α, n) = T (α, ⌈n/2⌉) + T (α, ⌊n/2⌋)

+ T1(α, n) + T2(α, n) +O(αω−1n + αM(n)). (12)

Here the term in O(αω−1n + αM(n)) bounds the cost of some conversions
between φ+- and φ−-generators (Lemma 14) and the cost of finding generators

26

of minimal length (Lemma 10); the terms T1(α, n) and T2(α, n) are the costs
of two tasks we shall describe now, after recalling some notation from [28].

With n1 = ⌈n/2⌉, partition A as in Equation (11) and Ar as

Ar =

A1,1 A′
1,2

A′
2,1 A′

2,2

.

Assume that A1,1 is non-singular (else, the cost is smaller) and let

∆ = A2,2 − A2,1 A−1
1,1 A1,2 and ∆′ = A′

2,2 − A′
2,1 A−1

1,1 A′
1,2.

Given φ+-generators of length O(α) for A and A−1
1,1, the first task is to compute

a φ+-generator for ∆. Using Lemmas 15 and 16 and Proposition 4, its cost is
thus T1(α, n) = O(αω−1M(n) log(n)).

Given φ+-generators of length O(α) for A, A−1
1,1 and ∆′−1, the second task

consists in computing a φ+-generator for A−1
r . Recall first that (see for example

Theorem 5.2.3 in [45])

A−1
r =

B′
1,1 B′

1,2

B′
2,1 ∆′−1

with

B′
1,2 = −A−1

1,1A
′
1,2∆

′−1

B′
2,1 = −∆′−1

A′
2,1A

−1
1,1

B′
1,1 = A−1

1,1 − B′
1,2A

′
2,1A

−1
1,1.

Using again Lemmas 15 and 16 and Proposition 4, we get the same estimate
as before: T2(α, n) = O(αω−1M(n) log(n)). In view of the recurrence relation
in Equation (12), this implies that T (α, n) = O(αω−1M(n) log2(n)). �

4.3 Application: Padé-type approximation

We conclude by proving Corollary 1 on polynomial approximation. Let M ∈
K[x] be of degree n, let f1, . . . , fs ∈ K[x] be of degrees less than n and
let ν1, . . . , νs be positive integers such that

∑

i≤s νi = n + 1. We look for
approximants g1, . . . , gs ∈ K[x], not all zero, with deg(gi) < νi and such that
g1f1 + · · ·+ gsfs = 0 mod M .

Write M =
∑n
i=0mix

i, with mn = 1 and let X = X(M) ∈ Kn×n be the matrix
of multiplication by x modulo M . For i ≤ s, define Ai as the Krylov matrix

Ai =
[

fi X fi · · · Xνi−1 fi

]

∈ K
n×νi,

27

where fi = [fi,0 · · · fi,n−1]
t is the vector of coefficients of fi. Let finally A =

[A1 · · · As] ∈ Kn×(n+1) and A′ ∈ K(n+1)×(n+1) be the matrix obtained by
padding A with an (n+ 1)st row full of 1’s.

Since the right null space of A is non-trivial, the square system A′u = [0 · · · 0 1]t

admits a solution, and any such solution solves our problem. The following
lemma shows the Toeplitz-like structure of the matrix A′; combining it with
Theorem 1 proves Corollary 1.

Lemma 17 Given M , f1, . . . , fs and ν1, . . . , νs as above, one can compute a
φ+-generator of length s+ 2 for the matrix A′ in time O(sM(n)).

Proof. Remark that X = Zn,0 − m etn,n, with

m =

m0

...
mn−1

∈ K
n and en,n =

0
...
0
1

∈ K
n;

since A has dimensions n× (n+ 1), it follows that

φ+(A) = A − X A Z
t
n+1,0 − m etn,n A Z

t
n+1,0.

Let a = At en,n ∈ Kn+1 be the transpose of the last row of A and let b =
Zn+1,0 a. Then, the previous formula becomes φ+(A) = A − X A Zt

n+1,0 − m bt.

Taking f0 = 0 and ν0 = 0, we can write A − X A Zt
n+1,0 as Y Zt, with Y and

Z of dimensions n × s and (n + 1) × s given as follows: the ith column yi
of Y is fi − Xνi−1fi−1; the ith column zi of Z is zero, except for a 1 at row
1+ ν1 + · · ·+ νi−1. Since Xνi−1fi−1 is the coefficient vector of xνi−1fi−1 mod M ,
it can be computed in time O(M(n)), so Y and Z can be computed in time
O(sM(n)).

To determine a φ+-generator of A, it remains to determine the vector a, from
which b follows easily. For i ≤ s, let ai ∈ K1×νi be the last row of Ai, so that

ai =
[

coeff(fi, x
n−1) · · · coeff(xνi−1fi mod M,xn−1)

]

.

Define next

mi =

mn

...
mn−νi+1

∈ K
νi and f ′i =

fi,n−1

...
fi,n−νi

∈ K
νi .

Noticing that L(mi) ati = f ′i, we see that the entries of ai can be computed in

28

time O(M(νi)). Since
∑

i≤s νi = n + 1, the vector a = [a1 . . . as]
t ∈ Kn+1 can

thus be computed in time O(M(n)).

In conclusion, one can compute G = [Y −m] ∈ Kn×(s+1) and H = [Z b] ∈
K(n+1)×(s+1) in time O(sM(n)), such that (G,H) is a φ+-generator of length
s+1 for A. One then obtains a φ+-generator of length s+2 for A′ by adjoining
a last row of zeros to G and the columns

0
...
0
1

∈ K
n+1 and

1
...
1
1

− b ∈ K
n+1

to respectively G and H. �

5 The Vandermonde case

In this section, x ∈ Kn and ψ ∈ K are as in Equations (1) and (2). The
operator associated with the Vandermonde structure is

∆[D(x),Zt
n,ψ](A) = A − D(x) A Z

t
n,ψ.

With our choice of ψ, Theorem 4.3.2 in [45] shows that this operator is in-
vertible. Moreover, given Y,Z in Kn×α, Example 4.4.6 in [45] shows that the
unique matrix A ∈ Kn×n such that ∆[D(x),Zt

n,ψ](A) = Y Zt is

A = D
(

(1 − ψ xn)−1
)

α
∑

i=1

D(yi) V(x, n) T(zi, ψ)t. (13)

Following Pan’s idea [41,42], we will prove Theorem 2 on the complexity of
solving Vandermonde-like systems of the form Au = v by turning them into
Toeplitz-like ones.

We will use the same kind of reduction as in [24]. However, that approach
requires the entries of x to be pairwise distinct, i.e., that V(x, n) be invertible;
else, the preprocessing step in [24, Section 2] fails. Similarly, the reduction
in [45, Example 4.8.4] does not solve the problem when V(x, n) is singular (in
the application of Subsection 5.4, this invertibility assumption does not hold).

The partition of x of Equation (1) will be used to solve this problem in cases
when x has low multiplicity: this is exposed in Subsections 5.1 and 5.2. When
the multiplicity becomes too large, some extra work is needed, presented in
Subsection 5.3.

29

5.1 A multiplication problem

We start by solving a preliminary subproblem. Let Y and Z be in Kn×α, and
let A be the unique n× n matrix such that ∆[D(x),Zt

n,ψ](A) = Y Zt. Splitting
A along its rows according to the given partition of x, we thus write

x =

x1
...
xs

, with xj ∈ K
νj and A =

A1
...

