Twin-Width of Groups and Graphs of Bounded Degree

Édouard Bonnet Colin Geniet
Romain Tessera Stéphan Thomassé

18 Mars 2022

Twin-Width

Contractions:

- Any pair of vertices can be contracted (not just edges)
- Loops and double edges are removed

Contraction sequence: G_{n}, \ldots, G_{1}, where

- G_{i} is result of a contraction in G_{i+1}
- G_{1} has just one vertex

Twin-width:

$$
\operatorname{tww}(G)=\min _{\substack{G=G_{n}, \ldots, G_{1} \\ \text { contr. seq. }}} \max _{\substack{i \in[n] \\ v \in V\left(G_{i}\right)}} d_{\text {red }}(v)
$$

Simplified definition for graphs of bounded degree.

Examples

- Paths, cycles have tww $=2$
- Trees have tww $=\Delta$
- Grids have tww $=4$
- d-dimensional grids have tww $=O(d)$

Example: Bilu-Linial Expanders

2-lift of G :

- Duplicate each vertex $v \in V(G)$ into v_{0}, v_{1}.
- For $u v \in E G$ add either
- the edges $u_{0} v_{0}$ and $u_{1} v_{1}$ (straight),
- or the edges $u_{0} v_{1}$ and $u_{1} v_{0}$ (crossing).

Example: Bilu-Linial Expanders

2-lift of G :

- Duplicate each vertex $v \in V(G)$ into v_{0}, v_{1}.
- For $u v \in E G$ add either
- the edges $u_{0} v_{0}$ and $u_{1} v_{1}$ (straight),
- or the edges $u_{0} v_{1}$ and $u_{1} v_{0}$ (crossing).

Theorem (Bilu and Linial, '06)
Iterated 2-lifts starting from K_{4}, with random choices of straight/crossing, yield cubic expanders almost surely.

All iterated 2-lifts of K_{4} have tww ≤ 6 : reverse the lift sequence.

Why Twin-Width

For classes of graphs with bounded twin-width:

- FPT first-order model checking (given a contraction sequence) [É.B., E.J. Kim, S.T., R.Watrigant].
- Quasi-polynomially χ-bounded [Mi.Piliczuk,M.Sokołowski]
- Some FPT and approximation algorithms for independent set, dominating set [É.B., C.G., E.J. Kim, S.T., R.Watrigant].

Small Classes

When counting graphs on n vertices in a class \mathcal{C}, we count graphs in \mathcal{C} with vertices labeled from 1 to n.

A class is small if the number of graphs on n vertices is

$$
O\left(n!\cdot c^{n}\right)=2^{n \log n+O(n)}
$$

Examples:

- Trees
- Proper minor-closed classes [Norine, Seymour, Thomas, Wollan]

Theorem (É.B., C.G., E.J. Kim, S.T., R.Watrigant)
Any class with bounded twin-width is small.

Not Small Classes

Number of cubic graphs on n vertices:

$$
2^{3 / 2 \cdot n \log n+\Omega(n)}
$$

Number of graphs of twin-width k on n vertices:

$$
2^{n \log n+O_{k}(n)}
$$

Corollary

Expected twin-width of random cubic graphs is unbounded.

Questions

1. Can we find explicit constructions of graphs with bounded degree and unbounded twin-width?
2. Do all small (hereditary) classes have bounded twin-width?

Power of Graphs

The k th power of G is the graph $G^{(k)}$ with

- vertices $V(G)$
- an edge $x y$ whenever $d_{G}(x, y) \leq k$

Lemma

$$
\operatorname{tww}\left(G^{(k)}\right) \leq \operatorname{tww}(G)^{k}
$$

Generalisation (for the general definition of twin-width):
Theorem
For any first-order transduction Φ and graph G,

$$
\operatorname{tww}(\Phi(G)) \leq f(\operatorname{tww}(G), \Phi)
$$

Power of Graphs (Proof)

Contraction sequence of width t :

$$
G=G_{n}, \ldots, G_{1}=K_{1}
$$

same sequence on $G^{(k)}$:

$$
G^{(k)}=G_{n}^{\prime}, \ldots, G_{1}^{\prime}=K_{1}
$$

G_{i}^{\prime} is a subgraph of $G_{i}^{(k)}$:

