High-Radix Floating-Point Division Algorithms
for Embedded VLIW Integer Processors
(Extended Abstract)

Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand
Arénaire project (CNRS-ENS Lyon—-INRIA-UCBL)
LIP, ENS Lyon. 46 ake d’ltalie.
F—69364 LYON Cedex 07, FRANCE
Phone: +33 4 72 72 80 00, Fax: +33 72 72 80 80
E-mail: {firstame.lastnamj@ens-lyon.fr

Abstract—This work presents floating-point division algo- on FP arithmetic do not have this problem. Then, porting
rithms and implementations for embedded VLIW integer pro- programs from general purpose processors (with FP unit) to
cessors. On those processors, there is no hardware floatlng-integer or fixed-point cores is a complex task. For instance,

point unit, for cost reasons. But, for portability and/or accuracy R .
reasons, a software floating-point emulation layer is sometime prototyped applications using Matlab have to be converted to

useful. In this paper, we focus on high-radix digit-recurrence fixed-point format.
algorithms for floating-point division on integer VLIW proces- Furthermore, circuits in these application fields seldom
sors. Our algorithms are targeted for the ST200 processor from integrate dedicated division units. But in order to avoid slow
STMicroelectronics. software routines, manufacturers sometimes insert a division
Index Terms—computer arithmetic, floating-point arithmetic, step instruction in the ALUdrithmetic and logic unjt Most
division, digit-recurrence algorithm, SRT algorithm, high-radix of the time, this instruction is one step of the non-restoring
2:)%0”thm’ integer processor, embedded processor, VLIW proces- jision algorithm (radix2). Then a complete-bit division is
' done using: steps of this instruction. One goal of this work is
to show that some other fast division algorithms may be well
|. INTRODUCTION suited for the native integer (or fixed-point) hardware support
The implementation of fast floating-point (FP) division if embedded processors.
not a trivial task [1], [2]. A study from Oberman and Flynn [3] This work is part of Floating-Point Library for Integer
shows that even if the number of issued division instructiof¥ocessor(FLIP). This is a C library for the software support
is low (around 3% for SPEC benchmarks), the total duratiar single precision floating-point (FP) arithmetic on processors
of the division computation cannot be neglected (up to 40%thout FP hardware units such as VLIW or DSP processor
of the time in arithmetic units). cores for embedded applications. Our first target for FLIP is
General purpose processors allow fast FP division thartke ST200 family of VLIW processors from STMicroelectron-
to a dedicated unit based on the SRT (from the initialss (see [7], [8]). Our algorithms can be easily extended to
of Sweeney, Robertson, and Tocher) algorithm or Newtonther processors with similar characteristics.
Raphson'’s algorithm using the FMA (fused multiply and add) In this paper, we focus on pure software division imple-
of the FP unit(s). Even when a software solution, such agentation based on high-radix SRT algorithms. We investigate
Newton-Raphson’s algorithm, is used, there is some mirhe implementations of these algorithms on processors with
mal hardware support for those algorithms (e.g., seed tableggtangular multipliers (e.g16 x 32 — 32), more or less
see [4]. The main division algorithms and implementatioreng latencies for the multiplication unit and parallel functional
used in general purpose processors can be found in a completiéss (multipliers and ALU).
survey [5]. The paper is organized as follows. Section Il gives defi-
Most special purpose or embedded processors for digitions and notations, and recalls the basic algorithms used
tal signal processing, image processing and digital contior software division. Section Ill presents the SRT algorithm
rely on integer or fixed-point processoysfor cost reasons and its extension to high-radix iterations. The implementation
(small area). When implementing algorithms dealing withn the ST200 VLIW processor and its comparison to other
real numbers on such processors, one has to introduce s@®kitions are presented in Section IV. In Section V, we briefly
scaling operations in the target program, in order to keg@pesent the use of presented algorithms in the case of the FLIP
accurate computations [6]. The insertion of scaling operatioligrary (Floating-Point Library for Integer Processhr
is complicated due to the wide range of real numbers required
in many applications and it depends on the algorithm and Il. BASIC SOFTWAREDIVISION
data. Furthermore, scaling is time consuming at both theDigit-recurrence algorithms produce a fixed number of
application and design levels. Of course, algorithms basgdotient bits at each iteration [9], [1]. Such algorithms are

similar to the “paper-and-pencil” method. The two basic digit- , w[0] — =
recurrence algorithms are thestoringand thenon-restoring ~ , for j from 1 to n do

algorithms. Those algorithms only rely on very simple radix- , wlj] «— 2 x w[j — 1]
2 iterations, i.e. one bit of the quotient is produced at each, wlj] — w[j] —d
iteration. They are often used in software implementations for, if wj]>0 then
low performance applications. . g — 1