As

, with Aj in K
νj×n, (14)

where all xj are repetition-free. Given vectors w1, . . . ,ws, with wj in Kνj , we
study in this subsection the cost of computing all products Atjwj ∈ Kn, us-
ing the results of Subsection 3.2. This will be the key in our reduction of
Vandermonde-like systems to Toeplitz-like ones.

Proposition 6 Given x, ψ, Y, Z and w1, . . . ,ws as above, and assuming that
s ≤ α, one can compute all products Atj wj in time O(αω−1M(n) log(n)).

Proof. Let yi and zi be the columns of Y and Z. We adapt the partition of
x and A to the vectors yi, writing

yi =

yi,1
...

yi,s

, with yi,j in K
νj .

Since A is given by Equation (13), its submatrices Aj are given by Aj =

D
(

(1 − ψ xnj)
−1
)

Bj, with

Bj =
α
∑

i=1

D(yi,j) V(xj, n) T(zi, ψ)t

and thus

Btj =
α
∑

i=1

T(zi, ψ) V(xj, n)t D(yi,j). (15)

For j ≤ s, let fj = D((1 − ψ xnj)
−1) wj . The vectors fj can be deduced from x,

ψ and the wj in O(n log(n)) operations. Since we have Atj wj = Btj fj , we are
thus left with computing all the products Btj fj.

Recalling that xj ∈ Kνj is repetition-free, we let Yi,j = Interp(xj, yi,j) ∈ K[x]νj
.

Applying Lemma 1 to the right hand side of Equation (15) then gives

Btj =
α
∑

i=1

T(zi, ψ) M(Yi,j, n)t V(xj, n+ νj − 1)t.

30

We can now factor out the rightmost transposed Vandermonde matrices, which
do not depend on the summation index i. Defining

f ′j = V(xj, n+ νj − 1)t fj ,

we deduce that

Btj fj =
α
∑

i=1

T(zi, ψ) M(Yi,j, n)t f ′j.

By fast application of a transposed Vandermonde matrix, each vector f ′j can be
computed in time O(M(n) log(n)); hence, the total time for their computation
is O(αM(n) log(n)).

For i ≤ α and j ≤ s, define the vector gi,j in Kn by

gi,j = T(zi, ψ) M(Yi,j, n)t f ′j,

so that Btjfj =
∑α
i=1 gi,j. We will obtain the vectors gi,j by means of Lemma 6.

To do so, define the polynomials

Y ′
i,j = Revνj

(Yi,j), Fj = Pol(f ′j) and F ′
j = Revn+νj−1(Fj).

Let also Zi = Pol(zi) and Z ′
i = Pol(Flip(zi)). Lemma 6 then gives

Pol(gi,j) = Zi (Y
′
i,j Fj div xνj−1) mod xn

+ ψ Revn
(

Z ′
i (Yi,j F

′
j div xνj−1) mod xn

)

.

Summing over i eventually yields our output

Pol
(

Btjfj
)

=
α
∑

i=1

Pol(gi,j) =
α
∑

i=1

Zi (Y
′
i,j Fj div xνj−1) mod xn

+ ψ Revn
(

α
∑

i=1

Z ′
i (Yi,j F

′
j div xνj−1) mod xn

)

. (16)

It remains to perform the cost estimate, using the results recalled in Section 2.

• Using fast interpolation, we compute each Yi,j in time O(M(νj) log(νj)) and
thus all Yi,j and Y ′

i,j in time O(αM(n) log(n)).

• Applying Proposition 3 to both summands in Equation (16) shows that all
polynomials Pol(Btjfj) can be computed in time O(αω−1M(n) log(n)), which
concludes the proof. �

5.2 The case of low multiplicities

In this subsection, we reduce the resolution of Vandermonde-like systems to
that of Toeplitz-like systems. We adapt the reduction of [24], allowing now for

31

repetitions in x. For the moment, we work in the case where the multiplicity
of x is bounded by α.

Proposition 7 Let x and ψ be as in Equations (1) and (2). If the multiplic-
ity s of x satisfies s ≤ α, then the problem LinearSystem(D(x),Zt

n,ψ, α) can

be solved in time O(αω−1M(n) log2(n)). The algorithm is probabilistic of type
P (3n− 2, n2 + n).

Proof. Given Y and Z in Kn×α and v in Kn, we are looking for solutions u

to the system Au = v, where A is such that ∆[D(x),Zt
n,ψ](A) = Y Zt.

For j ≤ s, let Mj be the monic polynomial Mj =
∏

a∈xj
(x − a). Since xj is

repetition-free, Lemma 3 shows that

D(xj) = V(xj, νj) X(Mj) V(xj, νj)
−1.

It follows that

D(x) = V X V
−1, (17)

where V and X are block-diagonal with respective blocks V(xj, νj) and X(Mj).

For j ≤ s, let mj ∈ Kνj be the coefficient vector of −Mj mod xνj , so that
X(Mj) = Zνj ,0 + mje

t
νj ,νj

. Hence, writing ν∗j = ν1 + · · ·+ νj as in Section 2,

X = Zn,0 +
s
∑

j=1

gje
t
n,ν∗

j
, (18)

where for j ≤ s, gj ∈ Kn is obtained by padding mj with ν∗j−1 zeros on the
top and, if j 6= s, with −1 followed by n− ν∗j − 1 zeros on the bottom.

Defining B = V−1A and v′ = V−1v, solving Au = v amounts to solve Bu = v′.
To do so in the claimed complexity, we exhibit the Toeplitz-like structure of
B and bound the cost of computing v′ and a generator for B. Pre-multiplying
by V−1 the relation

A − D(x) A Z
t
n,ψ = Y Zt,

we get

B − V
−1

D(x) V B Z
t
n,ψ = V

−1 Y Zt;

using Equation (17), we rewrite this as

B − X B Z
t
n,ψ = Y′ Zt, with Y′ = V

−1 Y.

Then, from (18) and the relation Zn,ψ = Zn,0 + ψ en,1e
t
n,n, we deduce that

B − Zn,0 B Z
t
n,0 = ψ Zn,0 B en,ne

t
n,1 +

(s
∑

j=1

gje
t
n,ν∗

j

)

B Z
t
n,ψ + Y′ Zt.

32

Define the vectors f1 = ψ Zn,0 B en,n and, for j ≤ s, hj = Bten,ν∗
j

and h′
j =

Zn,ψhj. The above formula then becomes

∆[Zn,0,Z
t
n,0](B) = f1e

t
n,1 + GH′t + Y′Zt,

where G (resp. H′) has columns gj (resp. h′
j). The matrices [f1 G Y′] and

[en,1 H′ Z] thus form a Zn,0,Z
t
n,0-generator of length α + s + 1 ≤ 2α + 1 for

B. Once this generator and v′ are known, the system Bu = v′ can be solved
within the prescribed complexity by the probabilistic algorithm of Theorem 1.

It remains to estimate the cost of computing v′, f1,Y
′,G and H′. We will do so

using Proposition 6 as well as the results recalled in Section 2 on the complexity
of polynomial operations.