Coarse Geometry

$f: X \rightarrow Y$ is a λ-quasi-isometric embedding if

$$
\lambda^{-1} d_{X}(x, y)-\lambda \leq d_{Y}(f(x), f(y)) \leq \lambda d_{X}(x, y)+\lambda
$$

Coarse Geometry

$f: X \rightarrow Y$ is a λ-quasi-isometric embedding if

$$
\lambda^{-1} d_{X}(x, y)-\lambda \leq d_{Y}(f(x), f(y)) \leq \lambda d_{X}(x, y)+\lambda
$$

Lemma
If $f: H \rightarrow G$ is a λ-quasi-isometric embedding of graphs of bounded degree,

$$
\operatorname{tww}(H) \leq f(\lambda, \operatorname{tww}(G))
$$

Coarse Geometry

$f: X \rightarrow Y$ is a λ-quasi-isometric embedding if

$$
\lambda^{-1} d_{X}(x, y)-\lambda \leq d_{Y}(f(x), f(y)) \leq \lambda d_{X}(x, y)+\lambda
$$

Lemma

If $f: H \rightarrow G$ is a λ-quasi-isometric embedding of graphs of bounded degree,

$$
\operatorname{tww}(H) \leq f(\lambda, \operatorname{tww}(G))
$$

For G infinite, define

$$
\operatorname{tww}(G)=\sup _{H \subset_{\text {fin }} G} \operatorname{tww}(H)
$$

For infinite graphs with bounded degree, finite twin-width is preserved by quasi-isometries.

Cayley Graphs

Let Γ group generated by S finite.
The Cayley graph Cay (Γ, S) has

- vertices Γ
- an edge from x to x for every $x \in \Gamma, s \in S$.

Cayley Graphs

Let Γ group generated by S finite.
The Cayley graph Cay (Γ, S) has

- vertices Γ
- an edge from x to x for every $x \in \Gamma, s \in S$.

Examples:

- $\operatorname{Cay}(\mathbb{Z},\{1\})$ is the infinite path
- $\operatorname{Cay}(\mathbb{Z} / n \mathbb{Z},\{1\})=C_{n}$
- $\operatorname{Cay}\left(\mathbb{Z}^{2},\{(0,1),(1,0)\}\right)$ is the infinite grid (d-dimentional grid for \mathbb{Z}^{d})
- If $\mathbb{F}(S)$ is the group freely generated by $S, \operatorname{Cay}(\mathbb{F}(S), S)$ is the $2|S|$-regular tree.

Twin－Width of Groups

Lemma
All Cayley graphs of Γ are quasi－isometric．
Finite twin－width is well－defined on groups．
Examples：
－ $\mathbb{Z}, \mathbb{Z} / n \mathbb{Z}$
－Free groups
－Products of groups with finite twin－width
－（Finitely generated）commutative groups

Cayley Graphs

Let Γ group generated by S.
Let \mathcal{C} be the class of finite induced subgraphs of $\operatorname{Cay}(\Gamma, S)$.
Lemma
\mathcal{C} is small.
Proof.
Any $G \in \mathcal{C}$ is characterized by a directed spanning tree, with edges labelled with $S \cup S^{-1}$.

Cayley Graphs

Let Γ group generated by S.
Let \mathcal{C} be the class of finite induced subgraphs of $\operatorname{Cay}(\Gamma, S)$.
Lemma
\mathcal{C} is small.
Proof.
Any $G \in \mathcal{C}$ is characterized by a directed spanning tree, with edges labelled with $S \cup S^{-1}$.

Suppose Γ has infinite twin-width.

- \mathcal{C} is class of graphs with bounded degree and unbounded twin-width
- \mathcal{C} is a small class of graphs with unbounded twin-width

Group with Infinite Twin-Width

Theorem (Osajda, 2020)
Let $\left(G_{n}\right)_{n \in N}$ be a sequence of graphs with

- $\Delta\left(G_{n}\right) \leq D$
- $\operatorname{diam}\left(G_{n}\right) / \operatorname{girth}\left(G_{n}\right) \leq A$
- $\operatorname{girth}\left(G_{n+1}\right) \geq \operatorname{girth}\left(G_{n}\right)+6$

There exists a group Γ finitely generated by S such that $\operatorname{Cay}(\Gamma, S)$ contains all G_{n} as isometric subgraphs.