Both Newton-Raphson’s and Goldschmidt’s algorithms are ; else
based on a functional iteration. The idea is to find an iteration, g — 0
that converges on the quotient value. As an example, Newton wlj] «— wlj] +d
Raphson’s algorithm uses the following functional iteration to
evaluate the reciprocdl/d: Fig. 1. Restoring division algorithm

w1 =yli) < @ =dx yli) C. Non-Restoring Algorithm

whereylj] is the reciprocal approximation at iteratign In order to avoid the cost of restoration in some cases,

The convergence of this solution is quadratic, that is, thbe previous algorithm can be modified for radixguotient
number of correct bits doubles at every iteration. The obtaindiits in the set{—1,1} instead of{0,1}. The new version,
reciprocal should be multiplied by in order to complete the called non-restoring division, presented in Figure 2, allows
computation of the quotient. The initial approximatigncan the same small amount of computations at each iteration. The
be looked up into a table to reduce the number of iteratiormonversion of the quotient from the digit sét1,1} to the
This kind of algorithm requires simple arithmetic operatorstandard se{0, 1} can be donen the flyby using a simple
and full-width multiplications (at least in the last iteration). Iralgorithm (see [1]).
the following, we will not use this kind of solution because of
its long latency for medium precision and because getting a
correctly rounded result is much more complicated than using
digit-recurrence algorithms.

w[0] «— z
for j from 1 to n do
wlj] — 2 X w[j —1]
if wlj]>0 then
wlj] — wlj] —d

-

A woN

A. Definitions and Notations

5
6 gj +— 1
In this paper we follow the definitions and notations pro- ’ else . .
posed in [1]. The division operation is defined by: ’ wij] «— wlj] +d
9 Qj — —1

T =gxd+rem Fig. 2. Non-restoring division algorithm

and

lrem| < |d| x ulp and sign(rem) = sign(z) [1l. SRT DIVISION ALGORITHM
A. Basic Algorithm
where z is the dividend d the divisor, ¢ the quotienf and
optionallyrem theremainder In our case, we hawe < = < d
andd € [1,2). Theunit in the last places ulp = =" for
the radix+ representation oh-digit fractional quotients. In
the following, we will use radix2 or radix2" representations.
The valuew[j] denotes the partial remainder obtained at st
j. The quotient afterj steps isq[j] = >7_, ¢;r~* and the
final quotient isq = ¢[n].

The SRT algorithm, like other digit-recurrence algorithms,
is similar to the “paper-and-pencil” method. The main idea in
hardware SRT dividers is to use limited comparisons (based
on a few most significant bits of and w[j]) to speed-up

uotient selection. Hardware SRT dividers are typically of

complexity, utilize small area, but have relatively large
latencies. A complete book is devoted to digit-recurrence
algorithms [9] but mainly for hardware implementations.

The SRT iteration is based on the computation:

B. Restoring Algorithm wlj +1] «—r x wlj] — gj+1 x d

The restoring algorithm uses radixguotient digits in the wherew[0] = «.
set{0, 1}. At each iteration, the algorithm subtracts the divisor At each iteration, the main problem is to determine the
d from the partial remainder (line 4 in Figure 1). If the result new digit of the quotientg;.,. In hardware this is done
is strictly less tharD, the previous value should be restoredsing a table addressed by a few most significant bits of the
(line 9 in Figure 1). Usually, this restoration is not performedivisor d and the partial remaindes[;]. The partial remainder
using an addition, but by selecting the valse[j — 1] instead is represented using a redundant notation to speedup the
of w[j], which requires the use of an additional register. subtraction ofg;; x d from r x w]j].

In the case of a software implementation, which is our caB Makingd closer to1l
here, tables for quotient digit selection can not be used (in

order to avoid cache misses). Furthermore, a redundant numbe-l;r1e4r’t;_e"'()‘1S '”'E"’“ appr(f)X|hmat|on only aIItIDWS t((j) compute
system is not useful for the partial remainder. up to 4 bits at each step of the recurrence. In order to use a

higher radix iteration, we want to get a more accurate approx-
imation of the reciprocal, i.e., to makécloser tol. One can
B. Standard High-Radix Algorithm use a “better” polynomial approximation. Generally, a more
accurate approximation requires a high degree polynomial.
In our target processors, the rectangle multipliers alloyence, it leads to larger computation time.
to compute products of one full-width register by one half- |, o,r case, we chose to use a part of Goldschmidt's

width register (i.e.32 x 16 — 32). In a high-radix iteration, i4orithm. From the first approximation, the prescaling step,
this kind of multiplier can be efficiently used to performye haved = 1 + ¢. One can easily compute the vallie- e.
the computationg; ;1 x d. The quotient can be written in aThen, the new approximation of the reciprocallis (1 —¢) =
high-radix representation: using radix betwenand2'® for | _ > From ad-bit initial approximation, we now have about
Instance. 8 bits of accuracy for each step.