As a first step, though, we detail further the structure of the vectors hj . For
j ≤ s, one has hj = Bten,ν∗

j
= At V−t en,ν∗

j
. In view of the block structures of

At and V−1, this can be rewritten as hj = Atj wj, where wj = V(xj, νj)
−t eνj ,νj

is the last column of V(xj, νj)
−t.

• All polynomials Mj (and thus all vectors gj and the matrix G) can be
constructed from their roots in O(M(n) log(n)) operations.

• In view of Equation (13), one can multiply A by the vector en,n in time
O(αM(n) log(n)), see e.g. [24, Section 2].

• Since multiplication by V(xj, νj)
−1 has cost O(M(νj) log(νj)), multiplication

by V−1 has cost O(M(n) log(n)). This implies that f1 = ψ Zn,0 V−1 A en,n can
be deduced from A en,n in time O(M(n) log(n)). Similarly, one can compute
Y′ = V−1Y in time O(αM(n) log(n)) and v′ = V−1v in time O(M(n) log(n)).

• Computing the last column of V(xj, νj)
−t takes time O(M(νj) log(νj)), which

induces a cost of O(M(n) log(n)) for finding all vectors wj .

• Knowing all wj, Proposition 6 shows that all vectors hj can be computed in
time O(αω−1M(n) log(n)). Deducing the vectors h′

j takes time O(αn), which
concludes the proof. �

5.3 The case of high multiplicities

We conclude the proof of Theorem 2 by considering the case of high multi-
plicities (s > α), reducing it to the case of low multiplicities (s ≤ α) seen in
Subsection 5.2. Our reduction has cost O(αω−1 n), which fits in the requested
bound. It however introduces an extra probabilistic aspect; combined with the
one of Proposition 7, it yields the overall probability estimate of Theorem 2.

Proposition 8 Let x and ψ be as in Equations (1) and (2). If x has multi-

33

plicity larger than α, one can reduce the problem LinearSystem(D(x),Zt
n,ψ, α)

to the problem LinearSystem(D(y),Zt
n,ψ, α), where y ∈ Kn has multiplicity at

most α and satisfies the constraints of Equations (1) and (2). The reduction
can be done in time O(αω−1n) by a probabilistic algorithm of type P (n, 3n2).

Proof. Given Y and Z in Kn×α and v in Kn, we are looking for solutions u to
the system Au = v, where A is such that ∆[D(x),Zt

n,ψ](A) = Y Zt. We assume
that Y and Z have full rank; if this is not the case, we can replace (Y,Z) by a
minimal-length generator, whose two matrices then have full rank.

We start by reordering the entries of x to obtain a repetition-free decomposi-
tion as in Equation (6) of Section 2:

x′ =

xσ(1)
...

xσ(n)

=

x′1
...
x′t

,

where x′i is a vector consisting of µi repetitions of the same element ξi, so that
n = µ1 + · · ·+ µt, with ξi 6= ξj for i 6= j and µ1 ≥ · · · ≥ µt > 0.

Let v′, A′ and Y′ be obtained by applying the same reordering to the entries
of v and to the rows of A and Y; hence, (Y′,Z) is a D(x′),Zt

n,ψ-generator for
A′. Since the solution sets of Au = v and A′u = v′ are the same, we focus on
the latter problem.

By construction, the matrices A′ and Y′ admit the following decompositions:

A′ =

A′
1
...

A′
t

and Y′ =

Y′
1
...

Y′
t

,

with A′
i in Kµi×n and Y′

i in Kµi×α. Remark then that A′
i−D(x′i) A′

i Z
t
n,ψ = Y′

i Z
t.

Now, D(x′i) equals ξiIµi
and, since ψξi

n 6= 1 for all i, all matrices In − ξiZ
t
n,ψ

are invertible. We thus obtain the equalities

A′
i = Y′

iZ
t(In − ξiZ

t
n,ψ)

−1 for 1 ≤ i ≤ t. (19)

We will use dense matrix methods to reduce the number of non-zero entries
in A′ and Y′, while maintaining a Vandermonde-like structure. Let thus τ be
such that µτ > α ≥ µτ+1.

• For 1 ≤ i ≤ τ , we have µi > α. We let Ji ⊂ {1, . . . , µi} and Ei ∈ Kµi×µi be
the index set and the matrix obtained by applying Lemma 9 to Y′

i. Let also

34

ri = |Ji| = rank(Y′
i), so that ri ≤ α. Lemma 9 and Equation (19) then give

Ei Y
′
i =

Y′′
i

0

 and Ei A
′
i =

A′′
i

0

 ,

where Y′′
i and A′′

i have respective sizes (ri×α) and (ri×n), and Y′′
i consists

of the rows of Y′
i indexed by Ji.

• For τ < i ≤ t, we have µi ≤ α. We let Ei = Iµi
, Y′′

i = Y′
i and A′′

i = A′
i.

Let E be the block-diagonal matrix having E1, . . . ,Et on the diagonal. Hence,
Y′′ = E Y′ consists of the matrices Y′′

i , interleaved by blocks of zeros when
i ≤ τ ; the same holds for A′′ = E A′. Besides, since each D(x′i) is a homothety
matrix, it commutes with Ei; we deduce that (Y′′,Z) is a D(x′),Zt

n,ψ-generator
for A′′. Finally, since E is invertible, the solution sets of A′u = v′ and A′′u = v′′

coincide, where we wrote v′′ = E v′.

We solve the latter problem, by exhibiting the Vandermonde-like structure
of A′′ for a modified displacement operator with lower multiplicity. Define a
vector x′′ ∈ Kn by replacing, for i ≤ τ , the last µi − ri entries of x′i by new
values taken from K. Due to the presence of corresponding blocks of zeros in
Y′′ and A′′, the matrices Y′′ and Z now form a D(x′′),Zt

n,ψ-generator for A′′.

With r =
∑

i≤τ (µi − ri), suppose that the new values y1, . . . , yr inserted in x′′

are pairwise distinct and that none of them belongs to x′ or satisfies ψ yni = 1.
Then, x′′ satisfies the constraint of Equation (2) and has multiplicity at most
α (since all ri are at most α). It remains to reorder the entries of x′′ to obtain a
vector y that also satisfies Equation (1), and let Σ be the permutation matrix
such that y = Σ x′′. Defining U = Σ Y′′, it follows that (U,Z) is a D(y),Zt

n,ψ-
generator for the matrix B = Σ A′′. To conclude, let w = Σ v′′; then, the
solution sets of A′′u = v′′ and Bu = w coincide.

We have thus reduced solving the system Au = v to solving Bu = w, while
providing a generator for B with respect to the Vandermonde-like structure
D(y),Zt

n,ψ. It only remains to perform the complexity analysis.

• By Lemma 10, the cost of making the input generator minimal is O(αω−1n).

• The permutation σ that gives x′ can be computed in time O(n) by Lemma 11.

• For i ≤ τ , since Y′
i is in Kµi×α with µi ≥ α, one can compute Ei in time

O(αω−1µi) by Lemma 9. Since
∑τ
i=1 µi ≤ n, the total cost is in O(αω−1n).

• Since each matrix Ei is given in the form (ri, Ji,Gi,Pi) of Lemma 9, and thus
has O(αµi) non-zero entries, v′′ can be deduced from v′ in O(αn) operations.

