
1

High-Radix Floating-Point Division Algorithms
for Embedded VLIW Integer Processors

(Extended Abstract)
Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand

Arénaire project (CNRS–ENS Lyon–INRIA–UCBL)
LIP, ENS Lyon. 46 alĺee d’Italie.

F–69364 LYON Cedex 07, FRANCE
Phone: +33 4 72 72 80 00, Fax: +33 72 72 80 80

E-mail: {firstame.lastname}@ens-lyon.fr

Abstract— This work presents floating-point division algo-
rithms and implementations for embedded VLIW integer pro-
cessors. On those processors, there is no hardware floating-
point unit, for cost reasons. But, for portability and/or accuracy
reasons, a software floating-point emulation layer is sometime
useful. In this paper, we focus on high-radix digit-recurrence
algorithms for floating-point division on integer VLIW proces-
sors. Our algorithms are targeted for the ST200 processor from
STMicroelectronics.

Index Terms— computer arithmetic, floating-point arithmetic,
division, digit-recurrence algorithm, SRT algorithm, high-radix
algorithm, integer processor, embedded processor, VLIW proces-
sor.

I. I NTRODUCTION

The implementation of fast floating-point (FP) division is
not a trivial task [1], [2]. A study from Oberman and Flynn [3]
shows that even if the number of issued division instructions
is low (around 3% for SPEC benchmarks), the total duration
of the division computation cannot be neglected (up to 40%
of the time in arithmetic units).

General purpose processors allow fast FP division thanks
to a dedicated unit based on the SRT (from the initials
of Sweeney, Robertson, and Tocher) algorithm or Newton-
Raphson’s algorithm using the FMA (fused multiply and add)
of the FP unit(s). Even when a software solution, such as
Newton-Raphson’s algorithm, is used, there is some mini-
mal hardware support for those algorithms (e.g., seed tables,
see [4]. The main division algorithms and implementations
used in general purpose processors can be found in a complete
survey [5].

Most special purpose or embedded processors for digi-
tal signal processing, image processing and digital control
rely on integer or fixed-point processors, for cost reasons
(small area). When implementing algorithms dealing with
real numbers on such processors, one has to introduce some
scaling operations in the target program, in order to keep
accurate computations [6]. The insertion of scaling operations
is complicated due to the wide range of real numbers required
in many applications and it depends on the algorithm and
data. Furthermore, scaling is time consuming at both the
application and design levels. Of course, algorithms based

on FP arithmetic do not have this problem. Then, porting
programs from general purpose processors (with FP unit) to
integer or fixed-point cores is a complex task. For instance,
prototyped applications using Matlab have to be converted to
fixed-point format.

Furthermore, circuits in these application fields seldom
integrate dedicated division units. But in order to avoid slow
software routines, manufacturers sometimes insert a division
step instruction in the ALU (arithmetic and logic unit). Most
of the time, this instruction is one step of the non-restoring
division algorithm (radix-2). Then a completen-bit division is
done usingn steps of this instruction. One goal of this work is
to show that some other fast division algorithms may be well
suited for the native integer (or fixed-point) hardware support
of embedded processors.

This work is part of Floating-Point Library for Integer
Processor(FLIP). This is a C library for the software support
of single precision floating-point (FP) arithmetic on processors
without FP hardware units such as VLIW or DSP processor
cores for embedded applications. Our first target for FLIP is
the ST200 family of VLIW processors from STMicroelectron-
ics (see [7], [8]). Our algorithms can be easily extended to
other processors with similar characteristics.

In this paper, we focus on pure software division imple-
mentation based on high-radix SRT algorithms. We investigate
the implementations of these algorithms on processors with
rectangular multipliers (e.g.,16 × 32 → 32), more or less
long latencies for the multiplication unit and parallel functional
units (multipliers and ALU).

The paper is organized as follows. Section II gives defi-
nitions and notations, and recalls the basic algorithms used
for software division. Section III presents the SRT algorithm
and its extension to high-radix iterations. The implementation
on the ST200 VLIW processor and its comparison to other
solutions are presented in Section IV. In Section V, we briefly
present the use of presented algorithms in the case of the FLIP
library (Floating-Point Library for Integer Processor).

II. BASIC SOFTWARE DIVISION

Digit-recurrence algorithms produce a fixed number of
quotient bits at each iteration [9], [1]. Such algorithms are

similar to the “paper-and-pencil” method. The two basic digit-
recurrence algorithms are therestoringand thenon-restoring
algorithms. Those algorithms only rely on very simple radix-
2 iterations, i.e. one bit of the quotient is produced at each
iteration. They are often used in software implementations for
low performance applications.

Both Newton-Raphson’s and Goldschmidt’s algorithms are
based on a functional iteration. The idea is to find an iteration
that converges on the quotient value. As an example, Newton-
Raphson’s algorithm uses the following functional iteration to
evaluate the reciprocal1/d:

y[j + 1] = y[j]× (2− d× y[j])

wherey[j] is the reciprocal approximation at iterationj.
The convergence of this solution is quadratic, that is, the

number of correct bits doubles at every iteration. The obtained
reciprocal should be multiplied byx in order to complete the
computation of the quotient. The initial approximationy0 can
be looked up into a table to reduce the number of iterations.
This kind of algorithm requires simple arithmetic operators
and full-width multiplications (at least in the last iteration). In
the following, we will not use this kind of solution because of
its long latency for medium precision and because getting a
correctly rounded result is much more complicated than using
digit-recurrence algorithms.