But we need to simplify the new quotient digit selection.
The idea of high-radix iterations is to use the first most
significant bits of the partial remainder as the new quotieat_ High-radix iterations
digit. To ensure that this trick can be used, the divisor has to
be very close td. This is possible after an initial prescaling From this starting point, we can now proceed with high-
step. Prescaling consists here in multiplying bethndd by radix SRT iterations. Each iteration give®its of the quotient.
a value M such that the product/ x d is very close tol.
The prescaling value is chosen as an approximation of the

reciprocal ofd (i.e., M ~ 1/d). w(j+ 1] «—r xwlj] — ¢j41 xd

The partial remaindew|j] is represented using two’s com-
IV. HIGH-RADIX SRTFORVLIW I NTEGERPROCESSOR plement representation. It differs from hardware implementa-
N) o tions in whichw(j] is represented using a redundant number
A. Initial reciprocal approximation system in order to speedup the subtractidnis a natural

We need), an initial approximation of the reciprocal suctinteger. The quotient digit is a small integer Brbits.
that the valueM x d is very close tol. In general purpose

processors, one uses a look-up table (such as the Itanium
processor [4]). V. FLIP: FLOATING-POINT LIBRARY FOR INTEGER

In our case, we will use a polynomial approximation instead. PROCESSOR

On the interval[1, 2] (which contains the mantissa dj, the
following degreet polynomial can be used to approximate thﬁr
function 1/d up to 4.54 bits of accuracy:

This work is a part of FLIP a C library developed in the
énaire team. This library provides the five basic operations:
addition, subtraction, multiplication, division and square-root
for a quasi-fully compliant single-precision (SP) IEEE 754 FP
format [10] (flags are not supported). This library also provides
) _ some running modes with relaxed characteristics: no denormal

One has to notice that the54 bits of accuracy are only nympers or restricted rounding modes for instance. This library
the theoretical approximation error. The evaluation error SURgs peen developed and validated within a collaboration with
up. But for this very specific polynomial, the product2 x sTMicroelectronics. The library has been targeted to the
d is performed exactly w.r.t. the internal format. Then, only (very long instruction worji processor cores of the
the subtraction provides an evaluation error (bounded by haff200 family.

an ulp), thgt is.bounded by hqlf a bit. So the total_error ON processors of the ST200 family executes upitopera-
the approximation and evaluation @iid) leads to4 bits of jons per cycle, with a maximum of one control operation

accuracy. _ - (goto, jump, call, return), one memory operation (load, store,
For this step we compute the following prescaling: prefetch) and two multiply operations per cycle. All arithmetic
instructions operate on integer values, with operands belonging

1
p(d) = 1457106781 — 5 x d

M — p(d) either to the General Register file4(x 32-bit), or the Branch
de—dxM Register file § x 1-bit). The multiply instructions are restricted
Te— XM to 16 x 32-bit on the earlier core variants, but have been

recently extended t@2-bit by 32-bit integer and fractional
Multiplying both the numerator and the denominator in theultiplication on the ST231 core. There is no divide instruc-
division z/d keep the actual value of the quotient. The onlsion but a division step instruction suitable for integer division.
potential problem is to ensure that prescaling can be doimeorder to reduce the use of conditional branches, the ST200
without overflow. processor also provides conditional selection instructions.

ACKNOWLEDGMENT

This research was supported by the FreRégion Rlbne-
Alpeswithin the “Arithm étique Flottante pour circuits DSP”
project. The authors would like to thank Christophe Monat
from STMicroelectronics for his valuable support with the
ST200 environment and Jean-Michel Muller for fruitful dis-
cussions.

(1]
(2]
(3]

(4]
(5]

(6]

(7]

(8]

El

[10]

REFERENCES

M. D. Ercegovac and T. Landjigital Arithmetic Morgan Kaufmann,
2003.

M. J. Flynn and S. F. ObermaAdvanced Computer Arithmetic Design
Wiley-Interscience, 2001.

S. F. Oberman and M. J. Flynn, “Design issues in division and other
floating-point operations,IEEE Transactions on Computersol. 46,

no. 2, pp. 154-161, Feb. 1997.

M. Cornea, P. T. P. Tang, and J. Harris@gientific Computing on
Itanium-based Systemsintel Press, 2002.

S. Oberman and M. Flynn, “Division algorithms and implementations,”
IEEE Transactions on Computersol. 46, no. 8, pp. 833-854, Aug.
1997.

D. Menard and O. Sentieys, “Automatic evaluation of the accuracy
of fixed-point algorithms,” inDesign, Automation and Test in Europe
(DATE), 2002, pp. 529-537.

P. Faraboschi, G. Brown, J. A. Fisher, G.Desoli, and F. Homewood, “Lx:
a technology platform for customizable VLIW embedded processing,”
in 27th Annual International Symposium on Computer Architecture —
ISCA'0Q June 2000.

“HP and STMicroelectronics launch LX)
http://lwww.embedded.com/2000/0010/0010feat6.htm

M. D. Ercegovac and T. Landpivision and Square-Root AIgorlthms
Digit-Recurrence Algorithms and Implementation&luwer Academic,
1994.

American National Standards Institute and Institute of Electrical and
Electronics Engineers, “IEEE standard for binary floating-point arith-
metic,” ANSI/IEEE Standard, Std 754-198B985.