• To put x′′ into the form of Equation (1), we first put it into the repetition-
free form of Equation (6). Since the repeated entries are already grouped

35

together (and thus the multiplicities are known), all we have to do is to
sort the multiplicities in decreasing order; this can be done in time O(n)
using bucket sorting. Then, Lemma 11 puts the result into the form of
Equation (1) in time O(n).

• All other operations amount to apply permutations to the entries of matrices
and vectors and have negligible cost.

The probability analysis comes by remarking that the values y1, . . . , yr satisfy
our requirements if they do not cancel the polynomial

δ =
∏

i<j≤r

(Yi − Yj) ×
∏

i≤r, j≤t

(Yi − ξj) ×
∏

i≤r

(Y n
i ψ − 1), (20)

which, since r and t are bounded by n, has degree at most 3n2. The Zippel-
Schwartz lemma gives the required probability estimate. �

5.4 Application: bivariate interpolation

We conclude by proving Corollary 2 on the complexity of bivariate interpola-
tion. Let P1, . . . , Ps be the lists of sample points

P1 = [p1,1 = (x1, y1,1), . . . , p1,ν1 = (x1, y1,ν1)],
...

Ps = [ps,1 = (xs, ys,1), . . . , ps,νs
= (xs, ys,νs

)],

with ν1 ≥ · · · ≥ νs > 0. Given a vector of values v = [vi,j] ∈ Kn, with 1 ≤ i ≤ s
and 1 ≤ j ≤ νi, there exists a unique polynomial F in K[x, y] of the form

F =
∑

0≤i<s, 0≤j<νi+1

fi,jx
iyj

such that F (pi,j) = vi,j for all i, j. To recover F , we will use the Vandermonde-
like structure of the corresponding linear system.

The support of F is thus the set of all monomials xiyj, with 0 ≤ i < s
and 0 ≤ j < νi+1. To arrange these monomials in a suitable order, we let
µ = µ1 ≥ · · · ≥ µt be the conjugate partition of ν, with s = µ1 and t = ν1; for
1 ≤ j ≤ t, we define

Bj = [xi−1yj−1 | 1 ≤ i ≤ µj]

and let B be the concatenation of the lists Bj . Thus, for a fixed j, the entries
of Bj have the same degree in y and increasing degrees in x.

36

It will be convenient to rearrange the lists of sample points, by “transposing”
the input lists P1, . . . , Ps to obtain

Q1 = [p1,1, p2,1, . . . , pµ1,1],

Q2 = [p1,2, p2,2, . . . , pµ2,2],
...

Qt = [p1,t, p2,t, . . . , pµt,t];

we then let Q be the concatenation of Q1, . . . , Qt. Taking the x-coordinates
of the elements in Q, we obtain a vector x in Kn; by construction, x is in the
form of Equation (1). Let further w ∈ Kn be obtained by rearranging v in the
same way. By Lemma 11, one can deduce Q and w from P and v in time O(n).

Let Span(B) ⊂ K[x, y] be the vector space generated by B; we are thus con-
cerned by the evaluation map F ∈ Span(B) 7→ [F (p)]p∈Q and its inverse. Let

A =
[

b(p)

]

p∈Q, b∈B
∈ K

n×n

be the matrix of this map, with rows indexed by Q and columns by B. Hence,

A =
[

A1 · · · At

]

, with Aj =
[

b(p)

]

p∈Q, b∈Bj

∈ K
n×µj .

Then ∆[D(x),Zt
n,0](A) can be written GHt, with G and H in Kn×t; the jth

column of H is zero, except for a 1 at row 1 + µ∗
j−1; the jth column of G is

[

1 · · · 1

]t

(for j = 1) or
[

y(p)j−1 − y(p)j−2 x(p)µj−1

]t

p∈Q
(for j > 1),

with x(p) the x-coordinate of p ∈ Q and y(p) its y-coordinate. Given Q, the
matrices G and H can be computed in time O(t n log(n)); Theorem 2 then
shows that the system A f = w can be solved in time O(tω−1M(n) log2(n)),
where f is the coefficient vector of the polynomial to interpolate and w is the
rearranged value vector. Remembering that t = ν1 concludes the proof.

6 The Cauchy case

In this section, x, y ∈ Kn are as in Equations (1), (4) and (5). The operator
associated with the Cauchy structure that we consider here is

∆[D(x),D(y)](A) = A − D(x) A D(y).

37

It follows from Equation (5) and [45, Theorem 4.3.2] that such an operator
is invertible. Moreover, given G and H in Kn×α, Example 4.4.7 in [45] shows
that the unique matrix A ∈ Kn×n such that ∆[D(x),D(y)](A) = GHt is

A =
∑α
i=1 D(gi) C(x, y) D(hi). (21)

We will prove Theorem 3 on the complexity of solving Cauchy-like systems
of the form Au = v by turning them into Vandermonde-like ones with low
multiplicity, and then using the result of Proposition 7. Our reduction follows
the one in [24, Section 3] but adds the possibility of handling repetitions among
the entries of the vectors x and y above.

The organization of this section is very similar to that of the previous one;
the technical arguments are in the same vein as well. We shall start in Subsec-
tion 6.1 with solving another multiplication problem, in the spirit of the one
used for the Vandermonde case. Together with the partitions of x and y given in
Equations (1) and (4), this allows to handle in Subsection 6.2 the cases where
multiplicities are small. Large multiplicities are treated in Subsection 6.3 with
the same tools as for the Vandermonde case.

6.1 A multiplication problem

Let G and H be in Kn×α, and let A be the unique n × n matrix such that
∆[D(x),D(y)](A) = GHt. Splitting A along its rows according to the partition
of x and along its columns according to the partition of y, we thus write

x =

x1
...
xs

, with xj ∈ K
νj , y =

y1
...
yt

, with yk ∈ K
δk ,

and

A =

A1,1 · · · A1,t

...
...

As,1 · · · As,t

, with Aj,k in K
νj×δk . (22)

Given vectors w1, . . . ,wt, with wk ∈ Kδk , we study in this subsection the cost
of computing all the products Aj,k wk ∈ Kνj when both s and t are bounded
by α. The result below, which relies on Proposition 2 of Section 3, will be the
key for reducing Cauchy-like systems to Vandermonde-like ones.

Proposition 9 Given x, y, G, H and w1, . . . ,wt as above, and assum-
ing that max{s, t} ≤ α, one can compute all the products Aj,k wk using
O(αω−1M(n) log(n)) operations in K.

38

Proof. Let gi and hi be the columns of G and H. We adapt the partition of
x to gi and the one of y to hi, writing

gi =

gi,1
...

gi,s

, with gi,j in K
νj , hi =

hi,1
...

hi,t

, with hi,k in K
δk .

For k ≤ t, let Fk =
∏

γ∈yk
(1 − xγ) and let vk ∈ Kδk be such that Pol(vk) =

Fk mod xδk . Using Equation (21) and Lemma 2, it follows that the submatrices
Aj,k of A are given by Aj,k = D(Fk(xj))

−1 Bj,k, with

Bj,k =
α
∑

i=1

D(gi,j) V(xj, δk) L(vk) V(yk, δk)
t
D(hi,k). (23)

Remark first that the matrices D(Fk(xj)) can easily be obtained, using two
polynomial operations of Section 2:

• Each polynomial Fk can be constructed from its roots in time O(M(δk) log(δk)).
Since

∑

k≤t δk = n, the cost of getting all of them is in O(M(n) log(n)).