A. Definitions and Notations

In this paper we follow the definitions and notations pro-
posed in [1]. The division operation is defined by:

x = q × d + rem

and

|rem| < |d| × ulp and sign(rem) = sign(x)

where x is the dividend, d the divisor, q the quotient, and
optionallyrem theremainder. In our case, we have0 ≤ x < d
and d ∈ [1, 2). The unit in the last placeis ulp = r−n for
the radix-r representation ofn-digit fractional quotients. In
the following, we will use radix-2 or radix-2k representations.
The valuew[j] denotes the partial remainder obtained at step
j. The quotient afterj steps isq[j] =

∑j
i=1 qir

−i and the
final quotient isq = q[n].

B. Restoring Algorithm

The restoring algorithm uses radix-2 quotient digits in the
set{0, 1}. At each iteration, the algorithm subtracts the divisor
d from the partial remainderw (line 4 in Figure 1). If the result
is strictly less than0, the previous value should be restored
(line 9 in Figure 1). Usually, this restoration is not performed
using an addition, but by selecting the value2w[j−1] instead
of w[j], which requires the use of an additional register.

1 w[0]←− x
2 f o r j from 1 to n do
3 w[j]←− 2× w[j − 1]
4 w[j]←− w[j]− d
5 i f w[j] ≥ 0 then
6 qj ←− 1
7 e l s e
8 qj ←− 0
9 w[j]←− w[j] + d

Fig. 1. Restoring division algorithm

C. Non-Restoring Algorithm

In order to avoid the cost of restoration in some cases,
the previous algorithm can be modified for radix-2 quotient
digits in the set{−1, 1} instead of{0, 1}. The new version,
called non-restoring division, presented in Figure 2, allows
the same small amount of computations at each iteration. The
conversion of the quotient from the digit set{−1, 1} to the
standard set{0, 1} can be doneon the flyby using a simple
algorithm (see [1]).

1 w[0]←− x
2 f o r j from 1 to n do
3 w[j]←− 2× w[j − 1]
4 i f w[j] ≥ 0 then
5 w[j]←− w[j]− d
6 qj ←− 1
7 e l s e
8 w[j]←− w[j] + d
9 qj ←− −1

Fig. 2. Non-restoring division algorithm

III. SRT DIVISION ALGORITHM

A. Basic Algorithm

The SRT algorithm, like other digit-recurrence algorithms,
is similar to the “paper-and-pencil” method. The main idea in
hardware SRT dividers is to use limited comparisons (based
on a few most significant bits ofd and w[j]) to speed-up
quotient selection. Hardware SRT dividers are typically of
low complexity, utilize small area, but have relatively large
latencies. A complete book is devoted to digit-recurrence
algorithms [9] but mainly for hardware implementations.

The SRT iteration is based on the computation:

w[j + 1]←− r × w[j]− qj+1 × d

wherew[0] = x.
At each iteration, the main problem is to determine the

new digit of the quotientqj+1. In hardware this is done
using a table addressed by a few most significant bits of the
divisor d and the partial remainderw[j]. The partial remainder
is represented using a redundant notation to speedup the
subtraction ofqj+1 × d from r × w[j].

In the case of a software implementation, which is our case
here, tables for quotient digit selection can not be used (in
order to avoid cache misses). Furthermore, a redundant number
system is not useful for the partial remainder.

B. Standard High-Radix Algorithm

In our target processors, the rectangle multipliers allow
to compute products of one full-width register by one half-
width register (i.e.,32 × 16 → 32). In a high-radix iteration,
this kind of multiplier can be efficiently used to perform
the computationqj+1 × d. The quotient can be written in a
high-radix representation: using radix between28 and216 for
instance.

But we need to simplify the new quotient digit selection.
The idea of high-radix iterations is to use the first most
significant bits of the partial remainder as the new quotient
digit. To ensure that this trick can be used, the divisor has to
be very close to1. This is possible after an initial prescaling
step. Prescaling consists here in multiplying bothx andd by
a valueM such that the productM × d is very close to1.
The prescaling value is chosen as an approximation of the
reciprocal ofd (i.e., M ≈ 1/d).

IV. H IGH-RADIX SRT FOR VLIW I NTEGERPROCESSOR

A. Initial reciprocal approximation

We needM , an initial approximation of the reciprocal such
that the valueM × d is very close to1. In general purpose
processors, one uses a look-up table (such as the Itanium
processor [4]).