Group with Infinite Twin-Width

Theorem (Osajda, 2020)
Let $\left(G_{n}\right)_{n \in N}$ be a sequence of graphs with

- $\Delta\left(G_{n}\right) \leq D$
- $\operatorname{diam}\left(G_{n}\right) / \operatorname{girth}\left(G_{n}\right) \leq A$
- $\operatorname{girth}\left(G_{n+1}\right) \geq \operatorname{girth}\left(G_{n}\right)+6$

There exists a group Γ finitely generated by S such that $\operatorname{Cay}(\Gamma, S)$ contains all G_{n} as isometric subgraphs.

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $>\frac{1}{2}$, there are not too many short $\left(<\frac{\log n}{K}\right)$ cycles. Cut these short cycles (remove an edge in each).

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $>\frac{1}{2}$, there are not too many short $\left(<\frac{\log n}{K}\right)$ cycles. Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $>\log n$, and join them with a balanced cubic tree.

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $>\frac{1}{2}$, there are not too many short $\left(<\frac{\log n}{K}\right)$ cycles. Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $>\log n$, and join them with a balanced cubic tree.
- The graph obtained satisfies the first 3 conditions.

Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\operatorname{diam}(G) \leq 3 \log n$
- $\operatorname{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $>\frac{1}{2}$, there are not too many short $\left(<\frac{\log n}{K}\right)$ cycles. Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $>\log n$, and join them with a balanced cubic tree.
- The graph obtained satisfies the first 3 conditions.
- The above requires only $n^{1-\epsilon}$ edge editions. This implies that the class of graphs satisfying the first 3 conditions is not small.

End Result

- There is a group with infinite twin-width.
- We have no idea what it looks like.
- It doesn't help with constructing graphs of bounded degree and unbounded twin-width.
- There is a small class of graphs with unbounded twin-width.

Grid Characterisation

A k-grid is a $k \times k$-division in which every zone has a ' 1 '.

0	0	0	1	0
0	1	0	0	1
0	0	0	1	1
1	0	1	0	0
0	1	1	0	1

Grid number $=$ maximum size of a grid.

Theorem

- A matrix M has bounded twin-width if and only if it has bounded grid number.
- A graph G has bounded twin-width if and only if there is an order $<$ on $V(G)$ such that the adjacency matrix of G has bounded grid number.

Grid Characterisation for Groups

For $x \in \Gamma,<$ order on $\Gamma, M_{x}^{<}$is the permutation matrix of

$$
(y \in \Gamma) \mapsto y \cdot x
$$

Claim
The adjacency matrix of $\operatorname{Cay}(\Gamma, S)$ with order $<$ is

$$
\bigvee_{s \in S \cup S^{-1}} M_{s}^{<}
$$

Lemma

Γ has finite twin-width if and only if there is an order $<$ on Γ such that for every $x \in \Gamma, M_{x}^{<}$has finite grid number.

Matrix Definition

Definition

Γ has finite twin-width if there is an order $<$ on Γ such that for every $x \in \Gamma, M_{x}^{<}$has finite twin-width.
This definition works for non finitely generated groups.

Matrix Definition

Definition

Γ has finite twin-width if there is an order $<$ on Γ such that for every $x \in \Gamma, M_{x}^{<}$has finite twin-width.
This definition works for non finitely generated groups.

Definition

Uniform twin-width is

$$
\operatorname{utww}(\Gamma)=\inf _{<\text {order on } \Gamma} \sup _{x \in \Gamma} \operatorname{tww}\left(M_{x}^{<}\right)
$$

Uniform Twin-Width

Lemma
If G is a group, $H \leq G$ a subgroup

$$
\operatorname{utww}(G) \leq \max (\operatorname{utww}(H), \operatorname{utww}(G / H))
$$

Groups with finite uniform twin-width:

- Ordered groups
- Finitely generated abelian groups.
- Polycyclic groups
- Polynomial growth

Open Questions

- Explicit construction for groups (or graphs of bounded degree) with infinite twin-width?
- Separating twin-width and uniform twin-width for groups?
- Is there a universal bound on uniform twin-width of finite groups?

Open Questions

- Explicit construction for groups (or graphs of bounded degree) with infinite twin-width?
- Separating twin-width and uniform twin-width for groups?
- Is there a universal bound on uniform twin-width of finite groups?

3-dim. grid with diagonals has infinite stack number [Eppstein et. al.] Stack number is not a group invariant, but queue number is!

- Matrix characterisation, uniform variants adapt to queue number.
- Separating queue number and twin-width?