• By fast evaluation, each Fk(x) ∈ Kn can be obtained in O(M(n) log(n)) op-
erations, and thus all of them in time O(tM(n) log(n)) ⊂ O(αM(n) log(n)).

We now turn to the computation of the vectors Bj,k wk. Since xj and yk are
repetition-free, we let Qi,j = Interp(xj, gi,j) and Si,k = Interp(yk, hi,k). Applying
Lemma 1 twice to the right hand side of Equation (23) then gives

Bj,k =
α
∑

i=1

V(xj, νj + δk − 1) M(Qi,j, δk) L(vk) M(Si,k, δk)
t
V(yk, 2δk − 1)t.

We can now factor out the leftmost and rightmost (transposed) Vandermonde
matrices, which do not depend on the summation index i. Defining

fk = V(yk, 2δk − 1)t wk (24)

and

w′
j,k =

α
∑

i=1

M(Qi,j, δk) L(vk) M(Si,k, δk)
t fk, (25)

we deduce from the previous equation that

Bj,k wk = V(xj, νj + δk − 1) w′
j,k. (26)

It remains to estimate the cost of computing all vectors Bj,k wk by means of
Equations (24), (25) and (26), and deducing the desired vectors Aj,k wk. The
costs of the first and last steps follow directly from the reminders of Section 2:

39

• By fast transposed evaluation, each vector fk is obtained in O(M(δk) log(δk))
operations. Since

∑

k≤t δk = n, this gives a total cost of O(M(n) log(n)).

• Assuming that we know w′
j,k, we deduce Bj,k wk by fast evaluation, in

O(M(νj + δk) log(νj + δk))

operations. A total cost of O(αM(n) log(n)) then follows from the facts that

M(νj + δk) ≤ (νj + δk) M(2n)/2n and
∑

j≤s

∑

k≤t

(νj + δk) = (s+ t)n.

• One recovers the vectors Aj,k wk with t n ∈ O(αn) divisions.

It only remains to bound the cost of deducing the vectors w′
j,k in Equation (25)

from the vectors fk. Recall that Pol(vk) = Fk mod xδk and let S ′
i,k = Revδk(Si,k)

and F ′
k = Pol(fk). Then, using Lemma 4 and Lemma 5, we obtain

Pol(w′
j,k) =

∑α
i=1Qi,jRi,k, (27)

where Qi,j ∈ K[x]νj
is as above and where Ri,k ∈ K[x]δk is given by

Ri,k = Fk (S ′
i,k F

′
k div xδk−1) mod xδk .

The cost then follows from Section 2 as well as Proposition 2 in Section 3:

• By fast interpolation, each Qi,j can be computed in O(M(νj) log(νj)) oper-
ations. Since

∑

j≤s νj = n, this gives a total of O(αM(n) log(n)).

• By fast interpolation, each Si,k can be computed in O(M(δk) log(δk)) opera-
tions. Since

∑

k≤t δk = n, the total cost for all Si,k and S ′
i,k is O(αM(n) log(n)).

• Since S ′
i,k ∈ K[x]δk and F ′

k ∈ K[x]2δk−1, a full product S ′
i,k F

′
k has cost

O(M(δk)), and thus all Ri,k follow from Fk, S
′
i,k, F

′
k in time O(αM(n)).

• Applying Proposition 2 to Equation (27) shows that all the polynomials
Pol(w′

j,k) can be obtained in time O(αω−1M(n) log(n)). �

6.2 The case of low multiplicities

Here we reduce the Cauchy case to the Vandermonde case, assuming that the
multiplicities of x and y are bounded by α. As in Subsection 5.2, we adapt the
reduction of [24], now allowing for repetitions in both x and y.

Proposition 10 Let x, y ∈ Kn be as in Equations (1), (4) and (5). If the mul-
tiplicity s of x and the multiplicity t of y satisfy max{s, t} ≤ α, then the prob-
lem LinearSystem(D(x),D(y), α) can be solved in time O(αω−1M(n) log2(n)).
The algorithm is probabilistic of type P (3n− 2, n2 + n).

40

Proof. Given G,H ∈ Kn×α and v ∈ Kn, we are looking for solutions u to the
system Au = v, where A is the n×n matrix such that ∆[D(x),D(y)](A) = GHt.

For k ≤ t, let Mk =
∏

γ∈yk
(x− γ). Since yj is repetition-free, Lemma 3 gives

D(yk) = V(yk, δk) X(Mk) V(yk, δk)
−1.

Hence

D(y) = V X V
−1, (28)

where V and X are block-diagonal with respective blocks V(yk, δk) and X(Mk).
For k ≤ t, let mk ∈ Kδk be the coefficient vector of −Mk mod xδk . Then
X(Mk) = Zδk ,0 + mk etδk ,δk and, recalling that δ∗k = δ1 + · · · + δk,

X = Zn,0 +
t
∑

k=1

dke
t
n,δ∗

k
, (29)

where for k ≤ t, dk ∈ Kn is obtained by padding mk with δ∗k−1 zeros on the
top and, if k 6= t, with −1 followed by n− δ∗k − 1 zeros on the bottom.

Defining B = AV−t, solving Au = v amounts to solve Bu′ = v and then, if a
solution exists, to compute u = V−tu′. To do so in the claimed complexity, we
exhibit the Vandermonde-like structure of B and bound the cost of computing
u and a generator for B. By transposing both sides of Equation (28), we obtain

B − D(x) B X
t = G H′t, with H′ = V

−1H.

Now, for k ≤ t, define the vectors ck = B en,δ∗
k

and c′k = D(x) ck. Using
Equation (29), the previous identity then becomes

∆[D(x),Zt
n,0](B) = C′ Dt + G H′t, (30)

where C′ has columns c′k and D has columns dk. The matrices [C′ G] and [D H′]
thus form a D(x),Zt

n,0-generator of length t + α for B. Since the operator in
Equation (30) is ∆[D(x),Zt

n,ψ] with ψ = 0, the condition in Equation (2) is
clearly satisfied. Moreover, the multiplicity s of x is bounded by the length t+α
of the above generator. Therefore, once this generator is known, the system
Bu′ = v can be solved by the probabilistic algorithm of type P (3n− 2, n2 +n)
in Proposition 7; since t ≤ α, the cost is still in O(αω−1M(n) log2(n)).

It remains to bound the cost computing u, C′, D and H′. To do so, we will use
the result in Proposition 9 and the reminders of Section 2 on the complexity
of polynomial operations:

• By fast transposed interpolation and using the block structure of the matrix
V, we can deduce the vector u from y and u′ in time O(M(n) log(n)).

41

• By fast interpolation and using the block structure of the matrix V, we can
deduce the matrix H′ from y and H in time O(αM(n) log(n)).

• All polynomials Mk (and thus all vectors dk and the matrix D) can be
constructed from their roots in time O(M(n) log(n)).

In order to bound the cost of computing C′, note that, due to the block struc-
ture of A and V−t, each vector ck is in fact given by ck = Aj,kwk, where
wk ∈ Kδk is the last column of V(yk, δk)

−t. Thus, we can compute the vectors
w1, . . . ,wt and then solve the multiplication problem of Section 6.1:

• Computing the last column of V(yk, δk)
−t takes time O(M(δk) log(δk)), which

induces a cost of O(M(n) log(n)) for finding all vectors wk.