In our case, we will use a polynomial approximation instead.
On the interval[1, 2] (which contains the mantissa ofd), the
following degree-1 polynomial can be used to approximate the
function 1/d up to 4.54 bits of accuracy:

p(d) = 1.457106781− 1
2
× d

One has to notice that the4.54 bits of accuracy are only
the theoretical approximation error. The evaluation error sums
up. But for this very specific polynomial, the product1/2 ×
d is performed exactly w.r.t. the internal format. Then, only
the subtraction provides an evaluation error (bounded by half
an ulp), that is bounded by half a bit. So the total error on
the approximation and evaluation onp(d) leads to4 bits of
accuracy.

For this step we compute the following prescaling:

M ←− p(d)
d←− d×M

x←− x×M

Multiplying both the numerator and the denominator in the
division x/d keep the actual value of the quotient. The only
potential problem is to ensure that prescaling can be done
without overflow.

B. Makingd closer to1

The previous initial approximation only allows to compute
up to 4 bits at each step of the recurrence. In order to use a
higher radix iteration, we want to get a more accurate approx-
imation of the reciprocal, i.e., to maked closer to1. One can
use a “better” polynomial approximation. Generally, a more
accurate approximation requires a high degree polynomial.
Hence, it leads to larger computation time.

In our case, we chose to use a part of Goldschmidt’s
algorithm. From the first approximation, the prescaling step,
we haved = 1 + ε. One can easily compute the value1− ε.
Then, the new approximation of the reciprocal isd×(1−ε) =
1− ε2. From a4-bit initial approximation, we now have about
8 bits of accuracy for each step.

C. High-radix iterations

From this starting point, we can now proceed with high-
radix SRT iterations. Each iteration gives6 bits of the quotient.

w[j + 1]←− r × w[j]− qj+1 × d

The partial remainderw[j] is represented using two’s com-
plement representation. It differs from hardware implementa-
tions in whichw[j] is represented using a redundant number
system in order to speedup the subtraction.d is a natural
integer. The quotient digit is a small integer on8 bits.

V. FLIP: FLOATING-POINT L IBRARY FOR INTEGER

PROCESSOR

This work is a part of FLIP a C library developed in the
Arénaire team. This library provides the five basic operations:
addition, subtraction, multiplication, division and square-root
for a quasi-fully compliant single-precision (SP) IEEE 754 FP
format [10] (flags are not supported). This library also provides
some running modes with relaxed characteristics: no denormal
numbers or restricted rounding modes for instance. This library
has been developed and validated within a collaboration with
STMicroelectronics. The library has been targeted to the
VLIW (very long instruction word) processor cores of the
ST200 family.

Processors of the ST200 family executes up to4 opera-
tions per cycle, with a maximum of one control operation
(goto, jump, call, return), one memory operation (load, store,
prefetch) and two multiply operations per cycle. All arithmetic
instructions operate on integer values, with operands belonging
either to the General Register file (64× 32-bit), or the Branch
Register file (8×1-bit). The multiply instructions are restricted
to 16 × 32-bit on the earlier core variants, but have been
recently extended to32-bit by 32-bit integer and fractional
multiplication on the ST231 core. There is no divide instruc-
tion but a division step instruction suitable for integer division.
In order to reduce the use of conditional branches, the ST200
processor also provides conditional selection instructions.

ACKNOWLEDGMENT

This research was supported by the FrenchRégion Rĥone-
Alpeswithin the “Arithmétique Flottante pour circuits DSP”
project. The authors would like to thank Christophe Monat
from STMicroelectronics for his valuable support with the
ST200 environment and Jean-Michel Muller for fruitful dis-
cussions.

REFERENCES

[1] M. D. Ercegovac and T. Lang,Digital Arithmetic. Morgan Kaufmann,
2003.

[2] M. J. Flynn and S. F. Oberman,Advanced Computer Arithmetic Design.
Wiley-Interscience, 2001.

[3] S. F. Oberman and M. J. Flynn, “Design issues in division and other
floating-point operations,”IEEE Transactions on Computers, vol. 46,
no. 2, pp. 154–161, Feb. 1997.

[4] M. Cornea, P. T. P. Tang, and J. Harrison,Scientific Computing on
Itanium-based Systems. Intel Press, 2002.

[5] S. Oberman and M. Flynn, “Division algorithms and implementations,”
IEEE Transactions on Computers, vol. 46, no. 8, pp. 833–854, Aug.
1997.

[6] D. Menard and O. Sentieys, “Automatic evaluation of the accuracy
of fixed-point algorithms,” inDesign, Automation and Test in Europe
(DATE), 2002, pp. 529–537.

[7] P. Faraboschi, G. Brown, J. A. Fisher, G.Desoli, and F. Homewood, “Lx:
a technology platform for customizable VLIW embedded processing,”
in 27th Annual International Symposium on Computer Architecture –
ISCA’00, June 2000.

[8] “HP and STMicroelectronics launch ”LX”,”
http://www.embedded.com/2000/0010/0010feat6.htm .

[9] M. D. Ercegovac and T. Lang,Division and Square-Root Algorithms:
Digit-Recurrence Algorithms and Implementations. Kluwer Academic,
1994.

[10] American National Standards Institute and Institute of Electrical and
Electronics Engineers, “IEEE standard for binary floating-point arith-
metic,” ANSI/IEEE Standard, Std 754-1985, 1985.