• Knowing all wk, Proposition 9 shows that all vectors ck can be computed
in time O(αω−1M(n) log(n)). Deducing the vectors c′k by t multiplications
with D(x) takes time O(αn), which concludes the proof. �

6.3 The case of high multiplicities

We eventually consider the case of high multiplicities (max{s, t} > α), reduc-
ing it to the case of low multiplicities (max{s, t} ≤ α) seen in Subsection 6.2.
Our reduction has cost O(αω−1 M(n)) and thus fits in the requested bound;
however, like in the Vandermonde case, randomization is used. Combining
the complexity and probability results in the next proposition with those of
Proposition 10 concludes the proof of Theorem 3.

Proposition 11 Let x and y in Kn be as in Equations (1), (4), and (5).
If x or y has multiplicity larger than α, one can reduce the problem
LinearSystem(D(x),D(y), α) to the problem LinearSystem(D(a),D(b), α), where
a, b ∈ Kn both have multiplicity at most α and satisfy the constraints of Equa-
tions (1), (4) and (5). The reduction can be done in time O(αω−1n) by a
probabilistic algorithm of type P (2n, 6n2).

Proof. If x has multiplicity s > α, we start by reducing the problem
LinearSystem(D(x),D(y), α) to the problem LinearSystem(D(a),D(y), α), where
a ∈ Kn has multiplicity at most α and satisfies the constraints of Equations (1)
and (5).

We can do this first reduction in time O(αω−1n) by a probabilistic algorithm
of type P (n, 3n2), using the same technique as in the proof of Proposition 8.
The only modifications to do there are to replace Zt

n,ψ by D(y), and to replace
the polynomial δ in Equation (20) by one of the form

∏

i<j≤r

(Yi− Yj) ×
∏

i≤r, j≤r′
(Yi− ξj) ×

∏

i≤r, j≤n

(Yi yj − 1), with r, r′ ≤ n, (31)

42

which still has degree bounded by 3n2. We do not give more details on this
part of the algorithm.

If y has multiplicity t > α, it remains to reduce LinearSystem(D(a),D(y), α) to
LinearSystem(D(a),D(b), α), where b has multiplicity at most α and satisfies
the constraints of Equations (4) and (5).

To do so, let G and H in Kn×α and v in Kn be given, and recall that
we are looking for solutions to the system Au = v, where A is such that
∆[D(a),D(y)](A) = GHt. We assume that G and H have full rank, for other-
wise one can replace (G,H) by a minimal-length generator, whose matrices
then have full rank.

We start by reordering the entries of y to obtain a repetition-free decomposi-
tion as in Equation (6) of Section 2:

y′ =

yσ(1)
...

yσ(n)

=

y′1
...

y′t′

,

where y′i is a vector consisting of µi repetitions of the same element ξi, so that
n = µ1 + · · ·+ µt′ , with ξi 6= ξj for i 6= j and µ1 ≥ · · · ≥ µt′ > 0.

Let A′ and H′ be obtained by applying the same reordering to, respectively,
the columns of A and the rows of H; hence, (G,H′) is a D(a),D(y′)-generator
for A′. Writing Π for the permutation matrix such that A′ = A Π, we see that
every solution to the system A u = v corresponds to a solution Πt u to the
system A′u′ = v, and conversely. Therefore we focus on solving A′u′ = v.

By construction, the matrices A′ and H′ admit the following decompositions:

A′ =
[

A′
1 · · · A′

t′

]

and H′ =

H′
1
...

H′
t′

,

with A′
i in Kn×µi and H′

i in Kµi×α. Remark then that A′
i−D(a) A′

i D(y′i) = G H′t
i .

Now, D(y′i) = ξiIµi
and, since ξiaj 6= 1 for all i ≤ t′ and all j ≤ n, all matrices

In − ξiD(a) are invertible. We thus obtain the equalities

A′
i = (In − ξiD(a))−1 G H′t

i for 1 ≤ i ≤ t′. (32)

We will use dense matrix methods to reduce the number of non-zero entries
in A′ and H′, while maintaining a Cauchy-like structure. Let thus τ be such
that µτ > α ≥ µτ+1.

• For 1 ≤ i ≤ τ , we have µi > α. We let Ji ⊂ {1, . . . , µi} and Ei ∈ Kµi×µi be

43

the index set and the matrix obtained by applying Lemma 9 to H′
i. Let also

ri = |Ji| = rank(H′
i), so that ri ≤ α. Equation (32) then gives

Ei H
′
i =

H′′
i

0

 and A′
i E

t
i =

[

A′′
i 0

]

,

where H′′
i and A′′

i have respective sizes (ri×α) and (n× ri), and H′′
i consists

of the rows of H′
i indexed by Ji.

• For τ < i ≤ t′, we have µi ≤ α. We let Ei = Iµi
, H′′

i = H′
i and A′′

i = A′
i.

Let E be the block-diagonal matrix having E1, . . . ,Et′ on the diagonal. Hence,
H′′ = E H′ consists of the matrices H′′

i , interleaved by blocks of zeros when i ≤
τ ; the same holds for A′′ = A′ Et, considering columns instead of rows. Besides,
since each D(y′i) is a homothety matrix, it commutes with Eti; we deduce that
(G,H′′) is a D(a),D(y′)-generator for A′′. Finally, since E is invertible, every
solution to the system A′ u′ = v corresponds to a solution E−t u′ to the system
A′′u′′ = v, and conversely. Therefore, solving the problem A′′u′′ = v is enough.

We do so by exhibiting the Cauchy-like structure of A′′ for a modified dis-
placement operator whose second diagonal component has lower multiplicity.
Define y′′ ∈ Kn by replacing, for i ≤ τ , the last µi − ri entries of y′i by new
values taken from K. Due to the presence of corresponding blocks of zeros in
H′′ and A′′, the matrices G and H′′ now form a D(a),D(y′′)-generator for A′′.

With r =
∑

i≤τ (µi − ri), suppose that the new values z1, . . . , zr inserted in y′′

are pairwise distinct and that none of them belongs to y′ or satisfies aizj = 1.
Then, y′′ satisfies the constraint of Equation (5) and has multiplicity at most
α (since all ri are at most α).

It remains to reorder the entries of y′′ to obtain a vector b that also satisfies
Equation (1), and let Σ be the permutation matrix such that b = Σ y′′. Defin-
ing F = Σ H′′, it follows that (G, F) is a D(a),D(b)-generator for the matrix
B = A′′ Σt. To conclude, every solution to Bw = v corresponds to a solution
u′′ = Σtw to A′′u′′ = v, and conversely.

We have thus reduced solving the system Au = v to solving Bw = v (and then,
if a solution exists, to computing u = Π Et Σt w), while providing a generator
for B with respect to the Cauchy-like structure D(a),D(b).

The complexity analysis of this second reduction is the same as in the proof
of Proposition 8 and yields a cost in O(αω−1n) as required.

44

For the probability analysis, remark that the values z1, . . . , zr satisfy our re-
quirements if they do not cancel the polynomial

γ =
∏

i<j≤r

(Zi − Zj) ×
∏

i≤r, j≤t′
(Zi − ξj) ×

∏

i≤n, j≤r

(aiZj − 1),

which has degree at most 3n2, since r and t′ are bounded by n. Hence, the
algorithm for the second reduction has type P (n, 3n2). Recalling that the first
reduction was also by an algorithm of type P (n, 3n2) concludes the proof. �

References

[1] B. Beckermann. A reliable method for computing M-Padé approximants on
arbitrary staircases. J. Comput. Appl. Math., 40(1):19–42, 1992.

[2] B. Beckermann and G. Labahn. A uniform approach for the fast computation of
matrix-type Padé approximants. SIAM J. Matrix Anal. Appl., 15(3):804–823,
1994.

[3] B. Beckermann and G. Labahn. Fraction-free computation of matrix rational
interpolants and matrix GCDs. SIAM J. Matrix Anal. Appl., 22(1):114–144,
2000.

[4] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In 20th Annual ACM Symp. Theory Comp., pages
301–309d. ACM Press, 1988.

[5] D. J. Bernstein. Factoring into coprimes in essentially linear time. J. Algorithms
54(1):1–30, 2005.

[6] D. Bini and V. Y. Pan. Polynomial and Matrix Computations, volume 1:
Fundamental Algorithms. Birkhäuser, 1994.

[7] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz
and related systems of linear equations. Linear Algebra Appl., 34:103–116, 1980.

[8] A. Bostan, C.-P. Jeannerod and É. Schost. Solving Toeplitz- and Vandermonde-
like linear systems with large displacement rank. In ISSAC’07, pages 33–40.
ACM Press, 2007.

[9] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In
ISSAC’03, pages 37–44. ACM Press, 2003.

[10] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear
polynomial equations faster. In ISSAC’89, pages 121–128. ACM Press, 1989.

[11] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28(7):693–701, 1991.

45

[12] Z. Chen and V. Y. Pan. An efficient solution for Cauchy-like systems of linear
equations. Computers and Mathematics with Applications, 48:529-537, 2004.

[13] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. J. Symb. Comput., 9(3):251–280, 1990.

[14] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978.

[15] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines.
In ISSAC’02, pages 63–74. ACM Press, 2002.

[16] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Solving
sparse rational linear systems. In ISSAC’06, pages 63–70. ACM Press, 2006.

[17] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Faster
inversion and other black box matrix computations using efficient block
projections. In ISSAC’07, pages 143–150. ACM Press, 2007.

[18] T. Finck, G. Heinig, and K. Rost. An inversion formula and fast algorithms for
Cauchy-Vandermonde matrices. Linear Algebra and its Appl., 183(1):179–191,
1993.

[19] S. Gao, V. M. Rodrigues, and J. Stroomer. Gröbner basis structure of finite
sets of points, preprint, 2003.

[20] M. Gasca and T. Sauer. Polynomial interpolation in several variables. Adv.
Comput. Math., 12(4):377–410, 2000.

[21] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, second edition, 2003.

[22] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring
polynomials. Comput. Complexity, 2(3):187–224, 1992.

[23] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial
matrix computations. In ISSAC’03, pages 135–142. ACM Press, 2003.

[24] I. C. Gohberg and V. Olshevsky. Complexity of multiplication with vectors for
structured matrices. Linear Algebra Appl., 202:163–192, 1994.

[25] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. J. Algorithms, 3(1):45–56, 1982.

[26] T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks of matrices and
linear equations. J. Math. Anal. Appl., 68(2):395–407, 1979.

[27] E. Kaltofen. Greatest common divisors of polynomials given by straight-line
programs. J. ACM, 35(1):231–264. 1988.

[28] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear
systems. In ISSAC’94, pages 297–304. ACM Press, 1994.

[29] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for the
parallel solution of sparse linear systems. Math. Comp., 64(210):777–806, 1995.

46

[30] E. Kaltofen and Y. Lakshman. Improved sparse multivariate polynomial
interpolation algorithms. In ISSAC’88, number 358 of LNCS, pages 467–474.
Springer Verlag, 1988.

[31] E. Kaltofen and D. Saunders. On Wiedemann’s method of solving sparse linear
systems. In AAECC-9, number 539 of LNCS, pages 29–38. Springer Verlag,
1991.

[32] I. Kaporin. The aggregation and cancellation techniques as a practical tool for
faster matrix multiplication. Theor. Comput. Sci., 315(2-3):469–510, 2004.

[33] G. Labahn, D. K. Choi, and S. Cabay. The inverses of block Hankel and block
Toeplitz matrices. SIAM J. Comput., 19(1):98–123, 1990.

[34] J. Laderman, V. Y. Pan, and X.-H. Sha. On practical algorithms for accelerated
matrix multiplication. Linear Algebra Appl., 162-164:557–588, 1992.

[35] D. Lazard. Ideal bases and primary decomposition: the case of two variables.
J. Symb. Comput., 1:261–270, 1985.

[36] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Math. Comp., 48(177): 243–264, 1987.

[37] M. Morf. Fast algorithms for multivariable systems. PhD thesis, Stanford
University, 1974.

[38] M. Morf. Doubling algorithms for Toeplitz and related equations. In IEEE
Conference on Acoustics, Speech, and Signal Processing, pages 954–959, 1980.

[39] T. Mulders. On short multiplications and divisions. Applic. Alg. Eng. Comm.
Comp., 11(1):69–88, 2000.

[40] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials.
In ESA 2004, number 3222 in LNCS, pages 544–555. Springer, 2004.

[41] V. Y. Pan. On some computations with dense structured matrices. In ISSAC’89,
pages 34–42. ACM Press, 1989.

[42] V. Y. Pan. On computations with dense structured matrices. Math. Comp.,
55(191):179–190, 1990.

[43] V. Y. Pan. Parametrization of Newton’s iteration for computations with
structured matrices and applications. Computers Math. Applic., 24(3):61–75,
1992.

[44] V. Y. Pan. Nearly optimal computations with structured matrices. In SODA’00,
pages 953–962. ACM Press, 2000.

[45] V. Y. Pan. Structured Matrices and Polynomials. Birkhäuser Boston Inc., 2001.

[46] V. Y. Pan and X. Wang. Inversion of displacement operators. SIAM J. Matrix
Anal. Appl., 24(3): 660–677, 2003.

[47] V. Y. Pan and A. Zheng. Superfast algorithms for Cauchy-like matrix
computations and extensions. Linear Algebra Appl., 310:83–108, 2000.

47

[48] V. Y. Pan, A. Zheng, M. Abu Tabanjeh, Z. Chen and S. Providence. Superfast
computations with singular structured matrices over abstract fields. In
Computer algebra in scientific computing: CASC’99, pages 323–338. Springer,
1999.

[49] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7:281–292, 1971.

[50] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980.

[51] A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH,
Zürich, 2000.

[52] A. Storjohann. Notes on computing minimal approximant bases. Technical
report, Symbolic Computation Group, University of Waterloo, 2006.

[53] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969.

[54] M. Van Barel and A. Bultheel. A general module theoretic framework for vector
M-Padé and matrix rational interpolation. Numer. Algorithms, 3:451–461, 1992.

[55] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM’ 79,
number 72 of LNCS. Springer Verlag, 1979.

[56] R. Zippel. Interpolating polynomials from their values. J. Symb. Comp.,
9(3):375–403, 1990.

Appendix

All along this paper, for matrices of Vandermonde or Cauchy type, we assumed
that the diagonal matrices used in the operators are as in Equation (1). One
can always reduce to this situation by permuting the entries of these diagonal
matrices. We discuss here the cost of this operation.

Given a = [a1, . . . , an]
t in Kn, we actually study the cost of finding a repetition-

free decomposition of a, that is, a permutation that puts a into the form of
Equation (6) of Section 2. As seen in Lemma 11, the further cost of converting
to the representation of Equation (1) is then a mere O(n).

If the base field K is endowed with an order <, a sorting algorithm solves
the problem in O(n log(n)) comparisons. However, if we do not allow ordering
the elements of K, it is far less clear how to achieve a similar complexity. Our
solution involves polynomial arithmetic, and bears similarities with techniques
used in both elliptic curve factorization algorithms [36] or factorization into
coprimes [5].

48

Proposition 12 Let a = [a1, . . . , an]
t be in Kn. One can compute a repetition-

free decomposition of a in O(M(n) log3(n)) operations.

Before giving the proof of this proposition, we start by two lemmas on sequence
manipulations. As it turns out, one of the main difficulties is the following (see
Lemma 19): given two repetition-free sequences [c1, . . . , cr] and [d1, . . . , dr],
such that di = cσ(i) for some permutation σ of {1, . . . , r}, how to recover σ, if
ordering elements is not allowed?

Lemma 18 Let c = [c1, . . . , cs] and d = [d1, . . . , dt] be repetition-free vectors
with entries in K. One can compute sequences of integers ℓ1 < · · · < ℓu and
m1 < · · · < mu such that

{c1, . . . , cs} ∩ {d1, . . . , dt} = {cℓ1, . . . , cℓu} = {dm1, . . . , dmu
}

in O(M(q) log(q)) operations, with q = max{s, t}.

Proof. Let P =
∏

i≤s(x − ci). Remark that α ∈ K belongs to {c1, . . . , cs} if
and only if P (α) = 0; hence, evaluating P at d, we obtain the indices mi as
those for which P (dmi

) = 0. Similarly, one obtains the indices ℓi by evaluating
Q =

∏

i≤t(x− di) at c. All operations fit into the O(M(q) log(q)) bound. �

Lemma 19 Let c = [c1, . . . , cr] and d = [d1, . . . , dr] be repetition-free vec-
tors with entries in K, such that {c1, . . . , cr} = {d1, . . . , dr} (as sets). One
can compute the unique permutation σ of {1, . . . , r} such that di = cσ(i) in
O(M(n) log2(n)) operations.

Proof. Defining s = ⌈r/2⌉ and t = r − s, we split d into the subsequences
d′ = [d1, . . . , ds] and d′′ = [ds+1, . . . , dr] of respective lengths s and t. We then
compute the polynomial P =

∏

i≤s(x−di) and evaluate it at c. Let ℓ1 < · · · < ℓs
be the indices of the entries of c where P vanishes and m1 < · · · < mt be those
where P is non-zero. We deduce that

{cℓ1, . . . , cℓs} = {d1, . . . , ds} and {cm1 , . . . , cmt
} = {ds+1, . . . , dr}.

We can then proceed recursively, on [cℓ1 , . . . , cℓs] and d′ on one hand, and
[cm1 , . . . , cmt

] and d′′ on the other hand. This gives us permutations ρ of
{1, . . . , s} and τ of {1, . . . , t}, such that di = cℓρ(i)

and dj+s = cmτ(j)
hold

for i ≤ s and j ≤ t. We deduce σ, as σ(i) = ℓρ(i) for i ≤ s and σ(i) = mτ(i−s)

for i > s.

The cost of computing P and re-evaluating it is in O(M(r) log(r)) operations
in K; the extra cost is O(r) bookkeeping operations. Our claim follows from
the super-additivity of the function M. �

We can now prove our claim on the cost of finding a repetition-free decompo-
sition. We give a recursive algorithm that, given the vector a = [a1, . . . , an],

49

computes a permutation σ of {1, . . . , n} such that

aσ(1)
...

aσ(n)

=

a1
...
au

,

where the vector ai consists of λi repetitions of an element αi, the αi being
pairwise distinct. Remark that this specification is a slight relaxation of the
definition given in Section 2, as we do not require that the multiplicities be
sorted. The extra cost for sorting them is O(n) integer operations, using bucket
sorting.

Given a = [a1, . . . , an], we define ℓ = ⌈n/2⌉ and m = n− ℓ and recursively call
the algorithm on [a1, . . . , aℓ] and [aℓ+1, . . . , an]: we obtain permutations ρ′ of
{1, . . . , ℓ} and ρ′′ of {1, . . . , m} such that

aρ′(1)
...

aρ′(ℓ)

=

a′1
...
a′s

and

aℓ+ρ′′(1)
...

aℓ+ρ′′(m)

=

a′′1
...
a′′t

, (33)

where the vector a′i (resp. a′′j) consists of νi (resp. µj) repetitions of an element
α′
i (resp. α′′

j), the α′
i and α′′

j being pairwise distinct.

We now have to determine the common elements between the lists [α′
1, . . . , α

′
s]

and [α′′
1, . . . , α

′′
t]. Using Lemma 18, we compute in O(M(n) log(n)) operations

the sequences of indices ℓ1 < · · · < ℓr and m1 < · · · < mr such that

{α′
1, . . . , α

′
s} ∩ {α′′

1, . . . , α
′′
t } = {α′

ℓ1
, . . . , α′

ℓr} = {α′′
m1
, . . . , α′′

mr
}.

Using O(n) extra operations, we then obtain the complementary sequences
ℓ′1 < · · · < ℓ′s−r and m′

1 < · · · < m′
t−r, such that

{ℓ′1, . . . , ℓ
′
s−r} = {1, . . . , s} − {ℓ1, . . . , ℓr}

and {m′
1, . . . , m

′
t−r} = {1, . . . , t} − {m1, . . . , mr}.

Since the sequences [α′
ℓ1 , . . . , α

′
ℓr] and [α′′

m1
, . . . , α′′

mr
] are repetition-free, there

exists a permutation σ of {1, . . . , r} such that α′
ℓi

= α′′
mσ(i)

for i ≤ r; by

Lemma 19, we can compute σ in O(M(n) log2(n)) operations.

Knowing these subsequences, it remains to reorder the vectors in Equa-
tion (33). We first interleave the entries appearing in both vectors

α′
ℓ1

(νℓ1 times), α′′
mσ(1)

(µmσ(1)
times), . . . , α′

ℓr (νℓr times), α′′
mσ(r)

(µmσ(r)
times),

50

followed by the entries appearing only in the first vector,

α′
ℓ′1

(νℓ′1 times), . . . , α′
ℓ′s−r

(νℓ′s−r
times),

and by those appearing only in the first vector,

α′′
m′

1
(µm′

1
times) . . . , α′′

mt−r
(µm′

t−r
times).

The permutation σ that actually puts a into the above order is readily deduced
for O(n) operations. The overall cost is thus O(M(n) log2(n)), plus that of the
two recursive calls; the estimate given in Proposition 12 follows.

51

